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“If, in some cataclysm, all of scientific knowledge were to be destroyed, and

only one sentence passed on to the next generation of creatures, what statement

would contain the most information in the fewest words? I believe it is the atomic

hypothesis that all things are made of atoms.”

Richard Feynman
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Abstract

Atomistic simulation has become an important tool to understand and

predict the behavior of materials, and the last several decades have ev-

idenced remarkable progress in this field. Although atomistic methods

have been becoming more and more mature for non-magnetic materi-

als, we are still lacking proper approaches to perform large-scale atom-

istic simulations of magnetic transition metals including the important

industrial materials iron, nickel, and cobalt.

The atomistic simulation of magnetic transition metals requires two

aspects, the atomistic modelling of microscopic interactions and finite-

temperature excitations of magnetic and atomic degrees of freedom

and the numerical schemes to calculate the collective behavior that

determines macroscopic properties. We propose a finite-temperature

magnetic tight-binding model to tackle the first obstacle (chapter 3)

and develop Hamiltonian Monte Carlo algorithms to tackle the second

obstacle (chapter 4). We show a benchmark test of our methods by

calculating the magnon-phonon coupling in bcc iron and obtain excel-

lent agreement between our result and experimental data (chapter 5).

After that, we apply our methods to explore the effect of longitudinal

spin fluctuations on the magnetic and structural phase transitions and

the microscopic origin of the temperature-induced α (bcc) - γ (fcc) -

δ (bcc) phase transitions in iron (chapter 5). We observe interesting

competition between the electronic (magnetic) and vibrational contri-

butions to the free-energy difference between bcc and fcc iron, and

find that the magnon-phonon coupling plays a crucial role in fcc iron

transforming back to bcc iron at 1670 K.

As a further extension of our methods, we develop in chapter 6 a

machine-learning based perturbation approach to accelerate thermo-

dynamic calculations of magnetic materials. Our preliminary test with



250 spins shows that the first-order correction together with a good

machine-learning model is capable to give an accuracy of 1 meV/atom.

We believe that this work paves the way to atomistic simulations of

magnetic transition metals and look forward to applications of our

methods in calculations of other materials and their alloys besides iron.
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Kurzfassung

Atomistische Simulation hat sich zu einem wichtigen Instrument fr das

Verstndnis und die Vorhersage des Verhaltens von Materialien entwick-

elt und die letzten Jahrzehnte haben bemerkenswerte Fortschritte in

diesem Bereich gezeigt. Obwohl atomistische Methoden immer aus-

gereifter geworden sind fr nichtmagnetische Materialien, fehlen geeignete

Zugnge zu atomistischen Grosimulationen von magnetischen bergangsmet-

allen, einschlielich der industriell wichtigen Materialien Eisen, Nickel

und Kobalt.

Die atomistische Simulation von magnetischen bergangsmetallen bein-

haltet zwei Aspekte: die atomistische Modellierung mikroskopischer

Wechselwirkungen und die thermische Anregung von magnetischen und

atomaren Freiheitsgraden, sowie die numerischen Verfahren um das

kollektive Verhalten zu berechnen, das die makroskopischen Eigen-

schaften bestimmt. Wir schlagen ein magnetisches Tight-Binding Mod-

ell mit endlicher Temperatur vor, um das erste Hindernis zu berwinden

(Kapitel 3) und entwickeln Hamilton Monte-Carlo Algorithmen um das

zweiten Hindernis zu berwinden (Kapitel 4). Wir zeigen einen Bench-

mark unserer Methoden anhand der Berechnung der Magnon-Phonon-

Kopplung in bcc Eisen und erhalten excellente bereinstimmung mit

experimentellen Daten (Kapitel 5). Anschlieend wenden wir unsere

Methoden an, um die Auswirkungen von longitudinalen Spinfluktua-

tionen auf die magnetischen und strukturellen Phasenbergnge und den

mikroskopischen Ursprung der temperaturabhngigen Phasenbergnge α

(bcc) - γ (fcc) - δ (bcc) in Eisen zu untersuchen (Kapitel 5). Wir

beobachten interessante Konkurrenz zwischen den electronischen (mag-

netischen) und Vibrationsbeitrgen zum Unterschied der freien Energie

von bcc und fcc Eisen, und da die Magnon-Phonon-Kopplung eine



Schlsselrolle fr die Umwandlung von fcc Eisen zu bcc Eisen bei 1670 K

spielt.

Als Erweiterung unserer Methoden entwickeln wir in Kapitel 6 einen

auf maschinellem Lernen basierende Strungsansatz zur Beschleunigung

thermodynamischer Berechnungen magnetischer Materialien. Erste

Rechnungen mit 250 Spins zeigen, dass die Korrektur erster Ordnung in

Kombination mit einem guten maschinellen Lernmodell eine Genauigkeit

von 1 meV/Atom erreichen kann.

Wir glauben, dass diese Arbeit den Weg fr atomistische Simulationen

magnetischer bergangsmetalle ebnet und freuen uns auf Anwendun-

gen von unserer Berechnungsmethoden fr andere Werkstoffe und deren

Legierungen als Eisen.
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Chapter 1

Motivation

Computational science has become an important paradigm of materials science,

as shown in Fig. 1.1. The first paradigm of materials science was based on em-

pirical observations and trial-and-error experiments, and the Chinese blue and

white pottery is a good example of the achivements in this period. After that,

the paradigm of theoretical materials science came, which is labelled by physical

laws described in the mathematical language. A good example is Boltzmann’s

equation for entropy S = kBlnΩ, where kB is the Boltzmann constant and Ω is the

number of microstates. In around 1940s, the paradigm of computational materials

science appeared with the advent of fast computers, which makes it possible to

understand and predict materials properties without lengthy and expensive lab ex-

periments. One of the representative works of this period is the density-fucntional

theory (DFT) [59, 67], and with it many new materials have been found first in

computers and then in labs. The third paradigm is still a fast-growing field and

many open problems need to be resolved.

At the atomic and electronic level, the computer simulation of materials re-

quires two aspects, the mathematical modelling of interactions between parti-

cles, i.e., structure-energy relationship, and the simulation of collective behaviors

of these particles, which determines the materials properties at the macroscopic

scale. To tackle the first problem, empirical and analytical models have been de-

veloped, which may be as simple as the Lennard-Jones potential or as complex as

DFT. To tackle the second problem, many numerical methods have been devel-

oped, e.g., classical Markov chain Monte Carlo, molecular dynamics, and quantum

Monte Carlo. These methods have been becoming more and more mature for non-

magnetic materials. However, for magnetic materials esperically magnetic transi-
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Figure 1.1: The three paradigms of science: empirical, theoretical, and computa-
tional.

tion metals, the computer simulation still faces big obstacles. As to the modelling

aspect, it is more complex to model the interactions in magnetic materials than in

non-magnetic materials as the magnetic interactions and the coupling between the

magnetic and atomic DOFs should be described properly. For magnetic transition

metals, it is even more complex as the atomic magnetic moments are not localized

and the magnetic interactions can not be well described by simple models such

as the Heisenberg model [94]. This also leads to complicated couplings between

magnetic and atomic DOFs [51, 73, 83]. As a key characteristic, the longitudinal

spin fluctuations play an important role in magnetic transition metals [28]. As

to the aspect of simulations of collective behaviors, we can not employ directly

the numerical methods developed for non-magnetic materials to magnetic mate-

rials as magnetic DOFs are involved. The sampling of the spin space encounters

critical slowing down as a second-order magnetic phase transition exists. The

Hamiltonians for magnetic interactions in magnetic transition metals are usually

computationally expensive as the electronic structure is involved, which puts more

challenge in the corresponding simulations. In summary, for magnetic transition

metals, we still lack a consistent and computationally affordable model to describe

the atomic, magnetic, and mutual interactions, and a numerical method that is

efficient enough to explore the collective behaviors. The two problems are the

motivation for the work in chapter 3 and 4.

The two problems we listed in the last paragraph are not only interesting

and challenging from the scientific point of view, but also of significant industrial

importance. As a good example, iron and steel are the most widely-used magnetic

2



transition metals, and their manufacturing process heavily relies on controlling

the formation of the microstructure due to phase transformations. This is the

motivation for the work in chapter 5 where we apply our methods to investigate

phase transformations in magnetic iron.

The last issue we want to explore in this thesis is to develop a machine learning-

based approach to accelerate thermodynamic calculations based on complex mag-

netic Hamiltonians. Both computational materials science and machine learning

are based on statistics, and this intrinsic correlation leads us to apply the machine-

learning methods to solve the challenging problems in computational materials

science. We put our idea and some preliminary tests in chapter 6 and further work

needs to be done in the future.

We summarize the four issues that we want to explore in this thesis.

� The modelling of microscopic interactions in magnetic transition metals. We

aim to obtain in chapter 3 a tight-binding model that can describe prop-

erly the microscopic interactions of atomic and magnetic degrees of freedom

(DFT) and is affordable for the state-of-the-art computational resources to

solve.

� The effcient Monte Carlo samplers for extracting thermodynamic properties

of magnetic transition metals from a microscopic model. We aim to ob-

tain in chapter 4 efficient sampling algorithms that work for transverse and

longitudinal magnetic DOFs.

� The benchmark test of our methods and the new insight into phase transi-

tions of iron. In chapter 5, we first calculate the magonon-phonon coupling

in iron as a benchmark test of our methods and then show our insight into

longitudinal spin fluctuations and α (bcc) - γ (fcc) - δ (bcc) phase transitions

in iron.

� A machine learning-based approach to accelerate thermodynamic calcula-

tions with complex magnetic Hamiltonians, which is put in chapter 6.
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Chapter 2

Theoretical background

We present in this chapter the fundamental theories needed for this thesis. We

first give a brief summary of magnetic tight binding and point out that it works as

a magnetic ground-state theory and cannot be used straightforwardly for thermo-

dynamic calculations of magnets. This model should be recovered at the magnetic-

ground state by the finite-temperature model that we propose in chapter 3. After

that, we give a brief introduction to a linear-scaling electronic-structure method,

the bond-order potentials [32, 33]. As our work in chapter 4 is based on Hamilto-

nian Monte Carlo, we give a discussion of it in section 2.3. We review in section

2.4 the phonon theory within the harmonic approximation and the thermodynamic

integration as we need them for thermodynamic calculations in chapter 5. The last

section of this chapter is devoted to an introduction to machine learning, which

we need for the work in chapter 6.

2.1 Magnetic tight binding

As pointed out by Finnis [39], there is no unique tight-binding theory as different

approximations might be involved. We discuss two magnetic tight binding models

in this section, the one of Paxton and Finnis [102] for collinear magnetism and the

one of Drautz and Pettifor [33] for non-collinear magnetism. Both models can be

obtained by coarse-graining from spin-density-functional theory.
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2.1.1 Spin density-functional theory

We neglect relativistic effects in the discussion of spin-density-functional theory

(SDFT) [59, 67, 130]. The effective one-particle eigenstate ψn(r) consists of two

components

ψn(r) =

(
ψn↑(r)
ψn↓(r)

)
. (2.1)

The spin density ρ(r) is a 2× 2 matrix and computed from eigenfunctions

ρµν(r) =
occ∑
n

ψ∗nµ(r)ψnν(r). (2.2)

The spin-density matrix can be decomposed as a charge density n(r) and a mag-

netization density m(r), which can be obtained from the eigenfunctions according

to

n(r) =
occ∑
n

ψ†n(r) Iψn(r), (2.3)

and

mα(r) =
occ∑
n

ψ†n(r)σαψn(r), (2.4)

where σα are Pauli matrices.

The single-electron effective Hamiltonian is given as

HSDFT = − ~2

2m
∆ + Weff(r) (2.5)

where the effective potential matrix is given as

Weff(r) = VH(r)I + WXC(r) + Wext(r). (2.6)

The total energy is given as

U [ρ] =
∑
µ

occ∑
n

〈ψnµ| −
~2

2m
|ψnµ〉+ UH[n] + UXC[ρ] + Uext + Unuc. (2.7)

UH[n] is the Hartree energy which only depends on the charge density n(r), and

UXC[ρ] is the exchange-correlation energy which depends on both the charge den-

sity n(r) and the magnetization density m(r).
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In the local-spin-density approximation, the exchange-correlation energy is de-

fined by [57]

UXC[ρ] =

∫
n(r)εxc[n(r), |m(r)|] dr, (2.8)

where the energy density εxc may be parametrized with the local-density approxi-

mation (LDA) or the generalized gradient approximation (GGA).

The exchange-correlation potential WXC(r) corresponding to Eq. 2.8 is a 2×2

matrix given by [57]

WXC(r) = vxc[ρ](r) I + bxc[ρ](r) · σ (2.9)

where σ is a three-dimensional vector formed by the Pauli matrices. The exchange-

correlation field bxc[ρ](r) is parallel to the magnetization m(r) in the local-spin-

density approximation.

2.1.2 From SDFT to magnetic tight binding

In this subsection, we aim at giving a brief summary of the coarse-graining pro-

cedure from SDFT to magnetic tight binding. We base our discussion on an

orthogonal basis set of atomic orbitals {| iαµ〉}, where we use i to label atomic

sites, α to label orbitals, and µ to label electron spins. We follow the convention

in the last subsection and use ψn to denote the eigenstates. The element of the

spin-density matrix in tight binding is given as

ρiαµ,jβν =
∑
ξ

occ∑
n

〈iαµ|ψnξ〉〈ψnξ|jβν〉, (2.10)

where we introduce new symbols ξ and ν to label electron spins, j to label atomic

sites, and β to label orbitals. One crucial step from SDFT to magnetic tight

binding is the second-order expansion of the exchange-correlation energy UXC[ρ].

As shown by Drautz and Pettifor [33], the second-order approximation that is

invariant with respect to the spin rotation and contains no gradient terms is given

by

U2
XC[ρ] =

∫
KXC(r)n(r)dr +

1

2

∫ ∫
JXC(r, r′)n(r)n(r′)drdr′

− 1

4

∫ ∫
IXC(r, r′)m(r)m(r′)drdr′.

(2.11)
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In tight binding, as we work with local atomic orbitals, it is more convenient

to further approximate the exchange-correlation energy as a function of atomic

charge ni and magnetic moment mi, which are defined as

ni =
∑
α

∑
µ

ρiαµ,iαµ,

mi =
∑
α

∑
µ

∑
ν

ρiαµ,iανσµν .
(2.12)

If we only consider onsite electron-electron interactions, the exchange-correlation

energy can be further approximated as

U2
XC =

∑
i

KXC
i ni +

1

2

∑
i

JXC
i n2

i −
1

4

∑
i

IXC
i m2

i . (2.13)

We first leave the coefficient of the first-order term aside and give a discussion

of coefficients of the second-order terms. Intuitively, JXC
i and IXC

i measure the

strength of onsite Coulomb and exchange interactions of electrons and seem to

have similar meaning with those of the Hubbard parameter Ui and the (Hund’s-

rule) exchange parameter Ji. Actually, their relationship for collinear magnetism

has already been discussed by Paxton and Finnis [102] based on the interpretation

of the Hubbard parameter and the exchange parameter

∂

∂ρi↓

∂U2
XC

∂ρi↑
=

∂

∂ρi↑

∂U2
XC

∂ρi↓
≡ Ui,

∂

∂ρi↓

∂U2
XC

∂ρi↓
=

∂

∂ρi↑

∂U2
XC

∂ρi↑
≡ Ui − Ji,

(2.14)

and JXC
i and IXC

i can be simply expressed in terms of Ui and Ji,

JXC
i = Ui −

1

2
Ji,

IXC
i = Ji.

(2.15)

The two relations Eq. 2.15 also hold for non-collinear magnetism within local-

spin-density approximation (LSDA) simply because the exchange-correlation field

is parallel to the direction of the local magnetization and the exchange parameter

IXC
i is a scalar. We next replace JXC

i and IXC
i by Ūi and Ji in the remaining of

this thesis in order to follow the general convention.
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The next step from SDFT to magnetic tight binding is to expand the total

energy with respect to a non-spin-polarized reference density [33]

Upot =
∑
iαjβ

H
(0)
iα,jβ

∑
µ

ρiαµ,jβµ +
1

2

∑
i

Ūiq
2
i −

1

4

∑
i

Jim
2
i −

1

2

∑
i

Ūi

[
N

(0)
i

]2

(2.16)

The second term in Eq. (2.18) is a quadratic function of the atomic charge qi

instead of ni in Eq. (2.11) due to the expansion w.r.t. the reference density. N
(0)
i

is the number of electrons of atom i corresponding to the reference charge density.

H
(0)
iα,jβ in Eq. (2.18) is the Hamiltonian-matrix element for the reference density,

and intuitively, the offsite term describes the hopping of electrons between orbital

α of atom i and orbital β of atom j in the potential of the reference charge density.

We rephrase the offsite term H
(0)
iα,jβ as the hopping integral tiα,jβ and the onsite

term H
(0)
iα as the reference onsite level E

(0)
iα and introduce the bond charge niα,jβ

between atomic orbital α of atom i and atomic orbital β of atom j, which is defined

as

niα,jβ =
∑
µ

ρiαµ,jβµ, (2.17)

and the potential energy can be rewritten as

Upot =
∑

iαjβ,iα 6=jβ

tiα,jβniα,jβ+
∑
iα

E
(0)
iα niα+

1

2

∑
i

Ūiq
2
i−

1

4

∑
i

Jim
2
i−

1

2

∑
i

Ūi

[
N

(0)
i

]2

.

(2.18)

We next introduce the two key approximations in tight binding.

� The two-center approximation for the hopping integral [116],

� the pair-wise approximation for the remaining contributions to the total

energy.

With the first approximation, the hopping integral tiα,jβ can be parametrized

as a function of distance between atom i and j, ti,α,jβ(|ri − rj|). With the second

approximation, a pair-wise function of atomic distance Epair({ri}) is added into Eq.

