Claudia Brocks, Chandan K. Das, Jifu Duan, Shanika Yadav, Ulf-Peter Apfel, Subhasri Ghosh, Eckhard Hofmann, Martin Winkler, Vera Engelbrecht, Lars V. Schäfer, Thomas Happe
- [FeFe]-hydrogenases are capable of reducing protons at a high rate. However, molecular oxygen (O\(_2\)) induces the degradation of their catalytic cofactor, the H-cluster, which consists of a cubane [4Fe4S] subcluster (4Fe\(_H\)) and a unique diiron moiety (2Fe\(_H\)). Previous attempts to prevent O\(_2\)-induced damage have focused on enhancing the protein's sieving effect for O\(_2\) by blocking the hydrophobic gas channels that connect the protein surface and the 2Fe\(_H\). In this study, we aimed to block an O\(_2\) diffusion pathway and shield 4Fe\(_H\) instead. Molecular dynamics (MD) simulations identified a novel water channel (W\(_H\)) surrounding the H-cluster. As this hydrophilic path may be accessible for O\(_2\) molecules we applied site-directed mutagenesis targeting amino acids along W\(_H\) in proximity to 4Fe\(_H\) to block O\(_2\) diffusion. Protein film electrochemistry experiments demonstrate increased O\(_2\) stabilities for variants G302S and S357T, and MD simulations based on high-resolution crystal structures confirmed an enhanced local sieving effect for O\(_2\) in the environment of the 4Fe\(_H\) in both cases. The results strongly suggest that, in wild type proteins, O\(_2\) diffuses from the 4Fe\(_H\) to the 2Fe\(_H\). These results reveal new strategies for improving the O\(_2\) stability of [FeFe]-hydrogenases by focusing on the O\(_2\) diffusion network near the active site.
MetadatenAuthor: | Claudia BrocksGND, Chandan K. DasGND, Jifu DuanGND, Shanika YadavGND, Ulf-Peter ApfelORCiDGND, Subhasri GhoshGND, Eckhard HofmannORCiDGND, Martin WinklerORCiDGND, Vera EngelbrechtGND, Lars V. SchäferORCiDGND, Thomas HappeORCiDGND |
---|
URN: | urn:nbn:de:hbz:294-126883 |
---|
DOI: | https://doi.org/10.1002/cssc.202301365 |
---|
Parent Title (English): | ChemSusChem |
---|
Publisher: | Wiley |
---|
Place of publication: | Hoboken, New Jersey |
---|
Document Type: | Article |
---|
Language: | English |
---|
Date of Publication (online): | 2024/09/12 |
---|
Date of first Publication: | 2023/10/13 |
---|
Publishing Institution: | Ruhr-Universität Bochum, Universitätsbibliothek |
---|
Tag: | Hydrogenase; gas channels; hydrogen bonds; molecular dynamics; oxygen |
---|
Volume: | 17 |
---|
Issue: | 3, Artikel e202301365 |
---|
First Page: | e202301365-1 |
---|
Last Page: | e202301365-7 |
---|
Note: | Dieser Beitrag ist auf Grund des DEAL-Wiley-Vertrages frei zugänglich. |
---|
Institutes/Facilities: | Fakultät für Biologie und Biotechnologie, Abteilung für Biochemie der Pflanzen, Arbeitsgruppe Photobiotechnologie |
---|
Dewey Decimal Classification: | Naturwissenschaften und Mathematik / Biowissenschaften, Biologie, Biochemie |
---|
open_access (DINI-Set): | open_access |
---|
faculties: | Fakultät für Biologie und Biotechnologie |
---|
Licence (English): | Creative Commons - CC BY-NC-ND 4.0 - Attribution-NonCommercial-NoDerivatives 4.0 International |
---|