Dynamical Gibbs–non-Gibbs transitions in the Curie–Weiss Potts model in the regime \(\beta\)<3

  • We consider the Curie–Weiss Potts model in zero external field under independent symmetric spin-flip dynamics. We investigate dynamical Gibbs–non-Gibbs transitions for a range of initial inverse temperatures \(\beta\) < 3, which covers the phase transition point \(\beta\) = 4 log 2 (Ellis and Wang in Stoch Process Appl 35(1):59–79, 1990). We show that finitely many types of trajectories of bad empirical measures appear, depending on the parameter \(\beta\), with a possibility of re-entrance into the Gibbsian regime, of which we provide a full description.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Christof KülskeORCiDGND, Daniel MeißnerORCiDGND
URN:urn:nbn:de:hbz:294-100460
DOI:https://doi.org/10.1007/s10955-021-02793-3
Parent Title (English):Journal of statistical physics
Publisher:Springer Science + Business Media B.V.
Place of publication:New York
Document Type:Article
Language:English
Date of Publication (online):2023/08/15
Date of first Publication:2021/07/23
Publishing Institution:Ruhr-Universität Bochum, Universitätsbibliothek
Tag:Beak-to-beak; Butterflies; Curie–Weiss model; Dynamical Gibbs–non-Gibbs transitions; Large deviations; Mean-field; Phase transitions; Potts model; Singularity theory; Umbilics
Sequential Gibbs property
Volume:184
Issue:Article 15
First Page:15-1
Last Page:15-35
Note:
Dieser Beitrag ist auf Grund des DEAL-Springer-Vertrages frei zugänglich.
Dewey Decimal Classification:Naturwissenschaften und Mathematik / Mathematik
open_access (DINI-Set):open_access
faculties:Fakultät für Mathematik
Licence (English):License LogoCreative Commons - CC BY 4.0 - Attribution 4.0 International