(2.18) to account for all the remaining contributions such as the ion-ion interactions

and so on. As the last term in Eq. (2.18) contributes a constant energy shift, it

can be grouped into Epair({ri}) without losing any consistency. We finally obtain
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the total energy in magnetic tight binding,

Upot({ri}) =
∑

iαjβ,iα 6=jβ

tiα,jβ(|ri − ri|)niα,jβ +
∑
iα

E
(0)
iα niα

+
1

2

∑
i

Ūiq
2
i −

1

4

∑
i

Jim
2
i + Epair({ri}).

(2.19)

In Eq. (2.18), we write the potential energy in magnetic tight binding as a function

of atomic positions. At first glance, it seems that the potential energy is also a

function of atomic magnetic moments mi and atomic charges qi. This observa-

tion is actually not true because mi and qi are not free variables and should be

determined in a self-consistent manner, as will be shown later. Fundamentally, it

indicates that the magnetic tight binding is coarse-grained from SDFT which is a

ground-state theory for non-collinear magnetism.

We next derive the single-electron effective Hamiltonian matrix and the self-

consistency criterions from Eq. (2.19). The derivative of the total energy Eq.

(2.19) with respect to the spin-density matrix gives the the Hamiltonian matrix

Hiαµ,jβν =
∂Upot

ρiαµ,jβν

=tiα,jβδµν +

(
E

(0)
iα + Ūiqiδµν −

1

2
Jimiσµν

)
δijδαβ.

(2.20)

As the Hamiltonian matrix Eq. (2.20) depends on the atomic charge qi and the

atomic magnetic moment mi which in turn depends on the Hamiltonian matrix,

this model should be solved in a self-consistent manner. The self-consistency

criterions are given by the onsite elements of the Hamiltonian matrix

Eiαµν = E
(0)
iαµν + Ūiqiδµν −

1

2
Jimiσµν , (2.21)

which are denoted as the onsite-level matrix in literature.

2.2 Bond-order potentials

The tight-binding model can be directly solved by diagonalizing the Hamiltonian

matrix. However, the diagonalization method has a cubic scaling of computational

cost with the number of atoms, which restricts its application to simulations of
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medium-size supercells only. The bond-order potentials [32, 33] bypass the di-

agonalization by employing the moments theorem [27] to coarse-grain the local

density of states. This method is linear-scaling with the number of atoms and has

the potential to go to large-scale simulations. To illustrate how bond-order poten-

tials work, we take the approximate evaluation of the band energy as an example.

The other terms in the potential energy might be approximated in a similar way,

and more details of the formalism can be found in [31–33].

We first introduce the onsite-representation of the band energy [32]

Uband =
∑
iαν

∫ EF

E niαν(E) dE,

=
∑
iαν

∫ εF (
2b

(∞)
iαν · ε+ a

(∞)
iαν

)
niαν(ε) dε,

(2.22)

where niαν(E) is the local density of states for the spin-ν channel at orbital α and

atom i. We introduced from the first to the second line on the right-hand side of

Eq. (2.22) the scaled energy ε defined as

ε =
E − a(∞)

iαν

2b
(∞)
iαν

, (2.23)

where a
(∞)
iαν and b

(∞)
iαν are the recursion coefficients at the infinite recursion level and

defined by the terminators in practice [32].

We see in Eq. (2.22) that the local density of states contains sufficient informa-

tion to evaluate the band energy. In the conventional approach, the local density

of states is obtained by diagonalizing the Hamiltonian matrix. In bond-order po-

tentials, it is evaluated approximately based on the moments theorem with the

moments defined as

µ
(n)
iαv =

∫
Enniαν(E)dE,

µ̂
(n)
iαv =

∫
εnniαν(ε)dε.

(2.24)

The moments represent the geometric feature of the local density of states. For

example, the first moment µ
(1)
iαv measures the center of gravity of the local density

of states niαν(E), the second moment µ
(2)
iαv defines its mean square width, the

third moment µ
(3)
iαv its skewness, and the fourth moment µ

(4)
iαv its bimodality. We

may exactly reconstruct the local density of states if we know all its moments. The
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reconstruction method adapted in bond-order potentials is based on the Chebyshev

polynomials of the second kind and given as [32]

niαν(ε) =
2

π

√
1− ε2

∞∑
m=0

m∑
n=0

pmnµ̂
(n)
iανPm(ε). (2.25)

where Pm(ε) =
∑m

n=0 pmnε
n is the Chebyshev polynomial. If we include all Cheby-

shev polynomials by taking m to infinity, the local density of states is reconstructed

exactly. In practice, we terminate the polynomial expansion to a finite nmax and

represent the local density of states approximately,

niαν(ε) ≈ n
(nmax)
iαν (ε)

=
2

π

√
1− ε2

nmax∑
m=0

m∑
n=0

pmnµ̂
(n)
iανPm(ε).

(2.26)

We expect that the termination converges at a reasonable order as the low-order

terms constitute the main contribution to the local density of states. 4, 9, or 12

moments are frequently used in literature [21, 22, 32, 33, 42, 44].

We have already shown in Eq. (2.26) and Eq. (2.22) that we may approxi-

mately evaluate the local density of states and the band energy once we know the

moments. However, the definition of the moments Eq. (2.24) depends on the local

density of states and cannot be used to evaluate them. One crucial step towards

bond-order potentials is the observation that these moments may be evaluated

with the self-returning hopping paths instead of using the definition Eq. (2.24)

explicitly,

µ̂iαν =
1(

2b
(∞)
iαν

)n n∑
l=0

(
n

l

)
(−1)l

(
a

(∞)
iαν

)l
µ

(n−l)
iαν , (2.27)

with

µ
(n)
iαν =

∑
i1α1ν1i2α2ν2,...,in−1αn−1νn−1

〈iαν|Ĥ|i1α1ν1〉〈i1α1ν1|Ĥ|i2α2ν2〉

· ...〈in−1αn−1νn−1|Ĥ|iαν〉.
(2.28)

in which each term 〈i1α1ν1|Ĥ|i2α2ν2〉 connects two spin channels of the same or

neighbouring atoms. The self-returning paths explore the local atomic environ-

ment, and their maximum length defines the cutoff of the local atomic neighbour-

hood included to recover the local density of states. By choosing a suitable cutoff,

11



we obtain a linear-scaling method to solve the tight binding model with a rea-

sonable accuracy. We use the magnetic bond-order potential of iron [95] to test

the Monte Carlo algorithm in Chapter 4 and to generate training data for neural

networks in Chapter 6.

2.3 Hamiltonian Monte Carlo

In the last section, we showed how to construct mutual atomic interactions in

magnetic materials using quantum mechanics. These models describe materials

with high-dimensional energy landscapes which then determine their physical and

mechanical properties. The bridge from these energy landscapes to the material

properties may be built via statistical mechanics.

If classical statistical mechanics is used to study finite-temperature materials

properties, it is convenient for discussion to first introduce the canonical partition

function for a system of N identical particles [128]

Q(N, V, T ) =
1

N !h3N

∫
dNp

∫
D(V )

dNr exp

{
−β

[
N∑
i=1

p2
i

2mi

+ U(r1, ..., rN)

]}
=

1

N !h3N

∫
dNp

∫
D(V )

dNr exp {−βH(p1, ...,pN , r1, ..., rN)} ,

(2.29)

where pi and ri are the momentum and the position of atom i, mi is the mass of

atom i, U is the potential energy as a function of atomic positions, and D(V ) is the

range of integration of each position variable defined by the containing volume V .

The classical Hamiltonian H({pi, ri}) is defined as the sum of the kinetic energy

and the potential energy.

The canonical distribution density is given as

ρ(p1, ...,pN , r1, ..., rN) =
1

Q
exp {−βH(p1, ...,pN , r1, ..., rN)} . (2.30)

For a given observable O, its thermal average value can be evaluated via

〈O〉 =

∫
dNp

∫
D(V )

dNrO(p1, ...,pN , r1, ..., rN)ρ(p1, ...,pN , r1, ..., rN). (2.31)

Clearly, the thermal average Eq. (2.31) is defined as a high-dimensional integral,

and the analytic result is not available for most cases. The Markov chain Monte
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Carlo (MCMC) is one of the most widely used methods to deal with this problem

numerically. The aim of MCMC is to draw a series of samples {X1, X2, ...XM} ac-

cording to the canonical distribution function, where Xi represents the ith sample

and contains all microscopic variables at this state. These samples can then be

used to estimate the thermal average of any observable,

〈O〉 ≈ 1

M

M∑
I=1

O(XI) (2.32)

The left-hand side is not exactly equal to the right-hand side as only a limited

number of samples can be drawn in practice, implying an estimation error. This

estimation error decreases with the increasing number of samples, and the right-

hand side of Eq. (2.32) converges to the exact value when the number of samples

goes to infinity.

For the application of MCMC, the key point is to construct an update method

that generates each new state directly from the preceding state and leaves the

canonical distribution function invariant. In Hamiltonian (hybrid) MC [34], Hamil-

tonian dynamics is employed as an efficient Metropolis [93] update. It does the

following:

� When the current state is XI , perform a Gibbs sampling for the momentum

variables and generate a new state X̄I . In other words, randomly choose new

values of the momentum variables according to their Gaussian distribution,

ρ(p1, ...,pN) =
N∏
i=1

(
β

2πmi

)3/2

exp

{
−β

N∑
i=1

p2
i

2mi

}
, (2.33)

and assign them to the new state X̄I .

� Run Hamiltonian dynamics for a specific trajectory length L with the ini-

tial state XHD(0) chosen as X̄I . The equations of motion for Hamiltonian

dynamics are given as
dqi
dt

=
pi
mi

dpi
dt

= −∂U
∂qi

.

(2.34)

The final state of the Hamiltonian-dynamics trajectory is denoted asXHD(L).
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� Negate the momentum variables of XHD(L) to obtain the proposed state

X̄I+1 for a Metropolis update. The negation makes it deterministic that the

proposal state is X̄I if the current state is X̄I+1, and is necessary to make

the proposal symmetric.

� Calculate the Metropolis acceptance ratio

paccp(X̄I → X̄I+1) = min
{

1, exp[βH(X̄I)− βH(X̄I+1)]
}
. (2.35)

� Accept the proposed state X̄I+1 as the next state XI+1 of the Markov chain

with the probability paccp.

� Repeat the steps above to generate a Markov chain.

We next discuss why Hamiltonian MC works, and this will offer us some guide-

lines to construct Hamiltonian MC algorithms for the spin system in chapter 4.

The canonical distribution is correctly sampled by Hamiltonian MC if it is er-

godic and if it leaves the canonical distribution invariant [98]. The ergodicity

requirement means that the samples generated by MC can not be trapped in some

specific areas in phase space and all states can be visited within finite steps. The

ergodicity of Hamiltonian MC is guaranteed by the random noise introduced in

the Gibbs sampling as we draw randomly the momentum variables from Gaussian

distributions. We next prove that Hamiltonian MC leaves the canonical distri-

bution invariant. There are two types of update in Hamiltonian MC, the Gibbs

sampling and the Metropolis update based on Hamiltonian dynamics, and we need

to show that both preserve the canonical distribution. The Gibbs sampling leaves

the canonical distribution invariant as we draw the momentum variables from

their conditional distribution directly. For the Metropolis update, the canonical

distribution is preserved via the detailed balance [98]

ρ(X̄I) dV
I T (X̄I → X̄I+1)

= ρ(X̄I+1) dV I+1 T (X̄I+1 → X̄I),
(2.36)

where ρ(X̄I) and ρ(X̄I+1) are the canonical distribution density at states X̄I and

X̄I+1. dV I is the volume element at state X̄(I), and it is transformed to dV I+1 at

state X̄(I + 1) by Hamiltonian dynamics. T (X̄I → X̄I+1) and T (X̄I+1 → X̄I) are
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the forward and backward transition probabilities, which can be calculated as the

product of the corresponding proposal probability and acceptance probability,

T (X̄I → X̄I+1) = pprop(X̄I → X̄I+1) paccp(X̄I → X̄I+1),

T (X̄I+1 → X̄I) = pprop(X̄I+1 → X̄I) p
accp(X̄I+1 → X̄I).

(2.37)

As Hamiltonian dynamics is deterministic and time-reversible, the forward and

backward proposal probabilities are both equal to one. The transition probability

is then simply given by the Metropolis acceptance ratio Eq. (2.35),

T (X̄I → X̄I+1) =paccp(X̄I → X̄I+1)

=min
{

1, exp[βH(X̄I)− βH(X̄I+1)]
}
,

(2.38)

T (X̄I+1 → X̄I) =paccp(X̄I+1 → X̄I)

=min
{

1, exp[βH(X̄I+1)− βH(X̄I)]
}
.

(2.39)

Substituting Eq. (2.38), (2.39) and (2.30) into Eq. (2.36), we obtain

dV I

Q
exp(−βH(X̄I)) min

{
1, exp[βH(X̄I)− βH(X̄I+1)]

}
=
dV I+1

Q
exp(−βH(X̄I+1)) min

{
1, exp[βH(X̄I+1)− βH(X̄I)]

}
.

(2.40)

Clearly, the detailed balance holds only when the two volume elements dV I and

dV I+1 are identical, which is true as Hamiltonian dynamics preserves the volume

[98]. We thus draw the conclusion that Hamiltonian MC leaves the canonical

distribution invariant.

In the proof of the validation of Hamiltonian MC above, we employed two

properties of Hamiltonian dynamics, time-reversibility and area preservation. In

the computer implementation of Hamiltonian MC, the analytic solution of Hamil-

tonian dynamics are normally not available, and the equations of motion must be

solved approximately with numerical integration schemes. As the time-reversibility

and the area preservation are necessary to leave the canonical distribution invari-

ant, we also require numerical integration schemes to be time-reversible and area-

preserving in order to guarantee correct sampling. A frequently used scheme is

the velocity Verlet method [125],

pi(t+ ε/2) = pi(t)− (ε/2)
∂U

∂qi
({qi(t)}), (2.41)
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qi(t+ ε) = qi(t) +
ε

mi

pi(t+ ε/2), (2.42)

pi(t+ ε) = pi(t+ ε/2)− (ε/2)
∂U

∂qi
({qi(t+ ε)}), (2.43)

where ε is the time step. It can be shown that this scheme preserves the volume in

phase space and is time-reversible. We will combine this scheme with spin rotation

for the auxiliary spin dynamics in chapter 4.

2.4 Free-energy calculations

In the last section, we introduced methods to evaluate thermal averages in the

canonical ensemble. However, these methods cannot be directly employed to cal-

culate the free energy, which is one of the key thermodynamic quantities. The

reason is that the free energy is not defined via a thermal average

F = − 1

β
lnQ, (2.44)

where Q is the partition function introduced in the last section. We devote this

section to discuss two methods for free-energy calculations, the lattice-vibration

theory within the harmonic approximation and the thermodynamic integration.

2.4.1 Lattice vibrations within harmonic approximation

In harmonic approximation, the potential energy for nuclei can be written as

Upot({µi}) = U0 +
1

2

∑
iζjη

Φζη
ij u

ζ
iu

η
j , (2.45)

where we use ζ and η to denote Cartesian components.

In this thesis, we only deal with lattices containing one in-equivalent atom.

By using the periodicity of the monatomic crystal, we may rewrite the potential

energy above into

Upot({µi}) = U0 +
1

2

∑
iζjη

Φζη(Ri −Rj)u
ζ
iu

η
j , (2.46)

where Ri is the position of cell i. Clearly, the position of atom i is Ri + µi.
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The classical equation of motion for atomic vibrations is given as

M
∂µζi
∂t

=−
∑
jη

Φζη(Ri −Rj)u
η
j (2.47)

We next exploit the translational symmetry of the crystal by applying the

Fourier transformation. We substitute the expression below to the equation of

motion Eq. (2.47),

µl =
1

C

∑
q

µqe
−iRl·q, (2.48)

and obtain the equation,

M
∂µζq
∂t

= −
∑
η

µζqΦζη
q , (2.49)

where Φζη
q is given as

Φζη
q =

∑
j

eiq·(Ri−Rj)Φζη(Ri −Rj). (2.50)

The intratomic force constant can be expressed in terms of interatomic force con-

stants due to the translational invariance of the crystal,

Φζη(0) = −
∑
j 6=i

Φζη(Ri −Rj). (2.51)

Substituting the expression above and Euler’s formula into Eq. (2.50), we obtain

the expression for force constants in q space in terms of interatomic force constants,

Φζη
q =−

∑
j 6=i

Φζη(Ri −Rj){1− cos[q · (Ri −Rj)]}

=−
∑
j 6=0

Φζη(Rj)[1− cos(q ·Rj)].
(2.52)

For an arbitrary q point, we need to diagonalize a 3×3 matrix |Φζη
q | in order to

find vibrational normal modes. For some high-symmetry points, the square of the

phonon frequency can be written as a linear combination of force constants [136].

Here we take the N point of a bcc lattice as an example, and a general expression

is given in [136]. This point is softened the most by the spin fluctuations, as will

be shown in chapter 5. At the N point, the q vector is (π
a
, π
a
, 0), where a is the

lattice constant. In this example, we only consider interatomic force constants
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within second-nearest neighbours. We first simplify the force constant matrix by

using the crystal symmetry of the bcc lattice. The first-nearest-neighbour force

constant matrix at (a/2, a/2, a/2) can be written as

¯̄Φ(a/2, a/2, a/2) =

−α1 −β1 −β1

−β1 −α1 −β1

−β1 −β1 −α1

 , (2.53)

and the second-nearest-neighbour force constant matrix at (a, 0, 0) can be written

as

¯̄Φ(a, 0, 0) =

−α2 0 0
0 −β2 0
0 0 −β2

 . (2.54)

We follow the convention in [136] to choose small Greek letters and subscripts. We

can write out straightforwardly the force constant matrices at the other first- and

second-nearest-neighbour sites by using the crystal symmetry.

After substituting Eq. (2.53), (2.54) and the other force constant matrices into

Eq. (2.52) and Eq. (2.49), we obtain

4π2Mν2
L = 8α1 + 8β1 + 4α2 + 4β2,

4π2Mν2
T1

= 8α1 − 8β1 + 4α2 + 4β2,

4π2Mν2
T2

= 8α1 + 8β2,

(2.55)

where νL, νT1 and νT2 are the vibrational frequencies of the longitudinal and trans-

verse phonon modes at N point.

