Optimized mixed-domain signal synthesis for broadband impedance spectroscopy measurements on lithium ion cells for automotive applications

  • A new impedance spectroscopy measurement procedure for automotive battery cells is presented, which is based on waveform shaping. The method is optimized towards a short measurement duration, high excitation power and increased frequency resolution and overcomes limitations of established methods. For a given spectral magnitude profile, a corresponding time domain waveform is derived from the inverse discrete Fourier transform. Applying an identical initial phase angle for each frequency component, the resulting signal exhibits a high peak-to-peak amplitude at relatively low total excitation power. This limits the maximum allowed power for quasi-linear excitation. Altering the phase angles randomly spreads the excitation power across the complete measurement duration. Thereby, linearity is preserved at higher excitation power. A large set of phase patterns is evaluated statistically in order to obtain a phase pattern with a significant peak-to-peak amplitude decrease. By means of numerical optimization, even further peak-to-peak amplitude reduction is achieved. Including window functions in the synthesis concept minimizes spectral leakage without compromising the spectral signal magnitude in the frequency range of interest. A time domain waveform optimized for impedance spectroscopy on lithium ion cells is synthesized based on the proposed approach and evaluated on real automotive cells. The resulting impedance data show good concordance with established standard measurement procedures at significantly reduced measurement duration and charge throughput. Additionally, increased frequency resolution is achieved, enhancing the level of detail of the obtained impedance data. The method is used for improved localization of aging effects in the cells, without further stress of the cells by the measurement procedure.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Peter HaußmannORCiDGND, Joachim MelbertGND
URN:urn:nbn:de:hbz:294-66366
DOI:https://doi.org/10.5194/jsss-6-65-2017
Parent Title (English):Journal of Sensors and Sensor Systems (JSSS)
Publisher:Copernicus Publications
Place of publication:Göttingen
Document Type:Article
Language:English
Date of Publication (online):2019/10/18
Date of first Publication:2017/02/01
Publishing Institution:Ruhr-Universität Bochum, Universitätsbibliothek
Volume:6
First Page:65
Last Page:76
Institutes/Facilities:Lehrstuhl für elektronische Mess- und Schaltungstechnik, Forschungsgruppe für Kfz-Elektronik
open_access (DINI-Set):open_access
faculties:Fakultät für Elektrotechnik und Informationstechnik
Licence (English):License LogoCreative Commons - CC BY 3.0 Unported - Attribution 3.0 Unported