Dynamical Gibbs–non-Gibbs transitions in the Curie–Weiss Potts model in the regime \(\beta\)<3
- We consider the Curie–Weiss Potts model in zero external field under independent symmetric spin-flip dynamics. We investigate dynamical Gibbs–non-Gibbs transitions for a range of initial inverse temperatures \(\beta\) < 3, which covers the phase transition point \(\beta\) = 4 log 2 (Ellis and Wang in Stoch Process Appl 35(1):59–79, 1990). We show that finitely many types of trajectories of bad empirical measures appear, depending on the parameter \(\beta\), with a possibility of re-entrance into the Gibbsian regime, of which we provide a full description.
Author: | Christof KülskeORCiDGND, Daniel MeißnerORCiDGND |
---|---|
URN: | urn:nbn:de:hbz:294-100460 |
DOI: | https://doi.org/10.1007/s10955-021-02793-3 |
Parent Title (English): | Journal of statistical physics |
Publisher: | Springer Science + Business Media B.V. |
Place of publication: | New York |
Document Type: | Article |
Language: | English |
Date of Publication (online): | 2023/08/15 |
Date of first Publication: | 2021/07/23 |
Publishing Institution: | Ruhr-Universität Bochum, Universitätsbibliothek |
Tag: | Beak-to-beak; Butterflies; Curie–Weiss model; Dynamical Gibbs–non-Gibbs transitions; Large deviations; Mean-field; Phase transitions; Potts model; Singularity theory; Umbilics Sequential Gibbs property |
Volume: | 184 |
Issue: | Article 15 |
First Page: | 15-1 |
Last Page: | 15-35 |
Note: | Dieser Beitrag ist auf Grund des DEAL-Springer-Vertrages frei zugänglich. |
Dewey Decimal Classification: | Naturwissenschaften und Mathematik / Mathematik |
open_access (DINI-Set): | open_access |
faculties: | Fakultät für Mathematik |
Licence (English): | Creative Commons - CC BY 4.0 - Attribution 4.0 International |