In the tight-binding model, it is convenient to use the local coordinate frame

whose z-axis is along the chemical bond. The force-constant matrix in the local

coordinate frame can be obtained with some simple algebra once the one in the

global coordinate frame has been computed,

Φζη(l)(Ri −Rj) =
∑
mn

Φζη(g)(Ri −Rj) ·
∂µ

(g)
m

∂µ
(l)
ζ

· ∂µ
(g)
n

∂µ
(l)
η

, (2.56)

where we use the superscripts l and g to denote the local and coordinate coordinate

frames. [∂µ
(g)
m

∂µ
(l)
ζ

] is a 3 × 3 matrix that links the differentials in the two coordinate

frames. For example, [∂µ
(g)
m

∂µ
(l)
ζ

] for the local coordinate frame for the first-nearest
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neighbours in perfect bcc lattices is given as,−
1√
2
− 1√

6
1√
3

1√
2
− 1√

6
1√
3

0 2√
6

1√
3

 . (2.57)

We will use this result in chapter 5.

Once we obtain the vibrational normal modes, we are ready to decouple the

system into independent harmonic oscillators and calculate the vibrational ther-

modynamics. For a single harmonic oscillator of frequency ωi = εi
~ , the partition

function is given as

Zi =
∞∑
m

exp [−β(m+ 1/2)εi]

=
exp

(
−β εi

2

)
1− exp (−βεi)

.

(2.58)

With the partition function Eq. (2.58) in hand, we can calculate the phonon free

energy at a given temperature T according to

Fi(εi, T ) = − 1

β
lnZi, (2.59)

and then calculate the vibrational entropy through the negative of the derivative

of the free energy Eq. (2.59) with respect to temperature,

Si(εi, T ) =− ∂Fi
∂T

=kB

{
−ln [1− exp (βεi)] +

βεi
exp (βεi)− 1

}
.

(2.60)

For the 3-dimensional solid, the phonon density of states (DOS) can be first

obtained by integrating over the first Brillouin zone (1st B.Z.) in the reciprocal

space

g(ε) =
V

(2π)3

∑
s

∫
1st B.Z.

dqδ(ε− hνqs), (2.61)

where h is the Planck constant, δ is the Kronecker delta function, s labels the

phonon branch, and νqs represents the vibrational normal mode of phonon branch

s at q point.
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There are g(ε)dε phonon modes in the energy range from ε to ε+dε, and their

phonon entropy is Si(ε)g(ε)dε. The total vibrational entropy can be obtained by

summing up the phonon entropy of all phonon modes

Svib(T ) =

∫ ∞
0

Si(ε, T )g(ε)dε. (2.62)

Likewise, we can compute the phonon free energy of the 3-dimensional solid ac-

cording to,

Fvib(T ) =

∫ ∞
0

Fi(ε, T )g(ε)dε. (2.63)

2.4.2 Thermodynamic integration

The thermodynamic-integration approach aims to calculate the free-energy differ-

ence instead of the absolute value. In this method, the free-energy difference is

evaluated according to [24]

F (ξ1)− F (ξ0) =

∫ ξ1

ξ0

dF

dξ
dξ. (2.64)

where ξ is a reaction coordinate and specifies a point on the free-energy surface.

The key observation in the thermodynamic integration is that the derivative of the

free energy with respect to the reaction coordinate, dF
dξ

, can be calculated through

an ensemble average [24]
dF

dξ
=

〈
∂H
∂ξ

〉
ξ

. (2.65)

In classical statistical mechanics, the contribution of the kinetic energy is cancelled

out in the free-energy difference, and we only need to consider the contribution of

the potential energy
dF

dξ
=

〈
∂Upot

∂ξ

〉
ξ

. (2.66)

2.5 Machine learning

Artificial neural networks are inspired by the mechanism of our brains and have

been a research topic since 1960s. In around 2006, The training of deep archi-

tectures, known as deep learning, became successful [16, 56], which leads to the
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Figure 2.1: A schematic diagram for artificial neural networks

Figure 2.2: The basic element of artificial neural networks

flourish of the artificial intelligence till today. The basic architecture of an arti-

ficial network is shown in Fig. 2.1. The input layer encodes the initial data into

the neural network, which are then processed by one or more hidden layers. The

output layer produces the final processed data and transfer information from the

neural network to the outside world.

We show in Fig. 2.2 the mathematical model for the basic element or the single

neuron of an artificial neural network. It is composed of a linear function which

sums up linearly the contributions of all inputs and an activation function which

introduces non-linearity into the neural network. The frequently-used activation

functions include the sigmoid function, the tanh function, and the rectified linear

unit.

21



Chapter 3

Finite-temperature magnetic
tight binding

3.1 Introduction

The inclusion of thermal excitations into materials simulation is one of the main

challenges in computer-aided materials design. For magnetic transition metals,

the thermal excitations of both the spin and the atomic degrees of freedom and

more importantly, their coupling (magnon-phonon coupling), should be taken into

account [5, 73], which makes the situation even more complex. The widely-used

adiabatic decoupling of different degrees of freedom [69, 74] neglects the coupling

between the spin and atomic excitations based on the consideration that they have

very different time scales, and becomes problematic especially at high temperatures

(see detailed discussion e.g., in Arbikosov et al. [5]).

Recent years have evidenced heated efforts and great progress to go beyond

the adiabatic decoupling, and there are mainly two branches in the development

of the new methods. The starting point of the first branch builds on the success

of the Finnis-Sinclair potential [41] for non-magnetic metals. As the first step,

Dudarev and Derlet proposed the ’magnetic’ interatomic potential by adding a

new term to account for the energy gain due to the broken symmetry in the

ferromagnetic ground state [35]. The missing of collective magnetic excitations

in this model is then completed by adding a classical Heisenberg model and the

coupling between the spin and atomic degrees of freedom is treated through an

empirical coordinate-dependent exchange function [89]. This model may be solved

with a classical spin-lattice dynamics approach [89, 127], and as a success, both the
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bcc-fcc and the fcc-bcc phase transitions in iron are successfully simulated with a

careful parametrization of the model[88]. The starting point of the second branch

builds on the success of the density-functional theory [59, 65, 67]. The disordered-

local-moment (DLM) method which is either implemented with coherent-potential-

approximation [49] or ab initio molecular dynamics [7, 118, 119] makes it possible to

simulate the spin-excitation effect in first-principles calculations. A more accurate

method, the combination of DFT and the dynamical mean-field theory (DMFT)

[45] is developed to treat the strong electronic correlations at finite temperatures,

and the simulations for real materials are performed to study magnetic [63, 84]

and structural phase transitions [81–83]. However, both DLM and DMFT methods

neglect the magnetic short-range order or non-collinearity of magnetism, and hence

only work for magnetically disordered structures. This leads to the development

of the non-collinear magnetism in DFT [57, 77, 78, 87, 105, 121] together with ab

initio spin dynamics [9, 10], which makes it possible to simulate the transverse spin-

wave excitations at the first-principles level. To summarize, the main advantage

of the former branch is the affordability to perform large-scale simulations, while

the disadvantage is the missing of a proper description of electronic structures,

which is crucial for complex spin interactions [79] and magnon-phonon couplings

[73] in magnetic transition metals. The latter branch has a better accuracy, but

its computational cost limits the exploration of many important real-life material-

science problems, e.g., to our knowledge, there is no successful direct simulations

of structural phase transitions of iron with it.

Our approach is based on the semi-empirical tight binding model, which has

been shown to successfully simulate a wide range of non-magnetic materials [40,

108, 109, 113] and also ferromagnetic metals at ground states [102]. In order to

treat the longitudinal and transverse spin fluctuations in magnetic transition met-

als at finite temperature, we extend magnetic tight binding [33, 102] by quantizing

the exchange interaction and performing the Hubbard-Stratonovich transforma-

tion within the static approximation [62]. We show a successful application of our

model to iron in chapter 5.
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3.2 Methodology

The potential energy in magnetic tight binding [11, 33, 102] is expressed as

UMTB({ri}) =Tr(Ĥ(0)({ri})ρ̂) +
1

2

∑
i

Ūiq
2
i −

1

4

∑
i

Ji|mi|2 + Epair({ri}), (3.1)

where Ĥ(0) is the Hamiltonian of the reference state composed of non-magnetic

free atoms, ρ̂ is the charge-density operator, qi is the Mulliken charge with respect

to the population of free atoms, qi = ni−n(0)
i , mi is the atomic magnetic moment.

qi and mi are not free variables and should be determined in a self-consistent

manner. The first term in Eq. (3.1) describes the energy associated with the

reference state, the second and the third terms are the Coulomb energy and the

exchange energy, and the last term is the empirical pair-wise interaction to account

for the remaining contributions. A more detailed discussion of Eq. (3.1) is referred

to Section 2.1.2 in the last chapter.

In order to add collective magnetic excitations to magnetic tight binding, we

first put aside the Coulomb interaction (the second term in Eq. (3.1)) and the em-

pirical pair-wise interaction (the last term in Eq. (3.1)) and quantize the exchange

interaction (the third term in Eq. (3.1)) to obtain the Hamiltonian to describe the

electronic system

Ĥ = Ĥ(0) −
∑
i

Ji(eiŜi)
2, (3.2)

where we introduced the spin operator Ŝi and the spin quantization axis ei at site

i. The Hamiltonian Eq. (3.2) is denoted as the quantized magnetic Hamiltonian

in this thesis. The corresponding partition function can be formally written as

Q = Tr(e−βĤ). (3.3)

We aim at obtaining a model that describes atomic and magnetic degrees of free-

dom on the equal footing, and this can be realized by treating the partition function

Eq. (3.3) with the Hubbard-Stratonovich transformation and the static approx-

imation. The Hubbard-Stratonovich transformation [61, 122] is defined via the

integral identity

exp
(a

2
x2
)

=

√
1

2πa

∫ ∞
−∞

exp

(
− y

2

2a
− xy

)
dy, (3.4)
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where the real constant a > 0. To apply the Hubbard-Stratonovich transformation

to the partition function of the many-electron system, it is convenient to use the

identity below [62]

Tr exp

{
−βĤ(0) + β

a

2

∑
i

(X̂i)
2

}

=

(
1

2πa

)N/2 ∫ ∏
i

[Dνi(t)] exp

{
− 1

2a

∑
i

∫ β

0

[νi(t)]
2dt

}
·

Tr exp+

{
−
∫ β

0

Ĥ(0)(t)dt−
∑
i

∫ β

0

νi(t)X̂i(t)dt

}
,

(3.5)

where t is the imaginary time and varies from 0 to β. νi(t) is a time-dependent

fluctuating field at site i. The subscript + means that the operator is time-ordered.

The prefactor
(

1
2πa

)N/2
will be cancelled out when we calculate the free-energy

difference between two phases. We simply omit it from now on.

We may employ the identity Eq. (3.5) to reformulate the partition function

Eq. (3.3) into a path integral, which is still difficult to handle. A further simplifi-

cation is to drop out the time-fluctuating part in the path integral using the static

approximation [62] , and Eq. (3.5) can be simplified to be

Tr exp

[
−βĤ(0) + β

a

2

∑
i

(X̂i)
2

]

≈
∫ ∏

i

dνiexp

[
− 1

2a

∑
i

ν2
i

]
· Tr exp

[
−βĤ(0) − β

∑
i

νiX̂i

]
.

(3.6)

We are now ready to simplify the partition function Eq. (3.3) into a form that is

easy to handle. We employ Eq. (3.6) and transform Eq. (3.3) to

Q ≈
∫ ∏

i

dhi exp

[
−β
∑
i

1

Ji
h2
i

]

· Tr

{
exp

[
−β

(
Ĥ(0) + 2

∑
i

hieiŜi

)]}
,

(3.7)

where hi is the scalar (auxiliary) exchange field at atom i. As discussed by Hubbard

[62], this partition function is not rotational invariant, and the rotational invariance
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can be restored by averaging over the quantization axis {ei},

Q ≈
∫ ∏

i

dhi exp

[
−β

(∑
i

1

Ji
h2
i

)]
·

Tr exp

[
−β

(
Ĥ(0) + 2

∑
i

hiŜi

)]

≡
∫ ∏

i

dhi exp

[
−β

(∑
i

1

Ji
h2
i + Ω({hi})

)] (3.8)

where we introduced the vector exchange field, hi = eihi, and the electronic free

energy

Ω({hi}) =− 1

β
ln Tr exp

[
−β

(
Ĥ(0) + 2

∑
i

hiŜi

)]
≡− 1

β
ln Tr exp

[
−βĤeff

]
.

(3.9)

The single-electron effective Hamiltonian is defined as Ĥeff = Ĥ0 + 2
∑

i hiŜi, in

which the direct electron-electron interactions are replaced by the interactions be-

tween exchange fields hi and spin operators Ŝi. The temperature in Eq. (3.9)

describes the free-electron excitations. As we are only interested in the collec-

tive magnetic excitations, we quench the free-electron excitations by replacing the

electronic free energy Ω by the band energy Eband

Eband = ΩT=0K

=
occ∑
n

εn,
(3.10)

with εn the nth eigenvalues of Ĥeff, and obtain the magnetic partition function

Zmag ≈
∫ ∏

i

dhi exp

[
−β

(∑
i

1

Ji
h2
i + Eband

)]
≡
∫ ∏

i

dhi exp [−βUpot] ,

(3.11)

where we defined the potential energy

Upot =
∑
i

1

Ji
h2
i + Eband. (3.12)
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Now we are ready to add the Coulomb interaction and the empirical pair-wise

interaction into the potential energy above,

Upot({ri,hi}) = Eband −
1

2

∑
i

Ūiq
2
i +

∑
i

1

Ji
h2
i + Epair, (3.13)

which is now a function of atomic positions {ri} and exchange fields {hi}. The sign

of the second term in Eq. (3.13) is different from that in Eq. (3.1) simply because

there is double counting in the band energy in Eq. (3.13). A Coulomb term should

also be added into the single-electron effective Hamiltonian as a consequence of

the optimization treatment of the charge degrees of freedom [33],

Ĥeff =Ĥ(0) +
∑
i

Ūiqin̂i + 2
∑
i

hiŜi

≡Ĥ(0) +
∑
i

µin̂i + 2
∑
i

hiŜi
(3.14)

where the term Ūiqi works as a Coulomb field µi that is induced by the local

charge and the charge qi should be determined self-consistently as it appears in

the Hamiltonian.

Within the two-center approximation [116], the intersite matrix element of

the Hamiltonian Ĥ(0) is parametrized as a pair-wise function of distance, and the

analytic atomic force can be expressed as

Fi = −∂Upot

∂ri
= −

∑
αjβσ,j 6=i

(
ρiα,jβσ

∂H
(0)
jβ,iα

∂ri
+ ρjβ,iασ

∂H
(0)
iα,jβ

∂ri

)
− ∂Epair

∂ri
, (3.15)

where ρiα,jβσ is the bond order between orbital α of atom i and orbital β of atom

j in spin σ channel ρiα,jβσ = 〈iα|ρ̂|jβ〉, and H
(0)
iα,jβ is the matrix element of the

Hamiltonian Ĥ(0).

The gradient of the potential energy with respect to the exchange field hi can

also be obtained analytically

∂Upot

∂hi
=

2hi
Ji
−mi. (3.16)

Eq. (3.13), (3.14), (3.15), and (3.16) are the key results in our model. We call

our model the spin-lattice fluctuation theory as both spin fluctuations and atomic
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vibrations are taken into account. The magnetic ground-state solution can be

obtained by letting Eq. (3.16) equal zero

hi =
1

2
Jimi, (3.17)

which is nothing but the self-consistency criterion for the magnetic degrees of

freedom in magnetic tight binding [33, 102]. We restore the potential energy

in magnetic tight binding Eq. (3.1) by substituting Eq. (3.17) into the potential

energy of our model Eq. (3.13). As expected, the magnetic ground-state solution of

our model corresponds to the conventional magnetic tight-binding models [33, 102].

3.3 Transverse spin fluctuations

The magnetic partition function Eq. (3.11) contains both longitudinal and trans-

verse spin fluctuations. In some cases, the longitudinal and transverse magnetic

degrees of freedom may be adiabatically decoupled and a simpler model of unit spin

vectors might be effective [29]. We may obtain an energy surface of the transverse

spin degrees of freedom Upot({ri, ei}) by treating adiabatically the longitudinal

degrees of freedom in Eq. (3.13),

∂Upot

∂|hi|
= 0. (3.18)

Eq. (3.18) means that for every magnetic configuration composed of unit spin

vectors, {ei}, we optimize the potential energy Eq. (3.13) with respect to all

longitudinal degrees of freedom |hi|. The magnetic partition function for transverse

spin fluctuations can then be defined as

ZTSF ≈
∫ ∏

i

dei exp [−βUpot({ri, ei})] . (3.19)

We note that this treatment of the transverse spin fluctuations is merely an

approximation. The unit vector ei represents the direction of the exchange field hi

as compared to the classical spin vector si defined as the direction of the atomic

magnetic moment in some of the others’ work [28, 29, 86, 87, 111]. The advantage

of the former treatment compared to the later one is that the complicated con-

strained calculations are avoided and the numerical implementation is expected to

be more robust in practice.

28



3.4 Derivation of the quantized magnetic Hamil-

tonian

In the last section, we obtained the quantized magnetic Hamiltonian Eq. (3.2)

by quantizing the exchange interaction in magnetic tight binding, which is merely

an approximation. In this section, we give a formal derivation of this Hamilto-

nian. In principle, the many-electron system can be accurately described by the

Hamiltonian below in the second-quantization form

Ĥ = Ĥ(0) + V̂ ,

V̂ =
1

2

∑
σσ′

∑
il

∑
i′l′

∑
mm′

∑
pp′

V mpp′m′

ill′i′ ĉ†imσ ĉ
†
lpσ′ ĉl′p′σ′ ĉi′m′σ,

V mpp′m′

ill′i′ = e2

∫ ∫
drdr′

1

|r− r′|
Wm(r−Ri)Wp(r

′ −Rl)Wp′(r
′ −Rl′)Wm′(r−Ri′),

(3.20)

where Ĥ(0) is the non-interacting part of the Hamiltonian that contains no electron-

electron interactions, and V̂ is the interaction Hamiltonian that describes electron-

electron interactions. Wm(r−Ri) represents the mth Wannier orbital at site i. In

our work, we replace the Wannier-orbital basis by the orthogonal atomic-orbital

basis and denote this treatment as tight-binding approximation.

