A dynamic water channel affects O\(_2\) stability in [FeFe]-hydrogenases

  • [FeFe]-hydrogenases are capable of reducing protons at a high rate. However, molecular oxygen (O\(_2\)) induces the degradation of their catalytic cofactor, the H-cluster, which consists of a cubane [4Fe4S] subcluster (4Fe\(_H\)) and a unique diiron moiety (2Fe\(_H\)). Previous attempts to prevent O\(_2\)-induced damage have focused on enhancing the protein's sieving effect for O\(_2\) by blocking the hydrophobic gas channels that connect the protein surface and the 2Fe\(_H\). In this study, we aimed to block an O\(_2\) diffusion pathway and shield 4Fe\(_H\) instead. Molecular dynamics (MD) simulations identified a novel water channel (W\(_H\)) surrounding the H-cluster. As this hydrophilic path may be accessible for O\(_2\) molecules we applied site-directed mutagenesis targeting amino acids along W\(_H\) in proximity to 4Fe\(_H\) to block O\(_2\) diffusion. Protein film electrochemistry experiments demonstrate increased O\(_2\) stabilities for variants G302S and S357T, and MD simulations based on high-resolution crystal structures confirmed an enhanced local sieving effect for O\(_2\) in the environment of the 4Fe\(_H\) in both cases. The results strongly suggest that, in wild type proteins, O\(_2\) diffuses from the 4Fe\(_H\) to the 2Fe\(_H\). These results reveal new strategies for improving the O\(_2\) stability of [FeFe]-hydrogenases by focusing on the O\(_2\) diffusion network near the active site.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Claudia BrocksGND, Chandan K. DasGND, Jifu DuanGND, Shanika YadavGND, Ulf-Peter ApfelORCiDGND, Subhasri GhoshGND, Eckhard HofmannORCiDGND, Martin WinklerORCiDGND, Vera EngelbrechtGND, Lars V. SchäferORCiDGND, Thomas HappeORCiDGND
URN:urn:nbn:de:hbz:294-126883
DOI:https://doi.org/10.1002/cssc.202301365
Parent Title (English):ChemSusChem
Publisher:Wiley
Place of publication:Hoboken, New Jersey
Document Type:Article
Language:English
Date of Publication (online):2024/09/12
Date of first Publication:2023/10/13
Publishing Institution:Ruhr-Universität Bochum, Universitätsbibliothek
Tag:Hydrogenase; gas channels; hydrogen bonds; molecular dynamics; oxygen
Volume:17
Issue:3, Artikel e202301365
First Page:e202301365-1
Last Page:e202301365-7
Note:
Dieser Beitrag ist auf Grund des DEAL-Wiley-Vertrages frei zugänglich.
Institutes/Facilities:Fakultät für Biologie und Biotechnologie, Abteilung für Biochemie der Pflanzen, Arbeitsgruppe Photobiotechnologie
Dewey Decimal Classification:Naturwissenschaften und Mathematik / Biowissenschaften, Biologie, Biochemie
open_access (DINI-Set):open_access
faculties:Fakultät für Biologie und Biotechnologie
Licence (English):License LogoCreative Commons - CC BY-NC-ND 4.0 - Attribution-NonCommercial-NoDerivatives 4.0 International