The interaction Hamiltonian V̂ contains both inter-atomic and intra-atomic

contributions. If we neglect the inter-atomic contributions and only consider intra-

atomic electron-electron interactions, the interaction Hamiltonian V̂ can be signif-

icantly simplified [94]

V̂ ≈1

2

∑
i

∑
σ

{∑
mm′

Ui,mm′n̂imσn̂im′−σ

+
∑
m6=m′

[
(Ui,mm′ − Ji,mm′)n̂imσn̂im′σ − Ji,mm′c†imσcim−σc

†
im′−σcim′σ

]}
.

(3.21)

Ui,mm′ and Ji,mm′ are the Coulomb and exchange integrals and defined as

Ui,mm′ = V mm′m′m
iiii ,

Ji,mm′ = V mm′mm′

iiii .
(3.22)

The orbital-resolved Coulomb and exchange integrals in Eq. (3.21) are difficult to

handle. A frequently-used simplification is to replace Ui,mm′ and Ji,mm′ by their
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average values Ui and Ji, and to simplify the interaction Hamiltonian as

V̂ ≈1

2

∑
i

∑
m,m′

∑
σ

Uin̂imσn̂im′−σ +
1

2

∑
i

∑
m 6=m′

∑
σ

(Ui − Ji)n̂imσn̂im′σ

− 1

2

∑
i

∑
m 6=m′

∑
σ

Jiĉ
†
imσ ĉim−σ ĉ

†
im′−σ ĉim′σ,

(3.23)

A further simplification is to drop out the last term in Eq. 3.23 within the diagonal

density approximation [66]. Then the interaction Hamiltonian becomes

V̂ ≈1

2

∑
i

∑
m,m′

∑
σ

Uin̂imσn̂im′−σ +
1

2

∑
i

∑
m 6=m′

∑
σ

(Ui − Ji)n̂imσn̂im′σ

≡1

2

∑
iσ

Ui n̂iσn̂i−σ +
1

2

∑
iσ

(Ui − Ji)n̂iσn̂iσ −
1

2

∑
imσ

(Ui − Ji)n̂imσ,
(3.24)

where we employed the identities below from the first to the second line on the

right-hand side,

n̂iσ =
∑
m

n̂imσ,

(n̂imσ)2 = n̂imσ.

(3.25)

The second identity is valid due to the Pauli principle.

We next choose the quantization axis at the site i along a chosen direction ei

and use the following identities,

eiŜi =
1

2
(n̂i↑ − n̂i↓) ,

n̂i = n̂i↑ + n̂i↓,
(3.26)

to reformulate the interaction Hamiltonian Eq. (3.24) as

V̂ ≈1

2

∑
i

(
Ui −

1

2
Ji

)
(n̂i)

2 −
∑
i

Ji(eiŜi)
2 − 1

2

∑
iσ

(Ui − Ji)n̂iσ

≡1

2

∑
i

Ūi(n̂i)
2 −

∑
i

Ji(eiŜi)
2 − 1

2

∑
iσ

(Ui − Ji)n̂iσ,
(3.27)

where we introduced the spin operator Ŝi and the new parameter Ūi = Ui − 1
2
Ji.

The last term does not contain quadratic contributions and from now on we group

it into the non-interacting-electron Hamiltonian Ĥ(0). Now we obtain a simplified

many-electron Hamiltonian

Ĥ ≈ Ĥ(0) −
∑
i

Ji(eiŜi)
2 +

1

2

∑
i

Ūi(n̂i)
2. (3.28)
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We see that the only difference between Eq. (3.28) and Eq. (3.2) is the last

term in Eq. (3.28), which corresponds to a quantized treatment of the Coulomb

interaction and is replaced by a mean-field treatment in our model.

3.5 Comparison with the constrained magnetic

tight binding

A widely-used approach for investigating magnetic excitations with first-principles

calculations is the constrained local-moment method [49, 78, 87, 121, 129]. In this

subsection, we make a comparison between our model and this approach in the

framework of tight binding. This approach is based on a phenomenological theory

of spin fluctuations with the partition function defined as [94]

Z =

∫
δM(r) exp {−βUpot[M(r)]} , (3.29)

where M(r) represents the space-varying spin density, and Upot[M(r)] the energy

functional. For the magnetic transition metals, the spin density is localized around

the atomic sites due to the localized nature of the d-band electrons. The local

atomic magnetic moment mi can be defined, and the spin density can be discretized

as a series of atomic magnetic moments {mi}. The partition function can be

approximated as

Z =

∫ ∏
i

dmi exp [−βUpot({mi})] . (3.30)

The energy Upot({mi}) is now defined as a function of magnetic configurations

and can be evaluated by adding constraints in the density-functional theory for

non-collinear magnetism.

This phenomenological approach also applies to tight binding. We first intro-

duce the local atomic magnetic moment in tight binding, which can be naturally

defined as a thermal average of the spin operator with respect to the intersite

electron hoppings, mi = −2〈Ŝi〉. This definition of the local atomic magnetic

moments is based on the same physical reasoning with that in density-functional

theory, namely, the time scale of the intersite electron hoppings, the “quantum

fluctuation time” is of order 10−15 s for 3d transition metals, and the correspond-

ing fast quantum fluctuations can be averaged over and lead to magnetic moments

per atom [23]. The atomic magnetic moments are then constrained to be the values

31



of a specific magnetic configuration {mi} by applying constraints on the single-

electron Hamiltonian and satisfying the constraining criterion. The constraining

Hamiltonian is defined as

Ĥcons =
∑
iαjβσ

H
(0)
iα,jβ ĉ

†
iασ ĉjβσ + 2

∑
i

hiŜi +
∑
i

µin̂i, (3.31)

where hi is interpreted as the constraining field with the constraining criterion

given as

−2〈Si〉 = mi, (3.32)

and has a different physical meaning with the (auxiliary) exchange field in Eq.

(3.14). The constraining fields work as three-dimensional Lagrange multipliers

to constrain the system to a specific magnetic configurations {mi} whereas the

(auxiliary) exchange fields are introduced from the Hubbard-Stratonovich trans-

formation. The Coulomb field µi in Eq. (3.31) is the same with that in Eq. (3.14)

and should be determined in a self-consistent manner. In practice, we tune the

constraining field hi in order to satisfy Eq. (3.32). The kinetic energy for the

constrained electron system can be obtained by subtracting the interaction energy

between the constraining fields and the atomic magnetic moments from the band

energy Eband for the Hamiltonian Eq. (3.31)

Ukin = Eband +
∑
i

himi. (3.33)

The interaction energy associated with atomic magnetic moments can be ap-

proximated as a Stoner-like term [11, 33]

UX = −1

4

∑
i

Jim
2
i . (3.34)

The total energy in Eq. (3.30) is defined as the sum of the kinetic energy Eq.

(3.33) and the interaction energies Eq. (3.34),

Upot({mi}) = Eband +
∑
i

himi −
1

4

∑
i

Jim
2
i −

1

2

∑
i

Ūiq
2
i . (3.35)

The last term is there due to the same consideration in Eq. (3.13). Now we

are ready to make a comparison between our model and the phenomenological

approach in this subsection. The main results of the two models are listed in
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Table 3.1. The main difference between the two models is the choice of different

free variables. In our model, the potential energy is defined as a function of

exchange fields, and the partition function is defined as an integral in the high-

dimensional space of exchange fields. In the constrained magnetic tight binding,

the potential energy is a function of atomic magnetic moments, and the partition

function is defined as an integral in high-dimensional space of atomic magnetic

moments. As the atomic magnetic moments are chosen as free variables in the

constrained magnetic tight binding, the constraining fields need to be introduced

into the effective Hamiltonian in order to constrain the thermal averages of the

spin operators, and the constraining criterion needs to be fulfilled to get a well-

defined potential energy as a function of a specific magnetic configuration. In our

model, the free variables are the (auxiliary) exchange fields, and the constraining

criterion is not involved. As a consequence, our model is easier to solve than the

constrained magnetic tight binding.

3.6 Summary

We extend magnetic tight binding in order to take into account longitudinal and

transverse spin fluctuations that are necessary to describe magnetic transition

metals at finite temperature. The original magnetic tight binding is shown to

be the magnetic ground-state solution of our model. A comparison between our

model and the constrained magnetic tight binding shows that the former is easier

to implement.
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Chapter 4

Accelerated spin-space sampling

In the last chapter, we obtained a model for microscopic interactions in magnetic

transition metals. However, there is still one crucial problem to solve before we fin-

ish the bridge between the microscopic physical interactions and the macroscopic

thermodynamic properties, the sampling of the configurational space. This prob-

lem is there because the evaluation of a specific thermodynamic property requires

to know a thermal average over the whole configurational space and the analytic

procedure is in general not possible. Fortunately, not every point in the configu-

rational space is important to evaluate a given thermodynamic property, and we

may employ an importance sampling technique to give a good estimate of its value

by drawing a limited number of samples from the configurational space. Different

sampling algorithms have different efficiency, and the more efficient the sampling

algorithm is, the less samples we need to draw to reach a target precision for an

estimation. Our goal in this chapter is to build efficient sampling algorithms for

the spin system.

For a spin system in which the longitudinal spin fluctuations are not impor-

tant, we may define the potential energy E as a function of the spin configuration

{s1, s2...sN}, where si is the unit spin vector of atom i. Finite-temperature prop-

erties are then investigated using Boltzmann statistics,

〈O〉 =

∫ ∏
i

dsi π({si})O({si}), (4.1)

with the normalized configurational probability density in spin space,

π({si}) =
1

ZTSF
exp [−βE({si})] , (4.2)
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where β = 1/(kBT ) with the temperature T . O may be any spin-dependent

observable, and ZTSF is the partition function in the classical limit.

For a spin system in which the longitudinal spin fluctuations are crucial, e.g.,

Ni [111], we need to include the longitudinal degrees of freedom into the spin con-

figuration and define a potential energy surface E({h1,h2...hN}) in our model or

E({m1,m2...mN}) in others’s work [28, 86, 111], where hi and mi are the exchange

field and the atomic magnetic moment of atom i. Although the free variables mi

and hi are different, we can use the same algorithms to sample them as physically

they both represent microscopic magnetic configurations and mathematically they

are both three-dimensional vectors. Therefore, from now on we do not differentiate

between hi and mi in this chapter. In this case, finite-temperature properties are

determined via

〈O〉 =

∫ ∏
i

dmi π({mi})O({mi}), (4.3)

and the normalized configurational probability density is now defined as

π({mi}) =
1

Z
exp [−βE({mi})] . (4.4)

We put the focus of this chapter on the development of efficient Hamiltonian

MC algorithms [34, 98] for the transverse spin-fluctuation model Eq. (4.1) due to

the following considerations:

� Although the full spin-fluctuation model Eq. (4.3) is more complicated than

the transverse spin-fluctuation model Eq. (4.1), it is actually easier and more

straightforward to employ Hamiltonian MC on the former as the free vari-

ables mi in Eq. (4.3) have the same mathematical properties with the atomic

positions in the conventional Hamiltonian MC whereas the free variables in

the latter should be constrained on a unit sphere.

� The transverse spin-fluctuation model is till now one of the most widely-

used models to study finite-temperature properties of magnetic materials

[5, 29, 30, 71, 89, 99, 121, 127]. In spite of its popularity, an efficient sampling

algorithm of general applicability is still missing, and we will discuss about

this in detail in section 4.1.

The material in the follwing has been published in our paper in Physical Review

B [132] and is reused under the license number RNP/19/OCT/019547.
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4.1 Introduction

Frequently, model Hamiltonians are used for evaluating spin-dependent observ-

ables, such as the rigid-lattice Heisenberg model or its coordinate-dependent vari-

ants that account for spin-lattice coupling [89]. For materials design it would

be desirable to work with material specific Hamiltonians that explicitly take into

account the electronic structure. This would also facilitate an adequate treat-

ment of spin fluctuations in itinerant-electron magnets [94], complex exchange-

interactions in Fe [79] and magnon-phonon coupling in magnetic transition metals

[73]. Recent years have seen significant progress in the development of electronic-

structure based models, e.g., density functional theory for non-collinear magnetism

[57, 77, 78, 87, 105, 121], non-collinear magnetic tight-binding [11, 96] or bond-

order potentials [31, 33, 43, 44].

For model Hamiltonians there are many Monte Carlo (MC) sampling algo-

rithms that efficiently sample the spin space, but unfortunately none of them is

suitable for electronic-structure based models. We notice that there are three main

differences between model Hamiltonians and electronic-structure based models.

First, model Hamiltonians, at least most of them, contain only pair-wise inter-

actions, while electronic-structure based models require many-spin interactions.

Second, the range of the interaction is different. In model Hamiltonians typically

only first and second nearest-neighbour interactions are taken into account, while

in principle all spins are coupled in electronic-structure based models. Third,

electronic-structure based models are orders of magnitude slower in the evalua-

tion of the Hamiltonian. These differences prohibit application of many efficient

MC algorithms. For example, the checkerboard MC algorithm [103] is not appli-

cable to electronic-structure based models as the system cannot be decomposed

into non-interacting sublattices and the checkerboard-decomposition method is not

applicable. The Swendsen-Wang [124] and Wolff [135] cluster algorithms signif-

icantly reduce the correlation of samples, but they only work for models which

may be mapped onto percolation models, which is difficult for electronic-structure

based models. The over-relaxation [20, 26] algorithm works well for the classical

Heisenberg model, but its efficient implementation depends upon the checkerboard-

decomposition method [80]. The heat-bath spin dynamics [85, 127] might be seen

as a variant of the over-relaxation algorithm and suffers from the same problem.

37



The Wang-Landau sampling [131] can in principle overcome the critical slowing-

down, but the convergence of the density of states usually requires millions of en-

ergy evaluations, which is not affordable for electronic-structure based methods. In

a recent application of the Wang-Landau sampling to first-principle non-collinear

magnetism 590,000 energy evaluations were performed yielding a reasonable esti-

mate of the density of states [37], but despite the huge computational effort the

results could not be fully converged.

Our work builds on recent progress in Hamiltonian MC [17–19, 47, 58, 98, 133]

and efficient methods to accelerate first-principles thermodynamic calculations

[36, 48, 55]. For the former, a rigorous theoretical proof has been given that under-

pins the empirical success of Hamiltonian MC [19] and the theoretical considera-

tions [17] and techniques [18, 58, 98, 133] developed for the automatic tuning of its

hyper-parameters. In the latter, effective potentials are employed to speed up first-

principles thermodynamic calculations, as direct calculations with first-principles

methods are too expensive. However, the conventional Hamiltonian MC algorithm

is not applicable to spin systems as the spin length is not preserved in standard

molecular dynamics that is used in Hamiltonian MC. The effective-potential meth-

ods in literature [36, 48, 55] are designed to accelerate calculations of free energies

and cannot be applied to evaluate other thermodynamic quantities straightfor-

wardly. These considerations form the basis for the methods developed in this

work. First, we propose an auxiliary spin-dynamics as a basis for a Hamiltonian

MC algorithm for spin systems that rigorously preserves spin lengths. Second, we

propose a Hamiltonian MC framework in which the temperature-dependent spin-

cluster expansion (SCE) [29, 30] is used as an auxiliary model to further accelerate

the sampling of the spin space.

We first introduce the Hamiltonian MC algorithm for spin systems using aux-

iliary spin-dynamics, and discuss the automatic tuning of its hyper-parameters.

Then we introduce the temperature-dependent SCE as an auxiliary model to ac-

celerate the sampling of the spin space. In Sec. 4.3, we employ the classical Heisen-

berg model to demonstrate the efficiency of our method, and apply our algorithm

to sample the magnetic phase transition in bcc iron with magnetic bond-order

potentials [33, 44, 95].
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4.2 Methodology

Our target is to draw efficiently independent samples according to the configura-

tional probability density defined in spin space. To this end we extend Hamiltonian

Monte Carlo (HMC) [19, 98] for the sampling of spin space variables. HMC does

not sample the configurational distribution directly but a joint distribution of po-

sitions q and momenta p,

π(q, p) =
1

Q
exp [−βH(q, p)] , (4.5)

where Q is the partition function in the phase space. The marginal distribution of

q then restores the target distribution.

For sampling spin space using HMC we introduce auxiliary spin angular veloc-

ities ωi as canonical variables of the spin directions {ω, s} in formal analogy to

the classical canonical variables {p, q} and define the Hamiltonian as

H =
I

2

∑
i

ωTi · ωi + E({si}), (4.6)

where I is a fictitious mass that later is used as a parameter to optimize the

efficiency of the HMC sampling.

The configurational probability density in spin space, Eq. (4.2), is restored by

the marginal distribution of the configurational variables in phase space,

π({si}) =

∫ ∏
i

dωi π({ωi, si}), (4.7)

with the joint probability density defined as

π({ωi, si}) =
1

Q
exp [−βH({ωi, si})] . (4.8)

Different from usual spin dynamics, which is based on a first order differential

equation in time [9, 46, 89]

dsi
dt

=
γe
mi

∂E

∂si
× si, (4.9)

where mi is the magnitude of magnetic moments, and γe is the gyromagnetic ratio

for an electron spin, the auxiliary Hamiltonian, Eq. (4.6), dictates that the spins
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follow conventional Hamiltonian dynamics for rigid bodies

I
dωi
dt

=
∂E

∂si
× si,

dsi
dt

= ωi × si.

(4.10)

It is evident that the spin dynamics described by Eq. (4.9) and Eq. (4.10) is

different. Eq. (4.10) describes a completely fictitious dynamics of the spins that,

however, by construction may be used to sample spin space according to the prob-

ability density π({si}). We denote Eq. (4.9) as the semi-classical spin dynamics

and Eq. (4.10) as the auxiliary spin-dynamics in this paper.

While it is very difficult or impossible to find an effective symplectic time-

reversible integrator for the semi-classical spin dynamics [76, 91], this is not a

problem for the auxiliary spin-dynamics. We combine the velocity Verlet method

[125] and a spin rotation scheme to obtain an efficient numerical integration algo-

rithm that is time-reversible, area-preserving and preserves spin length. There are

three steps per update,

ω̃t+1
i = ωti +

1

2

ε

I
· ∂E
∂sti
× sti,

st+1
i = D(ω̃t+1

i , ε) · sti,

ωt+1
i = ω̃t+1

i +
1

2

ε

I
· ∂E
∂st+1

i

× st+1
i ,

(4.11)

where the index i denotes spin, t the current state and t + 1 the next state. ε is

the time step, and D(ω̃t+1
i , ε) is a 3× 3 rotation matrix [101],

D(ω̃t+1
i , ε) = I + Wt+1

i sin(ωt+1
i ε) + (Wt+1

i )2
[
1− cos(ωt+1

i ε)
]
. (4.12)

ωt+1
i is the magnitude of ω̃t+1

i , and Wt+1
i is a skew - symmetric matrix with

Wt+1
i,XY = −ω̂t+1

i,Z , Wt+1
i,XZ = ω̂t+1

i,Y , Wt+1
i,Y Z = −ω̂t+1

i,X , where ω̂t+1
i is the directional

vector of ω̃t+1
i . X, Y and Z denote Cartesian components.

We may now employ standard HMC for sampling the spin space probability

density π({si}) on the basis of the auxiliary spin-dynamics. There are three steps

per MC update. The first step performs a Gibbs sampling of angular velocities, in

which we fix the configurational variables {si} and sample the angular velocities

according to their conditional, Gaussian distribution. In the second step the aux-

iliary spin-dynamics is run for a specific trajectory of length L. In the third step
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the Metropolis-Hastings acceptance-rejection is performed for the proposal state

generated by auxiliary spin-dynamics in order to guarantee detailed balance. The

acceptance probability is given by

pacc(xnew|xold) = min {1, exp (−β∆Hold→new)} , (4.13)

where xold and xnew are the state variables containing both the spins and the

angular velocities. Repeating the three steps above leads to a Markov chain which

obeys the joint distribution and is used to evaluate thermal averages.

There are three hyper-parameters in our algorithm, the mass I, the time-step ε

for numerical integration and the trajectory length L. They have no effect on the

accuracy of the MC sampling but strongly influence the efficiency and in practical

applications should be set automatically without user intervention. We adapt the

time step such that the exponential moving average of the acceptance probability

is in the range from 0.6 to 0.7, which is centered around the optimal value 0.651

suggested by Beskos et al. [17]. More specifically, we compute the exponential

moving average of the acceptance probability at each step. If it is smaller (larger)

than 0.6 (0.7), the time step is decreased (increased) by a specific factor. For the

tuning of the trajectory length L, we employ an empirical termination criterion,

the U-turn termination [58], which is an empirical estimate for the optimal length

of Hamiltonian dynamics per MC step. The basic idea is to maximize the squared

distance between the initial and final states. Its implementation in this work is

sightly different from the one in the original paper as we do not use standard

molecular dynamics. We first define the half squared distance for spin systems,

∆(t) =
1

2

∑
i

[si(t)− si(0)]T · [si(t)− si(0)] . (4.14)

The U-turn termination criterion is then derived according to,

d∆

dt
< 0, (4.15)

and given as, ∑
i

[si(t)− si(0)]T · [ωi(t)× si(t)] < 0, (4.16)

where the equations of motion, Eq. (4.10), are employed.
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The hyper-parameters are only tuned in the warm-up phase and then fixed to

leave the distribution function invariant in the sampling phase. We fix the mass I

to 1 eVfs2 in our work, which is an empirical optimal value according to our tests.

We denote the HMC based on auxiliary spin-dynamics Algorithm I in this

paper. We next incorporate the temperature-dependent SCE into Algorithm I

to further accelerate the sampling for expensive spin models and denote the new

method Algorithm II. This is based on the observation that the auxiliary spin-

dynamics is only used to generate the proposal state and may be run with a

cheaper auxiliary model instead of the expensive target one. This leaves the sam-

pling correct as long as the detailed balance is guaranteed for the target model

through the Metropolis-Hastings acceptance-rejection. The criterion for the aux-

iliary model is that it should be as close to the target one as possible since the

acceptance probability is now determined by the difference between auxiliary and

target models,
pacc(xnew|xold)

= min
[
1, exp

(
−β∆Htarget

old→new

)]
= min

[
1, exp

(
β∆Hauxiliary→target

old

)
×

exp
(
−β∆Hauxiliary

old→new

)
×

exp
(
−β∆Hauxiliary→target

new

)]
.

(4.17)

In Eq. (4.17), the first and last exponentials contain the energy difference between

the auxiliary and the target model for the old and new states, respectively. The sec-

ond exponential arises from the numerical error of the integration of the auxiliary

spin-dynamics with the auxiliary model, which is typically a small contribution.

For spin systems, an ideal auxiliary model is the spin-cluster expansion [29, 30]

which may be fitted to accurately reproduce the target model. Here we propose to

generate temperature-dependent SCEs due to two considerations. First, only a spe-

cific area in the spin space is explored with high probability at a given temperature,

as shown in Fig. 4.1, where we plot the magnetization and the potential energy of

spin configurations at different temperatures for a classical ferromagnetic Heisen-

berg model. Clearly, the configurations at different temperatures are clustered into

specific areas. This locality makes it easier to fit a temperature-dependent effective

potential. Second, the temperature dependence of the exchange parameters is in-

herited in some models, e.g., in spin-density-functional-theory for itinerant-electron
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Figure 4.1: Magnetization-energy plot for spin configurations of a 6 × 6 × 6 sim-
ple cubic lattice at different temperatures. The classical ferromagnetic Heisenberg
model is employed in this test. TC is its Curie temperature. The exchange param-
eter J is chosen to be 1 eV.

magnets [110]. In practice, we collect the spin configurations in the warm-up phase

and fit the temperature-dependent SCE at different temperatures separately. The

extra cost required for fitting the temperature-dependent SCEs is normally neg-

ligible compared to the total computational time for sampling. The auxiliary

spin-dynamics is then run with the temperature-dependent SCE to generate pro-

posal states while the Metropolis-Hastings acceptance-rejection is performed for

the target models in order to guarantee correct sampling. We note that no gra-

dient calculations for the electronic-structure based models are required in this

algorithm as the auxiliary spin-dynamics is run with the temperature-dependent

SCE, which is another advantage of our method since the evaluation of gradients

usually requires considerable extra computational cost.
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4.3 Results and Discussion

We demonstrate two applications in this section. In the first application, we per-

form efficiency tests for Algorithm I using the classical Heisenberg model. In the

second application, we test and discuss Algorithm II using magnetic bond-order

potentials [31, 33, 43, 44].

4.3.1 Application to the classical Heisenberg model

We first employ the classical ferromagnetic Heisenberg model,

E = −J
∑
<ij>

si · sj, (4.18)

on a simple cubic lattice to perform an efficiency test for Hamiltonian MC, Al-

gorithm I. J is the exchange parameter, and < ij > denotes the first-nearest-

neighbour pairs without double counting. J is chosen to be 1 eV in this test.

In Fig. 4.2, we measure the warm-up efficiency for a 6 × 6 × 6 simple cubic

lattice from the high (low)-energy to low (high)-energy states. As expected, the

efficiency from low-energy to high-energy states is higher than the other way round,

and the former (latter) takes around 400 (1200) gradient calls.

We next fix the temperature to the critical temperature of the 3D classical

Heisenberg model (TC = 1.4459 J/kB) [103], and estimate the dynamical critical

exponent. The estimation is based on the dynamical finite-size scaling ansatz [123]

τ ≈ Lz, (4.19)

where L is the side length of the cubic simulation cell. τ is the relaxation time of

magnetization and evaluated according to

φ(t) = Ae−t/τ , (4.20)

where φ(t) is the time auto-correlation function of magnetization. The relaxation

time τ is measured in units of gradient calls instead of MC step as multiple gradient

calls may be required for one MC step. In Fig. 4.3, we show the log-log plot for the

relaxation time versus the side length of the cubic simulation cell. The dynamical

critical exponent is estimated to be around 2.23. This value is comparable to that

of the checkerboard MC algorithm (1.96, cf. Ref. [103]), but cannot compete
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Figure 4.2: Evolution of the magnetization of a 6×6×6 simple cubic lattice for the
classical Heisenberg model in the warm-up phase. Orange line: the initial state is
the ferromagnetic ground state and the temperature is 2 TC. Blue line: the initial
state is a random-spin state and the temperature is 0.1 TC.

with the cluster algorithms whose relaxation times are almost independent of the

size [60]. However, as we discussed in the introduction, these algorithms are only

applicable for a small group of spin models, whereas Hamiltonian MC is generally

applicable.

4.3.2 Application to electronic-structure based models

Next, we employ the magnetic bond-order potential (BOP) [33, 44, 95] to demon-

strate the application of our algorithm with an auxiliary model, Algorithm II.

In algorithm I, we need to run both MC and auxiliary spin-dynamics with the

target model, which requires too many energy and gradients calls to converge

thermal averages for electronic-structure based models. A trajectory length of

more than ten is usually needed in auxiliary spin-dynamics in order to decorrelate

the current and the proposal state. The computational cost of this part can be
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Figure 4.3: Log-log plot of the relaxation time for the magnetization in units of
gradient calls. L represents the side length of the cubic simulation cell and τ
represents the relaxation time. The error bars of the relaxation time are smaller
than the symbol size. The classical Heisenberg model on the simple cubic lattice
is used here.

dramatically reduced with algorithm II in which the auxiliary spin-dynamics is

run with a temperature-dependent SCE. As the temperature-dependent SCE is

orders of magnitude faster than the electronic-structure based models, this gives

a significant speed-up.

The magnetic BOP is one of the simplest electronic-structure based models for

magnetic transition metals. In this model, the potential energy is based on the

electronic density of states. It is given as a function of atomic positions and spin

orientations,

E({ri, si}) = Ubond + Utrans + Urep + UC + UX + Uext, (4.21)

where Ubond is the bond energy, Utrans the electron transfer energy, Urep the re-

pulsion energy, UC the Coulomb energy, UX the exchange energy, and Uext the
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external energy. Readers are referred to Ref. [33] for a detailed discussion of this

model.

Figure 4.4: Root-mean-squared (RMS) error of the spin-cluster expansion model
plotted as a function of neighbour shells for pair-wise and three-spin interactions.
The RMS error per cell is in the unit of kBTC, where TC is the experimental Curie
temperature of iron (1043 K). The spin-cluster expansion model is fitted for the
potential energy of a magnetic BOP for 5× 5× 5 bcc lattice of iron.

The magnetic BOP gives a robust description of ferromagnetism, and more

importantly, the real-material properties such as phase stability, elastic constants,

and dislocations are described properly [43, 44, 95]. More specifically, we use the

9-moments magnetic BOP of iron by Mrovec et al. [95] and the implementation

in the BOPfox code [? ] to calculate potential energies for spin configurations in

the bcc lattice. The 5 × 5 × 5 simulation cell contains 250 spins, and the atomic

positions are fixed. We employ a temperature-dependent SCE fitted for the BOP

of iron as an auxiliary model to run the auxiliary spin-dynamics. As shown in Eq.

(4.17), the energy difference between the electronic-structure based model and the

auxiliary model should be as small as possible to guarantee a good acceptance
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probability. A rough estimation can be given for the relationship between the

root-mean-squared (RMS) error ∆ERMS and the average acceptance probability

p̄acc,

p̄acc ≈ 1

2
[1 + exp (−β∆ERMS)] . (4.22)

For example, a RMS error of one kBT corresponds to an average acceptance prob-

ability of around 0.68, which is a good value for MC acceptance-rejection.

Figure 4.5: Average acceptance probability in the warm-up and the sampling
phases. The temperature-independent spin cluster expansion is used in the warm-
up phase while the temperature-dependent one used in the sampling phase. The
magnetic BOP of iron is the target model in this test, with 5 × 5 × 5 bcc lattice
of 250 spins.

In Fig. 4.4, we show a typical plot for the RMS error versus neighbour shells

of pair-wise and three-spin interactions. The pair-wise spin clusters are not suf-

ficient to reduce the root-mean-squared (RMS) error to less than one kBTC and

three-spin interactions are taken into account in order to further reduce the RMS

error to 0.80 kBTC. In practice, we include pair-wise interactions up to the sixth

nearest-neighbour shell and the first-nearest-neighbour three-spin interactions in
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our temperature-dependent SCE. The two-spin and three-spin interactions are suf-

ficient to converge the SCE for the ideal lattice with fixed atomic positions that

is used in this work. Breaking the geometric degeneracy by, e.g., vibrations or de-

fects, will introduce distance- and environment-dependent interaction terms which

rule the convergence of the SCE much more difficult or even intractable.

Figure 4.6: Binning analysis for potential energies of 5×5×5 bcc lattice at different
temperatures.

In practice, we first fit a temperature-independent SCE as a start-up auxil-

iary model. This involves 1000 spin configurations generated with the classical

Heisenberg model at the critical point and the corresponding potential energies

for electronic-structure based models (magnetic bond-order potential in our appli-

cation). The warm-up phase is split into two stages. In the first stage, the system

is thermalized purely with the start-up auxiliary model and the length is set to

1000 MC steps. The time-step and the trajectory length are automatically tuned

with the methods in Section 4.2. In the second stage, the start-up model is used to

run auxiliary spin-dynamics while the Metropolis-Hastings acceptance-rejection is
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Figure 4.7: Running errors in the estimation of thermal averages of potential
energies at different temperatures.

performed for the target electronic structure based models. The time-step is fur-

ther tuned while the trajectory length is fixed to the mean value in the first stage.

In our implementation for the magnetic bond-order potential, a typical time step

is around 0.3 fs, and a typical trajectory length is around 18. The length of the

second stage is set to be 500 MC steps. Once the warm-up phase is finished, we

collect all the spin configurations and the potential energies in the second stage

to fit a temperature-dependent SCE with least-squares fitting, which is then used

to run auxiliary spin-dynamics in the sampling phase. Both the time-step and

the trajectory length are fixed in this phase. We use 10,000 MC steps to evaluate

thermal averages, which are sufficient to guarantee convergence due to the small

autocorrelation time in our algorithm.

In Fig. 4.5, we show the average acceptance probability at different tempera-

tures in both the warm-up and sampling phase. It is higher in the sampling phase

than in the warm-up phase as the temperature-dependent SCE reproduces the

energy landscape of the BOP better, as discussed in Sec. 4.2.
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Figure 4.8: Thermal-average potential energy as a function of temperature for
5× 5× 5 bcc lattice of iron obtained with a magnetic bond-order potential.

We performed a binning analysis [8] for the potential energy to check the con-

vergence. As shown in Fig. 4.6, the autocorrelation times at all temperatures

reach a plateau, which indicates that the calculation is fully converged. The au-

tocorrelation times range from two to six depending on the temperature. The

running error can be estimated according to [8]

∆O =

√
VarO

N
(1 + 2τO), (4.23)

where O is the observable, VarO its variance, τO its autocorrelation time, and N

the number of MC steps. Based on this, we plot in Fig. 4.7 the running errors in

the estimation of thermal averages of potential energies at different temperatures.

Clearly, more MC steps are required to reach convergence at temperatures closer

to the critical point (1200 K in this case, as shown later) as the variance is larger.

For our algorithm, an error of 0.5 meV/atom can be reached within 5000 MC

steps. This excellent efficiency is due to the short autocorrelation time, as already

discussed.
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Figure 4.9: Magnetization as a function of temperature for 5× 5× 5 bcc lattice of
iron obtained with a magnetic bond-order potential. The images are snapshots of
spin configurations at 500 K, 1200 K, and 2000 K, respectively, which are generated
with the code V sim [2]. The spin directions are indicated by the arrows and the
coloration. We see the collapse of the long- and short-range magnetic orders with
increasing temperatures.

The thermal-average potential energy, the magnetization, and the magnetic

contribution to the specific heat of bcc iron for magnetic BOP are plotted as a

function of temperature in Fig. 4.8, Fig. 4.9, and Fig. 4.10, respectively. The

magnetization curve we obtain here has similar features to that of the classical

Heisenberg model [72, 86], which indicates that the exchange parameters are not

influenced considerably by spin fluctuations in magnetic iron. We notice that there

is a recent paper by Ruban and Peil [112] who found that the exchange parameters

are significantly influenced by atomic vibrations in magnetic iron. This effect is

not considered here as we fix atomic positions in our simulation. There is residual

magnetization up to 2000 K due to the finite-size effect. Based on the magnetic

contribution to the specific heat (see Fig. 4.10), we estimate the Curie temperature

to be around 1200 K, which is close to the experimental value (1043 K). The
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Figure 4.10: Magnetic contribution to the specific heat as a function of tempera-
tures for 5× 5× 5 bcc lattice of iron for magnetic bond-order potentials.

difference in TC is attributed to the neglect of magnon-phonon coupling [112]

and limitations of the parametrization of the magnetic BOP used here. To our

knowledge, this is the first result for direct and high-fidelity simulations of the

magnetic phase transition of bcc iron with an electronic-structure based model,

in contrast to related works in literature that are based on parametrized model

Hamiltonians [72, 86, 112].

4.4 Conclusion

We develop a Hamiltonian MC framework in order to efficiently sample the spin

space for electronic-structure based models of magnetic materials. From auxiliary

spin-dynamics we derive a Hamiltonian MC algorithm for spin systems. Our tests

with the classical Heisenberg model show that this algorithm has a fast warm-up

efficiency and a reasonably small dynamical critical exponent. The utilization of

the temperature-dependent spin-cluster expansion as an auxiliary model to run
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auxiliary spin-dynamics further accelerates the exploration of the spin space. Our

application employing the magnetic bond-order potentials demonstrates the effi-

ciency of our sampler. We compute the magnetization curve, the magnetic contri-

bution to the specific heat, and the Curie temperature of bcc iron as predicted by

the BOP model with high fidelity. We conclude that this work paves the way to-

wards atomistic simulations of magnetic materials with complex spin interactions,

and look forward to seeing applications of our method for more complex models,

such as non-collinear magnetic density-functional theory.

54



Chapter 5

Application to magnetic iron

In this chapter, we apply the methods developed in chapter 3 and 4 to study

magnetic iron at finite temperature. More specifically, we aim at investigating

1. the magnetic phase transition in bcc and fcc iron,

2. the interplay between spin fluctuations and atomic vibrations,

3. the effect of longitudinal spin fluctuations (LSF) on the magnetic and α (bcc)

- γ (fcc) structural phase transitions,

4. the α (bcc) - γ (fcc) - δ (bcc) phase transitions.

We use the first and the second part as a benchmark test of our methods as there

are both experimental and first-principles results for magnon-phonon coupling in

iron. The third part is a good example to show the strength of our methods as LSF

and its coupling to the lattice are treated properly in our model and the collective

nature of spin fluctuations requires an efficient Monte Carlo sampler. In the last

part, we offer our insight into the α (bcc) - γ (fcc) - δ (bcc) phase transitions in

iron, which have been studied by numerous investigators with different methods

over decades and still has controversy about its microscopic origin.

All the results shown in this chapter are based on the tight binding parametriza-

tions of Mrovec et al. [95], and the parameter Ū = U − 1/2J is chosen as 3.6 eV

and J chosen as 0.8 eV, as suggested by Belozerov and Anisimov [15] based on

their LDA+DMFT calculations. We focus on the vibrational and magnetic exci-

tations and neglect the free-electron excitations in all the calculations. We use the

BOPfox program [50] to solve the single-electron effective Hamiltonian, and the

method of Methfessel and Paxton [92] is used to sample the Brillouin-zone.
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5.1 Magnetic phase transition in bcc and fcc iron

Figure 5.1: Order parameter of bcc and fcc iron plotted as function of temperature.
The bcc supercell contains 250 atoms, and the fcc supercell contains 300 atoms.

We first calculate the magnetic phase transition in bcc and fcc iron. We choose

different order parameters for bcc and fcc iron as they have different magnetic

ground states. As bcc iron has a ferromagnetic ground state and transforms to

paramagnetic state at high temperature, the total magnetization is a natural choice

of its order parameter. The magnetic ground state of fcc iron is the antiferro-

magnetic double layer with two sublattices having opposite magnetization, and

we choose the difference of the magnetizations of the two sublattices as its order

parameter. We plot in Fig. 5.1 the calculated order parameters as function of tem-

perature. The lowest temperature we considered is 50 K as our model is based on

the static approximation, which becomes problematic at very low temperature due

to the presence of strong quantum fluctuations. The order parameter of fcc iron is

close to zero at tempeature higher than 50 K, which indicates that the calculated
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magnetic phase-transition temperature (Néel-Temperature) is lower than 50 K. In

contrast, the magnetic ordering of bcc iron remains at much higher temperature,

and the calculated magnetic phase-transition temperature (Curie temperature) of

bcc iron is around 1250 K, close to the experimental value.

5.2 Interplay between spin fluctuations and atomic

vibrations

At evaluated temperatures, both spin and lattice degrees of freedom (DOFs) are

excited in magnetic materials. The coupling of the two types of excitations, de-

noted as magnon-phonon coupling in this chapter, plays an important role in

thermodynamics and kinetics [107, 115, 120, 126, 134]. We next use our model to

study the interplay of the atomic vibrations and spin fluctuations in magnetic iron

and first put the focus of this subsection on the effect of the spin fluctuations on

phonon spectra. The calculations are based on the spin-space averaging scheme

[70]. Here we perform an extension of this scheme in order to include the effect of

both transverse and longitudinal spin fluctuations. If we assume that the magnetic

excitations have faster time scales, we can then define the mean atomic force as

F̄k({ri}) =
1

Zmag({ri})

∫ ∏
i

dhiFk({ri,hi})×

exp [−βEpot({ri,hi})] .
(5.1)

where the mean atomic force is defined as a thermal average with respect to spin

fluctuations, and Zmag({ri}) is the magnetic partition function for a given atomic

configuration {ri},

Zmag({ri}) =

∫ ∏
i

dhiexp [−βEpot({ri,hi})] . (5.2)

Based on the mean force defined in Eq. 5.1, we employ the small-displacement

method to calculate phonon spectra at finite magnetic temperature. In its imple-

mentation, we compute the thermal average of the restoring force instead of the

atomic force Eq. (5.1) [70]. If we shift the γ-component of the position of atom l

by a small displacement ∆rγl , the corresponding restoring force can be evaluated
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through

F̄α
k ({rζi }iζ 6=lγ, r

γ
l + ∆rγl )− F̄α

k ({ri}) =

1

Zmag

∫ ∏
dhi

[
Fα
k ({rζi }iζ 6=lγ, r

γ
l + ∆rγl , {hi})− F

α
k ({ri,hi})

]
exp[−βEpot({ri,hi})].

(5.3)

A cleaner expression can be immediately obtained by dividing both sides in

Eq. (5.3) by the small displacement ∆rγl and employing the definition of the force

constant Φα,γ
i,j ,

Φ̄α,γ
i,j ({ri}) =

1

Zmag

∫ ∏
dhiΦ

α,γ
i,j ({ri, }, {hi}) exp[−βEpot({ri}, {hi})]. (5.4)

In other words, we define a mean force constant Φ̄α,γ
i,j ({ri}) at finite magnetic tem-

perature, and use it to calculate finite-temperature phonon spectra in an effective

manner. This method can be viewed as an effective harmonic approximation to

treat phonon anharmonicity induced by spin fluctuations.

In practice, we choose a small displacement of 0.01 Å and use Eq. (5.4) to

calculate the phonon spectra of bcc and fcc iron at finite magnetic temperature.

The first pronounced effect we observed is that the spin fluctuations stabilize the

phonon modes of fcc iron. This observation has already been reported by Körmann

et al. [70] with their first-principles calculations. Here we reproduce this result with

our model. In Fig. 5.2, we plot the phonon spectra of fcc iron in the ferromagnetic

state and at the magnetic temperature of 1573 K, and the experimental data [100]

are also plotted for comparison. There are imaginary phonon frequencies around

the Γ point in ferromagnetic fcc iron. However, all frequencies become positive

once spin fluctuations at 1573 K are taken into account, and this gives an excellent

agreement with experimental data [100].

For bcc iron, the phonon spectra at 773 K, 1043 K, 1173 K, and 1743 K are

shown in Fig. 5.3. We observe strong phonon softening in bcc iron with increas-

ing magnetic temperature and the N point and the 2/3[111] point in the Γ − H

branch are softened most significantly, which are related to the bcc-hcp and bcc-fcc

phase transitions [64]. It means that bcc iron gains more and more vibrational

entropy with increasing temperature and becomes more and more thermodynam-

ically favorable, and we will show in Section 5.4 that this leads to the γ − δ phase

transition.
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Figure 5.2: Calculated phonon spectra of fcc iron in the ferromagnetic state
(dashed line) and at the magnetic temperature of 1573 K (full line). Dots: exper-
imental phonons at 1573 K from Neuhaus et al. [100]

We next take the T1 phonon branch at the N point as an example to illustrate

the reason for the phonon softening. We first plot the temperature-dependent

force constants for the first and second shells of neighbours in Fig. 5.4, There are

four independent components, Φxx(a/2, a/2, a/2), Φxy(a/2, a/2, a/2), Φxx(a, 0, 0)

and Φyy(a, 0, 0), according to the crystal symmetry of bcc lattice, and they are

denoted in Fig. 5.4 as the small Greek letters α1, β1, α2, and β2 following the

convention in [136]. We plot in the last two subplots in Fig. 5.4 the stretching

(longitudinal) and shearing (transverse) force constants ΦL
1 and ΦT

1 for the first-

nearest neighbour, which are converted from α1 and β1 through

α1 =
2

3
ΦT

1 +
1

3
ΦL

1

β1 = −1

3
ΦT

1 +
1

3
ΦL

1 .
(5.5)
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Figure 5.3: Calculated phonon spectra of bcc iron at magnetic temperatures of
773 K, 1043 K, 1173 K and 1743 K, respectively. Lines: calculated results in this
work. Dots: experimental data from Neuhaus et al. [100].
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Figure 5.4: Calculated force constants for the first and second neighbours as func-
tion of magnetic temperature.

The expressions above are obtained from Eq. (2.56). If we only consider the first-

and second-nearest-neighbour interactions, the T1 vibrational mode at the N point

can be expanded linearly in terms of the force constants in the global coordinate

frame, as given by Eq. (2.55). Substituting Eq. (5.5) into Eq. (2.55), we obtain

4π2Mν2
T1

= 8ΦT
1 + 4α2 + 4β2. (5.6)

We see in Eq. (5.6) that the T1 vibrational mode at the N point is determined by

the shearing force constant of the first-nearest-neighbour, ΦT
1 , the stretching force

constant of the second-nearest-neighbour, α2, and the shearing force constant of

the second-nearest-neighbour, β2, and the drastic softening of this mode is caused

the significant decrease of ΦT
1 and α2, as shown in Fig. 5.4.

We next investigate the effect of atomic vibrations on spin fluctuations by

measuring the magnetization as a function of temperature with and without the
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influence of atomic vibrations. To calculate the magnetization curve without the

influence of atomic vibrations (shown as orange dots in Fig. 5.5), we suppress

atomic vibrations by fixing atoms in the perfect bcc lattice and measure the mag-

netization according to

M̄({rbcc
i }) =

1

Zmag({rbcc
i })

∫ ∏
i

dhiM({rbcc
i ,hi})×

exp
[
−βEpot({rbcc

i ,hi})
]
,

(5.7)

where rbcc
i is the atomic position of the perfect bcc lattice. To calculate the mag-

netization curve with the influence of atomic vibrations (shown as blue dots in

Fig. 5.5), the atomic vibrations are allowed and the magnetization is measured

according to

M̄ =
1

Z

∫ ∏
i

dhidriM({ri,hi})exp [−βEpot({ri,hi})] . (5.8)

As shown in Fig. 5.5, the atomic vibrations have a prominent effect on spin

fluctuations. The thermal atomic vibrations accelerate the collapse of the long-

range magnetic order and the Curie temperature is significantly reduced if atomic

vibrations are included. We notice that there is the same conclusion in the recent

paper of Ruban and Peil [112]. In contrast to their work which is based on the

first-principles parametrized classical Heisenberg model, here we obtained a direct

evidence for the strong influence of atomic vibrations on spin fluctuations.
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Figure 5.5: Calculated magnetization as function of temperatures. Orange dots:
magnetization of a perfect 5 × 5 × 5 bcc supercell of iron with atomic positions
fixed. Blue dots: atomic vibrations are included in the 5× 5× 5 bcc supercell of
iron.

5.3 Effect of longitudinal spin fluctuations

In this section, we aim at investigating the effect of longitudinal spin fluctuations

(LSF) on phase transitions in iron. The schematic phase diagram of iron is shown

in Fig. 5.6 [81]. At the low-temperature and low-pressure regime, the α phase is

thermodynamically most stable and has a body-centered cubic structure. With in-

creasing temperature, there is a magnetic phase transition from the ferromagnetic

to the paramagnetic state at 1043 K and ambient pressure. This order-disorder

phase transition is of second-order, which means that the second-order derivative

of the free energy is discontinuous at the critical point. At around 1185 K and

ambient pressure, there is a structural phase transition from the paramagnetic bcc

iron to the paramagnetic fcc iron, where the latter is referred to as the γ phase. If

we continue to increase temperature, there is another phase transition from para-
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magnetic fcc iron to paramagnetic bcc iron that is referred to as δ phase. We

focus in this section on the effect of LSF on the magnetic phase transition and α-γ

structural phase transition. The α (bcc) - γ (fcc) - δ (bcc) phase transitions will

be discussed in the next section.

Figure 5.6: The schematic pressure-temperature phase diagram of pure iron taken
from [81] and reused under the license number RNP/19/OCT/019548.

It is well known that the spin length of itinerant-electron magnets is not fixed,

and its fluctuations, known as longitudinal spin fluctuations (LSF), contribute

to entropy and influence the thermodynamics and kinetics at finite temperatures

[28]. The simulation of LSF requires to go beyond the frequently-used Heisenberg

model [74, 89, 127] as the electronic structure is involved. There were several

attempts to include LSF in finite-temperature simulations of magnetic transition-

metals. As a direct extension of the Heisenberg model, Ruban el al. [111] intro-

duced a LSF model Hamiltonian which is parametrized with ab initio calculations

and solved with a Monte Carlo algorithm. Similarly, Ma and Dudarev [86] pro-

posed a Heisenberg-Landau model to describe the magnetic interactions for both

transverse and longitudinal degrees of freedom and a generalized Langevin spin

dynamics to perform dynamical simulations. The two models capture successfully

the collective-excitations nature of both TSF and LSF with a numerically afford-

able methodology. However, they should be classified to be classical or empirical
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models due to the missing of an explicit treatment of the electronic structure. Fur-

thermore, the parametrizations with respect to different magnetic reference states

may lead to different results. Another drawback is that they only include magnetic

interactions and contain no spin-lattice couplings. This limits their application to

simulations of structural phase transitions. The approach that combines density

functional theory (DFT) and dynamical mean-field theory (DMFT), the so-called

DFT+DMFT [75], treats the electronic-correlations and LSF in a dynamical mean-

field manner. This model is usually solved with quantum Monte Carlo algorithms.

It captures the itinerant-electron and the electron-correlation nature of LSF and is

state-of-the-art one of the most consistent approaches to model finite-temperature

magnetism of itinerant-electron magnets [5]. However, both TSF and LSF are

collective excitations, while they are treated as single-site excitations in DMFT,

which is the main drawback of this approach.

Figure 5.7: Average potential energy plotted as function of temperature.

In our calculations, we fix the atomic positions and use the magnetic partition

function for TSF Eq. (3.19) and that for full spin fluctuations Eq. (3.11) to
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Figure 5.8: Magnetization plotted as function of temperature.

investigate the effect of LSF on the magnetic phase transition of bcc iron and

the α − γ structural phase transition. LSF in our model is described based on

the electronic-structure model compared to the empirical models [86, 111] and is

collective compared to single-site in DFT+DMFT [81, 83].

We compare in Fig. 5.7 the average potential energy as a function of tem-

perature with and without LSF. For the case without LSF, only the transverse

magnetic degrees of freedom are excited by thermal fluctuations. For the case

with LSF, both the transverse and longitudinal magnetic DOFs are included in

thermal excitations. As expected, the two curves reach the same value in the low-

temperature limit as a result of the same ferromagnetic ground state. The slope

of the potential energy, corresponding to magnetic contributions to heat capacity,

is higher for the case with LSF as more degrees of freedom are excited.

The magnetization curves with and without LSF are shown in Fig. 5.8. The

magnetization curve with LSF is above that without LSF over the whole tem-

perature range. This can be explained by a histogram of magnitudes of atomic

magnetic moments as shown in Fig. 5.9, in which we observe that the magni-

66



Figure 5.9: Histogram of magnitudes of atomic magnetic moments at 100 K and
1300 K.

tudes of atomic magnetic moments become higher when the longitudinal degrees

of freedom are excited.

We next investigate the effect of LSF on thermodynamics and kinetics of the

α − γ structural phase transition in iron by calculating the magnetic free-energy

profile along the Bain path. We employ the body-centered tetragonal (bct) unit

cell, as shown in Fig. 5.10, and the c/a ratio of 1 (
√

2) corresponds to the bcc

(fcc) structure. We use a 3× 3× 3 bct supercell of iron containing 54 atoms. The

order parameter for the bain transformation is the c/a ratio in the body-centered

tetragonal unit cell shown in Fig. 5.10, and it varies from 1 at bcc to
√

2 at fcc. We

need the derivative of the free energy with respect to k = c/a in order to perform

a thermodynamic integration along the Bain path,

∂F

∂k
=

〈
∂Upot

∂k

〉
, (5.9)

and this derivative can be expressed in terms of the stress tensor, as shown below.
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Figure 5.10: Unit cells of the body-centered tetragonal (bct), body-centered cubic
(bcc) and face-centered cubic (fcc) lattices

The supercell at a given order parameter k is given as,

C =

∣∣∣∣∣∣
V

1
3k−

1
3 0 0

0 V
1
3k−

1
3 0

0 0 V
1
3k

2
3

∣∣∣∣∣∣ .
where V is the volume, which is fixed in the bain transformation.

The infinitesimal deformation of the supercell can be expressed in terms of the

strain tensor,

δC = εC. (5.10)

In the bain transformation, the infinitesimal deformation of the supercell can

be expressed in terms of the order parameter k,

δC =

∣∣∣∣∣∣
−1

3
V

1
3k−

4
3 δk 0 0

0 −1
3
V

1
3k−

4
3 δk 0

0 0 2
3
V

1
3k−

1
3 δk

∣∣∣∣∣∣ .
Substituting the expressions for C and δC into Eq. (5.10), we then obtain,

ε

δk
=

∣∣∣∣∣∣
−1

3
k−1 0 0
0 −1

3
k−1 0

0 0 2
3
k−1

∣∣∣∣∣∣ .
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Figure 5.11: Magnetic free-energy profiles along bain transformation at different
temperature.

The derivative of the potential energy with respect to the order parameter is

then expressed in terms of the stress tensor,

∂Upot

∂k
=
∑
α,β

∂Upot

εαβ

εαβ
∂k

=− 1

3k
V (σ11 + σ22 − 2σ33)

(5.11)

In the last expression, we employed the relation,

∂Upot

∂εαβ
= V σαβ. (5.12)

With Eq. (5.9) and (5.11), we are ready to calculate the magnetic free-energy

profile along the Bain path with and without LSF, and our key result is shown

in Fig. 5.11. At low temperature, the bcc structure is located at a deep local

minimum while the fcc structure is located at a shallow local minimum. With

increasing temperature, the magnetic free-energy barrier from bcc to fcc decreases
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Figure 5.12: The magnetic free-energy difference of bcc and fcc iron as a function
of temperature.

while that from fcc to bcc increases, and this makes the fcc structure more and more

stable with increasing temperature. Regarding the effect of LSF, the magnetic

free-energy difference between bcc and fcc iron is increased by LSF, and as a

consequence, the phase-transition temperature is increased by around 200 K, as

shown in Fig. 5.12. In Fig. 5.13a, we plot the magnetic free-energy barrier from

fcc to bcc iron, which is the magnetic free-energy difference between the saddle

point and the bcc lattice. The magnetic free-energy barrier from bcc to fcc iron

is plotted in Fig. 5.13b. LSF increases the barrier from bcc to fcc iron while it

decreases the barrier from fcc to bcc iron. We thus draw a conclusion that LSF

favors bcc iron compared to fcc iron both thermodynamically and kinetically.

70



(a) From bcc to fcc iron.

(b) From fcc to bcc iron.

Figure 5.13: Magnetic free-energy barrier as a function of temperature.
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5.4 α (bcc) - γ (fcc) - δ (bcc) phase transitions

The α (bcc) - γ (fcc) - δ (bcc) phase transitions make iron quite unique among all

elements in the periodic table and attract many theoretical calculations [53, 74,

81, 83, 88, 97]. The physics behind the α (bcc) - γ (fcc) phase transition is more or

less clear, and all theories attribute its driving force to be the magnetic (electronic)

free-energy difference, namely, fcc iron has lower magnetic free energy than bcc

iron at the α-γ phase-transition temperature. The main controversy lies in the

microscopic origin of the γ (fcc) - δ (bcc) phase transition, and there are basically

two different arguments. The first argument states that the main driving force is

the vibrational free-energy difference [83, 88, 97]. This argument is justified by

the following considerations:

� Geometrically, γ iron has a close-packed fcc structue whereas δ iron has an

open bcc structure. As the atoms in bcc lattice have more space to vibrate

than those in fcc lattice, bcc iron has more vibrational entropy and lower

vibrational free energy than fcc iron.

In contrast, the second argument states that the driving force of this phase transtion

is not vibrational but magnetic (electronic) free-energy difference and that fcc iron

has a higher magnetic free energy than bcc iron at the γ-δ phase-transition tem-

perature [53, 68]. This argument is justified by the following considerations:

� In first-principles calculations, bcc iron has higher phonon free energy than

fcc iron, which means that the vibrational free-energy difference does not

support γ-δ phase transition and the first argument is not valid [68].

� bcc iron has more magnetic entropy and lower magnetic free energy than fcc

iron at high temperature [53, 68] as the former has higher magnetic moment

in Heisenberg models derived from DFT [68].

The first argument is based on a pure geometrical consideration and has al-

ready been shown to be valid for a large group of non-magnetic materials [117],

In order to check its validity for iron, special consideration should be devoted to

magnon-phonon coupling which is shown to strongly impact vibrational proper-

ties of iron in both theories [51, 73, 83] and experiment [90]. Körmann [68] argued

that the vibrational free-energy difference does not support the γ-δ phase transi-

tion based on the phonon calculations with the harmonic approximation, which

72



did not take into account magnon-coupling and might be problematic for iron. For

the calculations of the magnetic (electronic) free-energy difference, the results of

Hasegawa et al. [53] and Körmann [68] show that it supports the α-γ phase transi-

tion at low temperature and the γ-δ phase transition at high temperature. We note

that both works contain strong approximations. Hasegawa et al. [53] employed a

single-band tight binding model which may not describe the electronic structure

properly, and Körmann [68] based his calculations on a Heisenberg Hamiltonian

that neglects temperature dependence of the magnetic moment [7, 110, 111] and

may oversimplify the complexity of exchange interactions in iron [79]. Indeed, in

a more accurate calculation with DFT+DMFT [81], only the α-γ phase transition

is reproduced whereas the γ-δ phase transition cannot be driven by the electronic

(magnetic) excitations alone.

In our work, we first calculate the electronic (magnetic) contribution by per-

forming a thermodynamic integration for the magnetic degrees of freedom from bcc

to fcc iron. After that we calculate the vibrational contribution and treat the effect

of spin fluctuations on atomic vibrations with the spin-space averaging scheme [70]

as this method has been proven valid for calculations of magnon-phonon coupling

in iron [73]. We finally obtain the total free-energy difference by summing up the

two contributions, and will show that the combined effect of the two contributions

leads to α (bcc) - γ (fcc) - δ (bcc) in iron.

Our calculation of the electronic contribution can be viewed as an extension of

the work of Hesegawa and Pettifor [54]. Their calculation was based on a single

d-band tight binding model and the assumption of the random spin environment

that was treated by the coherent potential approximation. In our work, we use a

full d-band tight binding model in order to better describe the electronic structure

of iron and take into account the effect of short-range magnetic order by sampling

explicitly the spin space. More specifically, we perform a thermodynamic integra-

tion from bcc to fcc iron, in which we fix the atomic positions and only consider

spin fluctuations. The electronic free-energy difference ∆F elec
bcc→fcc is evaluated ac-

cordingly,

∆F elec
bcc→fcc(T ) =

∫ 1

0

dλ 〈Upot({rfcc
i })− Upot({rbcc

i })〉λ, (5.13)
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where λ is the switching parameter going from zero to one, and the integrand is

defined as a ensemble average with respect to the magnetic partition function

Zλ =

∫ ∏
i

dhi exp
{
−β
[
(1− λ)Upot({rbcc

i ,hi}) + λUpot({rbcc
i ,hi})

]}
. (5.14)

The temperature T is the magnetic temperature indicating magnetic excitations.

At 0 K, the electronic free-energy difference ∆F elec
bcc→fcc corresponds to the ground-

state energy difference between bcc and fcc iron, and at finite temperature, it

contains the effect of magnetic excitations including both transverse and longitu-

dinal spin fluctuations.

We plot in Fig. 5.14 the electronic free-energy difference as function of temper-

ature. The spin fluctuations favor fcc iron compared to bcc iron and are sufficient

to drive the α−γ phase transformation even if we neglect the vibrational contribu-

tion. This observation is in agreement with the conclusion in [54], and both their

and our works indicate that the spin fluctuations play a crucial role in the α − γ
phase transition in iron. We obtain in Fig. 5.14 a α - γ transition temperature

of around 1400 K, which is overestimated compared to the experimental value of

around 1185 K. One reason for the overestimation here is due to the missing of

the vibrational contribution which tends to stabilize fcc iron compared to bcc iron

at low temperature, as will be shown later.

Another interesting point we can see in Fig. 5.14 is that the electronic contribu-

tion has a energy scale of several ten milli-electron volts and plays a dominant role

in the low-temperature range and becomes less important in the high-temperature

range. In the temperature range from 1400 K to 1700 K where the γ (fcc) - δ

(bcc) phase transition happens, the electronic free-energy difference is less than

6 meV/atom. We can understand the decrease of the influence of the electronic

contribution with increasing temperature by looking at the electronic density of

states at finite magnetic temperature. We plot in Fig. 5.15 the histograms of the

electronic density of states (DOS) at magnetic temperature of 100 K, 700 K, and

1500 K. The spin fluctuations smear out the electronic DOS of bcc iron and make

its electronic DOS closer to that of fcc iron with increasing temperature. This

observation is in line with the deduction based on experiments that the electronic

contribution is small in the γ (fcc) - δ (bcc) phase transition [100].

We next calculate the vibrational contribution to α (bcc) - γ (fcc) - δ (bcc)

phase transitions. We first employ the spin-space averaging scheme [70] to calculate
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Figure 5.14: Calculated electronic free-energy difference between α (bcc) and γ
(fcc) iron.

the phonon normal modes at finite magnetic temperature, and the thermal expan-

sion is taken into account via experimental values [13]. The finite-temperature

phonon density of states g(ε, T ) are then approximated as the histogram of the

SSA phonon normal modes. The vibrational entropy difference between bcc and

fcc iron is calculated according to

∆Svib
bcc→fcc(T ) =

∫ ∞
0

[gfcc(ε, T )− gbcc(ε, T )]Si(ε, T )dε, (5.15)

and the vibrational free-energy difference between bcc and fcc iron is calculated

according to

∆F vib
bcc→fcc(T ) =

∫ ∞
0

[gfcc(ε, T )− gbcc(ε, T )]Fi(ε, T )dε, (5.16)

where gbcc(ε, T ) and gfcc(ε, T ) are the phonon density of states of bcc and fcc iron at

magnetic temperature T within the SSA approximation, and Si(ε, T ) and Fi(ε, T )

are the vibrational entropy and the vibrational free energy of the single harmonic
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(a) 100 K

(b) 700 K

(c) 1500 K

Figure 5.15: The two-dimensional histograms of electronic density of states of bcc
and fcc iron at different magnetic temperatures. 1000 magnetic configurations are
employed at each temperature. 76



oscillator of frequency ω = ε/~ at temperature T and given as Eq. (2.60) and Eq.

(2.59).

Figure 5.16: Calculated vibrational-entropy difference between fcc and bcc phases
of iron as function of temperature.

In Fig. 5.16, we plot the vibrational-entropy difference between the bcc and

fcc phases of iron. We see that there is a sign change at around 1500 K. It means

that at temperature below 1500 K, the vibrational entropy tends to stabilize fcc

while at higher temperature, it tends to stabilize bcc. This result is in an excellent

qualitative agreement with the estimation based on experiments, which gives a

sign-change temperature of around 1400 K [100].

We plot the vibrational free-energy difference as function of temperature in

Fig. 5.17. With increasing tempeature, the vibrational free-energy difference first

decreases in the low-temperature range, and starts to increase at around 700 K.

At first glance, it looks that this is not in agreement with the vibrational-entropy

difference in Fig. 5.16 as the negative of the first derivative of free energy with

respect to temperature is entropy, S = −∂F/∂T . However, this relation does not

hold between ∆Svib
bcc→fcc(T ) given as Eq. (5.15) and ∆F vib

bcc→fcc(T ) given as Eq.
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Figure 5.17: Calculated vibrational free-energy difference between fcc and bcc
phases of iron as function of temperature.

(5.16) simply because we use the SSA approximation to calculate temperature-

dependent phonon modes and a different phonon partition function is involved

at different temperatures. We now return to the discussion of the magnetic free-

energy difference. It changes from a negative value to a positive value with in-

creasing temperature, and this means that the vibrational contribution tends to

stabilize fcc iron at temperature below 1500 K and tends to stabilize bcc iron at

temperature above 1500 K.

The interesting change of the vibrational free-energy difference is a consequence

of the magnetic effect on atomic vibrations and can be understood by investigating

the phonon density of states (DOS) at finite magnetic temperature. We plot in

Fig. 5.18 the phonon DOS of bcc and fcc iron at different magnetic temperature.

As indicated by the shaded region in Fig. 5.18, there is stronger softening of the

low-frequency phonon modes in bcc iron than those in fcc iron. As a consequence

of this and as shown in Fig. 5.19, fcc iron has more low-frequency phonon modes

than bcc iron at low temperature, while bcc iron has more low-frequency phonon

modes at high temperature. It is the reason for the change of the vibrational
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(a) bcc iron

(b) fcc iron

Figure 5.18: Phonon density of states (DOS) of bcc and fcc iron at finite mag-
netic temperature. The shaded area indicates the gain of low-frequency (less than
4 THz) phonon modes from 300 K to 1700 K.
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(a) 300 K

(b) 1700 K

Figure 5.19: Phonon density of states (DOS) of bcc and fcc iron at magnetic
temperature of 300 K and 1700 K. The green (red) shaded region indicates low-
frequency (less than 4 THz) phonon modes at which fcc iron has higher (lower)
phonon DOS.

free-energy difference with temperature. This result can also be interpreted in a

simple and naive way: at high temperature where the magnetic ordering is lost
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and doesn’t play an important role, the geometrical argument about the atomic

vibrations holds that the more open bcc structure has softer phonon modes than

the more close-packed fcc structure. In contrast, at low temperature where there is

strong magnetic ordering, the ferromagnetic ordering significant change the energy

landscape of bcc iron and harden the low-frequency phonon modes to be higher

than those of fcc iron.

We next sum up the electronic contribution (calculated through Eq. (5.13)

and shown in Fig. 5.14) and the vibrational contribution (calculated through Eq.

(5.16) and shown in Fig. 5.17) to the free-energy difference between bcc and fcc

iron,

∆F tot(T ) = ∆F elec(T ) + ∆F vib(T ), (5.17)

We plot in Fig. 5.20 our calculated free energy difference together with CAL-

PHAD data for comparison [1]. A positive value ∆F tot(T ) > 0 means that the

Figure 5.20: The electronic, vibrational and total free-energy differences between
bcc and fcc iron plotted as function of temperature (shown as colored dots) in
comparison with CALPHAD data [1] (shown as black line).

fcc structure is more stable than the bcc structure at temperature T whereas a
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negative value ∆F tot(T ) < 0 means that the bcc structure is more stable than

the fcc structure at temperature T . We also plot in Fig. 5.20 separately the elec-

tronic and vibrational contributions in Fig. 5.20 for the sake of discussion. At

low-temperature region (T < 900 K), the gain of the exchange energy due to the

ferromagnetic ordering significantly lowers the internal energy in bcc iron, and the

electronic contribution plays a dominant role in determining the total free-energy

difference. At high-temperature region (T > 900 K), the electronic contribution

decreases to the same energy scale with that of the vibrational contribution, and

the competition between the two contributions leads to the α (bcc) - γ (fcc) -

δ (bcc) phase transitions. The absolute free-energy difference is in overall good

agreement with the CALPHAD data [1] in the whole temperature range. As these

phase transitions happen at an energy scale of 1 meV, we do not expect a quanti-

tatively perfect agreement, and at some temperatures our calculated results might

be several times larger than the CALPHAD data, as shown in the zoomed plot in

Fig. 5.21. We obtain a α (bcc) - γ (fcc) phase-transition temperature of around

1050 K and a γ (fcc) - δ (fcc) phase-transition temperature of around 1600 K,

which is in a qualitatively good agreement with the experimental values, around

1189 K for α - γ and 1662 K γ - δ phase transitions [13].

In conclusion, we showed that the magnetic excitations alone can only drive

the α (bcc) - γ (fcc) phase transition and cannot drive γ (fcc) - δ (bcc) phase

transition, and the latter is mainly driven by the vibrational excitations. Therefore,

our work supports the second argument listed in the beginning of this section.

Our conclusion is in line with the deduction based on DLM ab initio molecular

dynamics [7], DFT+DFMT [81, 83] and experiment [100] but disgrees with the

results of simpler models [54, 68].
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Figure 5.21: The zoomed plot of the grey box in Fig. 5.20.

5.5 Summary and conclusion

In the beginning of this chapter, we list three issues we aim to investigate with

our methods proposed in the last two chapters. Here are our conclusions.

Regarding the interplay between spin fluctuations and atomic vibrations, we

first calculate the effect of spin-fluctuations on phonons using the spin-space aver-

aging scheme and find that the temperature-dependent phonons we obtained are

in a surprisingly good agreement with experimental data in the whole tempera-

ture range. This gives us the confidence that our model captures the essence of

the magnon-phonon coupling in magnetic transition metals even though it is much

simpler than density-functional theory or dynamical mean-field theory. We then

investigate the effect of atomic vibrations by measuring the magnetization curves

for a 3 × 3 × 3 bcc supercell of iron with fixed and unfixed atomic positions and

find that the atomic vibrations have a drastic effect on the collapse of long-range

magnetic order. We note that the finite-size effects are to be expected in this

calculation and leaves it an open question if this argument still holds for a larger

supercell.

83



Regarding the effect of longitudinal spin fluctuations (LSF), we first evaluate

its effect on the magnetic phase transition of iron and find that it pushes upwards

the magnetization curve of bcc iron as it excites the magnitude of atomic magnetic

moments to higher values. We then perform a thermodynamic integration for the

magnetic degrees of freedom along the Bain path and find that LSF favors bcc iron

compared to fcc iron both thermodynamically and kinetically though the overall

spin fluctuations (transverse plus longitudinal) tends to stabilize fcc iron.

We finally investigate with our methods the microscopic origin of the α (bcc)

- γ (fcc) - δ (bcc) phase transitions in iron. We obtain the vibrational free-energy

difference between bcc and fcc iron which changes its sign and slope with increas-

ing temperature, in good agreement with the deduction based on experiment that

the atomic vibrations tend to stabilize fcc iron at low temperature while at high

temperature they tend to stabilize bcc iron [100]. Regarding the electronic con-

tribution, it plays a dominant role at low-temperature range (T <900 K) where

it is much larger than the vibrational contribution and bcc iron is stabilized by

the large exchange-energy gain of the ferromagnetic ordering. In the high temper-

ature range ((T >900 K), it decreases to the same energy scale with that of the

vibrational contribution due to the loss of ferromagnetic ordering in bcc iron, and

the competition between the two contributions leads to α (bcc) - γ (fcc) - δ (bcc)

phase transitions in iron. In this temperature range, the electronic contribution

decreases from a positive to a negative value while the vibrational contribution

increases from a negative to a positive value, and their competition gives a α (bcc)

- γ (fcc) phase-transition temperature of around 1050 K and a γ (fcc) - δ (bcc)

phase-transition temperature of around 1600 K.
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Chapter 6

Machine learning for magnetic
materials

6.1 Introduction

Artificial intelligence (AI) has been referred to as the “fourth industrial revolution”[3].

As the core of AI, the application of machine learning has gone beyond industry

and drives a new way for researchers to extract physical laws or knowledge from

experiments or simulations [6]. In computational materials science, a well-known

problem is to construct the structure-energy relationship, i.e., to calculate the po-

tential energy for a given atomic or magnetic configuration. Machine-learning is

playing an increasing role in this problem as the trained machine-learning models

can save orders of magnitudes in computational cost of electronic-structure models

(ESM) such as DFT, tight-binding, or bond-order potentials, and make it possible

to perform large-scale simulations [12, 14, 52]. For non-magnetic materials, there

have already been many machine-learning models available, e.g., Gaussian ap-

proximation potentials [12], neural-network potentials [14, 52] and moment tensor

potentials [114]. However, for magnetic materials, the machine-learning models

are still in infancy. As a first step to develop machine-learning approaches for

magnetic materials, we propose in this work a neural-network potential for mag-

netic systems with homogeneous atomic environment. Furthermore, we employ

a perturbation approach to correct the error in the thermodynamic calculations

with the machine-learning model.
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6.2 Methodology

6.2.1 Neural-network potential

Our neural-network architecture is based upon the one proposed by Behler and

Parrinello [14], in which the total potential energy is represented as a sum of atomic

contributions Ei,

EMLM =
∑
i

Ei. (6.1)

This neural-network architecture makes use of the locality and translational in-

variance of the atomic interactions and is transferable or extensible with respect

to the size of the supercell. In practice, one may train the neural-network potential

with a small supercell and then apply it to perform large-scale simulations.

In our case, the input of the neural networks are spins instead of atomic po-

sitions, and the features should represent the symmetry of the spin subspace. If

there is no spin-orbit coupling, the spin subspace has global rotational invariance,

and this symmetry restriction can be fulfilled by the spin clusters [29]. We choose

low-order spin clusters as features, and high-order spin clusters are expected to

be generated through neural networks. We show schematically in Fig. 6.1 our

neural-network architecture for a system containing four spins. The input are spin

vectors si, which are first transformed into a set of spin clusters {Fi}. These spin

clusters describe the magnetic local environment and are the input for the neural

networks. The same neural network is employed at different sites, and its output

is the atomic contribution to the total energy.

6.2.2 Perturbation expansion

In this work, we aim at calculating finite-temperature thermodynamic properties

of magnetic materials. For a specific observable O, its thermal average may be

evaluated according to the energy surface of an electronic-structure model EESM,

〈OESM〉ESM =
1

ZESM

∫ ∏
i

dsi exp [−βEESM({si})]OESM({si}), (6.2)

which is accurate but numerically expensive to calculate due to the computational

cost of ESM. We use the subscript ”ESM” to denote the dependence on the po-

tential energy of the electronic-structure model (ESM). Note that the observable
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Figure 6.1: Neural-network architecture. Input layer: spin orientations of all
atoms. Output layer: total energy as a sum of atomic energies.

itself may depend on the potential energy, and the simplest example is the poten-

tial energy itself. We use 〈·〉ESM to denote the thermal average evaluated according

to the canonical distribution of the electronic-structure model,

ρESM({si}) =
EESM({si})
ZESM

. (6.3)

Likewise, the thermal average of this observable can also be evaluated according

to the energy surface of a machine-learning model (MLM),

〈OMLM〉MLM =
1

ZMLM

∫ ∏
i

dsi exp [−βEMLM({si})]OMLM({si}). (6.4)

which is numerically cheap but deviates from Eq. (6.2) because the machine-

learning model is fitted to specific samples of the electronic-structure model (ESM)

and cannot reproduce its whole energy surface. The deviation between Eq. (6.2)

and Eq. (6.4) might be corrected by a perturbation approach, as shown below.

Suppose that we have already trained a machine-learning model, EMLM, to

reproduce the energy surface of an electronic-structure model, we next perform a
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Taylor expansion around it. We first expand the partition function,

ZESM =

∫ ∏
i

dsi exp {−βEESM({si})}

=

∫ ∏
i

dsi exp {−β [EMLM({si}) + ∆E({si})]}

=

∫ ∏
i

dsi exp {−βEMLM({si})} ·
{

1 + [−β∆E({si})] +
1

2
[−β∆E({si})]2 + ...

}
,

(6.5)

where we introduced the energy difference ∆E({si}) = EESM({si})−EMLM({si}).
We denote −∆E

kBT
as χ, and for simplicity, we omit in the following formulas the

configurational-variable dependence ({si}) of E, ∆E, χ, and O. We then reformu-

late Eq. (6.5) as

ZESM =

∫ ∏
i

dsi exp (−βEMLM) ·
(

1 + χ+
1

2
χ2 + ...

)
=ZMLM(1 + 〈χ〉MLM +

1

2
〈χ2〉MLM + ...).

(6.6)

We next expand the numerator in Eq. 6.2,∫ ∏
i

dsi exp (−βEESM)OESM =∫ ∏
i

dsi exp [−βEMLM] ·
[
1 + χ+

1

2
χ2 + ...

]
·
[
OMLM +

∂OESM

∂EESM

∆E +
1

2

∂2OESM

∂E2
ESM

(∆E)2 + ...

]
.

(6.7)

We then insert Eq. 6.6 and Eq. 6.7 into Eq. 6.2 and employ the Taylor expansion

for 1
1+x

. If we only keep the zeroth-order term of χ, we obtain

〈OESM〉(0)
ESM = 〈OMLM〉MLM. (6.8)

The zeroth-order approximation is nothing but to directly take the thermal average

with respect to the machine-learning potential.

The first-order approximation gives

〈OESM〉(1)
ESM =〈OESM〉(0)

ESM +

〈
∂OESM

∂EESM

∆E

〉
MLM

+ 〈OMLM χ〉MLM − 〈OMLM〉MLM〈χ〉MLM

≡〈OESM〉(0)
ESM +

〈
∂OESM

∂EESM

∆E

〉
MLM

+ cov(OMLM, χ),

(6.9)
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where cov(OMLM, χ) is the covariance between OMLM and χ.

The second-order approximation gives

〈O〉(2)
ESM ≈〈OESM〉(1)

ESM +
1

2

〈
∂2OESM

∂E2
ESM

(∆E)2

〉
MLM

+

〈
∂OESM

∂EESM

∆Eχ

〉
MLM

− 〈∂OESM

∂EESM

∆E〉MLM〈χ〉MLM

+ 〈χ〉MLM (〈OMLM〉MLM〈χ〉MLM − 〈OMLM χ〉MLM)

+
1

2

(
〈OMLM χ2〉MLM − 〈OMLM〉MLM〈χ2〉MLM

)
≡〈OESM〉(1)

ESM +
1

2

〈
∂2OESM

∂E2
ESM

(∆E)2

〉
MLM

+ cov

(
∂OESM

∂EESM

∆E,χ

)
− 〈χ〉MLM cov(OMLM, χ) +

1

2
cov(OMLM, χ

2)

(6.10)

We may continue the expansion to include higher-order terms.

We take two examples to show how to apply this method. In the first example,

we aim at evaluating the thermal average of potential energy, and in the second

example, we apply this approach to calculate the free-energy difference between

MLM and ESM. We truncate the perturbation expansion to the second order in

both examples.

For the potential energy, the second-order approximation is simply given as

〈EESM〉(2)
ESM =〈EMLM〉MLM + 〈∆E〉MLM + cov(EMLM, χ)

+ cov(∆E,χ)− 〈χ〉MLMcov(EMLM, χ) +
1

2
cov(EMLM, χ

2).

≡〈EMLM〉MLM + 〈∆E〉MLM + cov(EMLM, χ) + ∆(2)
corr

(6.11)

We will check the convergence of each term in the next subsection.

We next apply this perturbation approach to thermodynamic integration in or-

der to evaluate the free-energy difference between MLM and ESM. The free energy

for the machine-learning potential FMLM is computationally cheap to calculate, and

the free-energy difference between the machine-learning model and the electronic-

structure model can be evaluated formally with thermodynamic integration,

FESM − FMLM =

∫ 1

0

dλ < EESM − EMLM >λ

≡
∫ 1

0

dλ < ∆E >λ,

(6.12)
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where the thermal average on the right-hand side is defined as,

< ∆E >λ=
1

Zλ

∫ ∏
i

dsi (EESM − EMLM) e−βEλ({si}). (6.13)

The subscript λ represents that the thermal average is evaluated with respect to

the energy surface of
Eλ =(1− λ)EMLM + λEESM

=EMLM + λ∆E,
(6.14)

and χ in Eq. (6.8), (6.9), and (6.10) should be interpreted as χ = −βλ∆E.

In this case, the observable is OESM = EESM − EMLM ≡ ∆E, and the corre-

sponding zeroth-order terms OMLM and 〈OESM〉(0)
λ vanish.

If we include the first-order correction, we obtain

< ∆E >λ≈< ∆E >MLM, (6.15)

and

FESM − FMLM ≈< ∆E >MLM . (6.16)

If we continue to include the second-order correction, we obtain

< ∆E >λ≈< ∆E >MLM −λβ var(∆E), (6.17)

and

FESM − FMLM ≈< ∆E >MLM −
1

2
β var(∆E). (6.18)

The results Eq. (6.15) - (6.18) can also be understood from a different point of

view. As the derivative of the free-energy difference, < ∆E >λ, is a function of the

switching parameter λ, we may perform a Taylor expansion of this quantity with

respect to λ. The zeroth-order term is simply < ∆E >MLM, and the first-order

derivative is
∂

∂λ
< ∆E >λ = −β

(
〈∆E2〉λ − 〈∆E〉2λ

)
≡ −βVar(∆E)λ.

(6.19)

We therefore recover Eq. (6.15) - (6.18) by Taylor expanding < ∆E >λ to the

first order.

We notice that the first-order approximation, Eq. (6.16), offers an upper bound

of the free-energy difference,

FESM − FMLM ≤< ∆E >MLM, (6.20)
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which is nothing but the Peierls-Feynman inequality [38, 104]. We may prove this

inequality easily with Eq. 6.19 which states that the derivative of the free-energy

difference, < ∆E >λ, is a decreasing function of λ. The role of the negative

second-order correction term in Eq. (6.18) is to reduce the upper bound (6.16) to

a value that is closer to the exact free-energy difference.

6.3 Result

We choose the magnetic bond-order potential of iron [95] as an example ESM

and the neural-network potential illustrated in Fig. 6.1 as an example MLM in

order to test the methodology proposed in the last subsection. We generate the

training data set with the magnetic bond-order potential of iron [95] for a 5×5×5

bcc supercell of iron containing 250 spins. Ideally, the samples in the training

data set should uniformly cover the whole energy landscape and should be not

correlated. In practice, we first run HMC with a classical Heisenberg model [89]

at the Curie temperature of iron (TC), 0.95 TC and 1.6 TC, and then randomly

choose 2800 samples from the HMC trajectories. The potential energies of the

samples are calculated with the magnetic bond-order potential of iron and form

the output values of the training data set. We choose pair-spin clusters si · sj and

three-spin clusters (si · sj) · (si · sj) as feature functions in our neural networks and

include pairwise spin clusters up to six-nearest neighbours and the first-nearest

neighbour three-spin cluster. As shown in 2.1, the activation function is required

to introduce non-linearity into the neural network. In practice, we choose the

exponential-linear-units [25] as the activation function. The loss function is chosen

as the mean-squared error of the training and the predicted potential energies and

we employ TensorFlow [4] to train our model. Our training procedure consists of

two steps. We first perform a linear regression to get a good initial guess of the

weights, which are then used as the initial parameters in the training of the neural

network.

After we train the neural-network potential, we calculate the errors between

the training and predicted potential energies of the samples in the training data

set and plot them in Fig. 6.2. The absolute values of all errors are smaller than

one meV per atom for almost all samples, and the root-mean-squared error is

0.25 meV/atom in the training data set. We first check the convergence of each

correction terms in the second-order approximation for the thermal average of
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Figure 6.2: Errors between the training and predicted potential energies of the
samples in the training data set.

potential energy, Eq. (6.11), and show the running averages in Fig. 6.3. In this

calculation, we first generate a HMC trajectory with the neural-network potential

at a given temperature, and then randomly choose one thousand uncorrelated

samples from the trajectory. The computational cost of this phase is negligible

due to the high efficiency of MLM. In the second phase, we calculate with the

magnetic bond-order potential the potential energies of the chosen samples in order

to evaluate the correction terms in Eq. (6.11), 〈∆E〉MLM, cov(EMLM, χ), and ∆
(2)
corr.

The second phase dominates the computational cost due to the low efficiency of

ESM. We see in Fig. 6.3 that the two first-order correction terms, 〈∆E〉MLM and

cov(EMLM, χ), have different rate of convergence and different contribution to the

correction. The convergence of 〈∆E〉MLM is much faster than that of cov(EMLM, χ)

whereas the contribution of the later is several times larger than that of the the

former. Both of them are converged within 1 meV/atom with 200 samples. The

second-order correction term ∆
(2)
corr is smaller than 0.5 meV/atom and negligible

compared to the first-order correction term.
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Figure 6.3: Running average of the correction terms in the second-order approxi-
mation for the thermal average of potential energy at 500 K, 900 K, 1200 K, and
1600 K. 〈∆E〉MLM and cov(EMLM, χ) are the two first-order correction terms. The

second-order correction terms are grouped into ∆
(2)
corr.

We then calculate the errors of the zeroth-order, first-order, and second-order

approximation of the thermal average of potential energy, 〈EESM〉ESM−〈EESM〉(i)ESM,

with i = 0, 1, 2, and show the results in Fig. 6.4. The exact value 〈EESM〉ESM is

calculated

with the method in Chapter 4 and shown in Fig. 4.8. The zeroth-order approxi-

mation has an error larger than 1 meV/atom at some temperatures. The inclusion

of the first-order correction reduces the error to be smaller than 1 meV/atom at

all temperatures. The second-order correction further reduces the error and plays

a less important role.

We next check the convergence of the two terms in the second-order approxi-

mation of the free-energy difference between ESM and MLM, Eq. (6.18), and plot

the running averages in Fig. 6.5. Both the first-order and the second-order cor-

rection terms are well converged within 100 samples. The second-order correction
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Figure 6.4: Error of thermal-average potential energies at different temperatures
for the zeroth-order, first-order, and second-order approximation.

is smaller than 0.5 meV for all temperatures, which indicates that the MLM is

well trained to reproduce the whole energy surface of the ESM and the first-order

approximation is sufficient to achieve an accuracy of less than one meV for the

estimation of the free-energy difference between ESM and MLM.
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Figure 6.5: Running average of the first-order and second-order correction terms
for the free-energy difference between MSM and ELM.

6.4 Conclusion

We develop a perturbation approach in order to accelerate ab-initio thermodynam-

ics by using machine learning, and a neural-network potential for spin interactions,

which is extensible with the size of the supercell and contains moderate number of

parameters. We employ a two-step procedure to train the neural network with the

linear regression in the first step to obtain a good initial guess of weights and a

standard neural-network training in the second step. Our test with the magnetic

bond-order potential shows that the fast converged first-order correction reduces

the error of the thermal average to be within one meV in the whole temperature

range.
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Chapter 7

Conclusion and outlook

7.1 Conclusion

We propose a tight-binding model for atomistic simulations of magnetic transi-

tion metals at finite temperature. In this model, the transverse and longitudinal

spin fluctuations are treated with the Hubbard-Stratonovich transformation and

the static approximation, the atomic vibrations are treated with the conventional

tight-binding, and these excitations are coupled via electronic structures. The

original magnetic tight binding [11, 33, 102] is shown to be the magnetic ground-

state solution of our model. Besides, we develop Hamiltonian Monte Carlo algo-

rithms in order to efficiently sample the spin space. Our tests with the classical

Heisenberg model and magnetic bond-order potential show that our algorithms

have reasonably small dynamical critical exponent and fast decorrelation of Monte

Carlo samples. In order to further accelerate the thermodynamic calculations of

magnetic materials, we develop a machine-learning based perturbation approach.

Good accuracy has been shown in our preliminary test with magnetic bond-order

potentials.

As a benchmark test of our methods, the calculated magnon-phonon coupling

in bcc iron is in excellent agreement with experimental data. We then apply our

methods to investigate the effect of longitudinal spin fluctuations (LSF) on struc-

tural phase transitions of iron and find that LSF favors bcc iron compared to fcc

iron both thermodynamically and kinetically though the overall spin fluctuations

(transverse plus longitudinal) tends to stabilize fcc iron. More interestingly, we

observe an interesting competition between the electronic (magnetic) and vibra-

tional contributions to the free-energy difference between bcc and fcc iron, and
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this leads to the unique temperature-induced α (bcc) - γ (fcc) - δ (bcc) phase

transitions in iron. The calculated vibrational free-energy difference between bcc

and fcc iron changes its sign at around 1500 K, which is in a good agreement with

the deduction based on experiments. The calculated electronic contribution plays

a dominant role at low-temperature range (T <900 K) and at high-temperature

range (T >900 K) decreases to the same energy scale with that of the vibrational

contribution due to the loss of ferromagnetic ordering in bcc iron. Their competi-

tion gives a α (bcc) - γ (fcc) phase-transition temperature of around 1050 K and

a γ (fcc) - δ (bcc) phase-transition temperature of around 1600 K in our result,

which are in a good agreement with experimental values.

7.2 Outlook

Our work offers a solid pillar towards large-scale simulations of magnetic transition

metals, and it is not the end of the story. We list several interesting issues that

may be explored in the future:

� In our model in chapter 3, we employed two key approximations: the tight-

binding approximation and the static approximation. In the former, the

hopping integral is parametrized as a function of distance and a pair-wise

term is added to the potential energy to account for all remaining contribu-

tions. In the latter, we neglect the quantum fluctuations described by the

imaginary time and simplify the partition function from a path integral to an

ordinary integral. As the modelling of magnetic transition metals is funda-

mentally a many-body problem, these approximations are not avoidable in

order to obtain a practical model for computer simulations. The question is:

can we know the error bar of these approximations? Which materials-science

problems are they applicable to?

� The algorithms we developed in chapter 4 are based on Hamiltonian Monte

Carlo and designed to sample the spin space. We may extend these algo-

rithms to sample both the spin space and atomic space, and may further

include the volume degrees of freedom to deal with the grand-canonical en-

semble. Actually, Hamiltonian Monte Carlo has gained great progress and
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become a widely used approach in the community of Bayesian analysis [17–

19, 47, 58, 98, 133], while it attracts the interest of the community of com-

putational materials science only recently [106].

� In chapter 6, we proposed a preliminary machine-learning model for magnetic

interactions, and treated the global rotational symmetry with spin clusters.

The next step would be to find an approach to treat the permutation sym-

metry, and a further step would be to combine it with the machine-learning

models for non-magnetic materials to get a full description of magnetic ma-

terials.
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