DEGENERATE
AFFINE FLAG VARIETIES

AND

QUIVER GRASSMANNIANS

Inaugural-Dissertation

zur
Erlangung des Doktorgrades
der
Fakultat fiir Mathematik
der

Ruhr-Universitat Bochum

vorgelegt von
Alexander Piitz

aus Koln

Gutachter:

Prof. Dr. Markus Reineke
Prof. Dr. Evgeny Feigin
Jun.-Prof. Dr. Deniz Kus

Datum der Disputation: 22. Juli 2019






Acknowledgements

I would like to thank all the people who supported me during the last months
and helped me to write this thesis. First and foremost I want to express my
gratitude to my advisor Markus Reineke. He answered all my questions and the
discussions with him were very inspiring and lead my research in a fruitful direction.
His faith in my abilities and my approach to work on the topic helped me a lot in
times when I was not satisfied about the progress of my research.

I also want to thank Leon Barth, Maria Bertozzi, Magdalena Boos, Arif Dén-
mez, Hans Franzen, Volker Genz, Wassilij Gnedin, Fabian Korthauer, Deniz Kus
and Andreas Libert from the Algebra Group in Bochum for providing me with
the perfect working environment to create this thesis and many nice evenings in
Bochum. Especially I want to thank Maria for providing me with Italian coffee
and the relaxed atmosphere in our office.

I am indebted to Andrew Hubery for telling me about some of his results which
simplified one part of this thesis a lot. Furthermore I want to thank Evgeny Feigin
for pointing out some inaccuracies in an earlier version of this thesis. Moreover I
want to thank Martina Lanini for many stimulating discussions concerning the last
chapter of my thesis and future research perspectives. I am deeply grateful for her
hospitality during my stay in Rome where I wrote this chapter of my thesis.

Finally I want to thank my family and friends who supported me all the time.
Especially I would like to thank my parents. Last but by no means least, I can not
thank Mery enough for all her support. Thank you very much for always being
there for me and making my life great.






Contents

Mofroductionl . . . . . o v v 1
Motivationl . . . . . . . . . 1
[pummary of Main Results| . . . . ..................... .. 1
Methods and Structure . . . . . . . . . .. 6
OQutlookl . . . . . . e 8

[Chapter 1. Basic facts about Quiver Grassmannians| . . . . .. .. ... .. 9
I1.1. Quiver Representations|. . . . . . .. .. ... ... ... 9
I1.2. Universal Quiver Grassmannians| . . . . . . . . . . . . . . ... ... 10
I1.3.  Quotient Construction of Quiver Grassmannians| . . . . .. ... .. 11
|I1.4. Bound Quiver Representations and the Path Algebral. . . . . . . .. 12
|IL.5.  Stratification of Quiver Grassmannians|. . . . . . . . . ... ... .. 14

[Chapter 2. Framed Moduli Interpretation| . . . . .. ... ... .. .. ... 17
2.1. Quotient Construction and Framed Moduli Spaces| . . . . .. .. .. 18
[2.2.  One Point Extensions and Deframing|. . . . . . ... ... ... ... 24
2.3. ee Group Action and Smoot uotient Map|. . . .. . .. ... .. 29
|2.4. Non-emptiness of the Framed Moduli Space| . . . . . . ... ... .. 31
|2.5. Orbits and Strata of Quiver Representations|. . . . . . . .. ... .. 32

[Chapter 3. The Equioriented Cycle| . . . . . . . .. ... o .. 37
[3.1. Orbits and Singularities in the Variety of Quiver Representations| . . 40
3.2. orphisms of Quiver Representations and Words| . . . . . . . .. .. 43
13.3.  Irreducible Components of the Quiver Grassmannian for N =w-n| . 48
13.4. Geometric Properties of the Quiver Grassmannian| . . . . . ... .. 50
13.5.  Image in the Variety of Quiver Representations| . . . . . . . ... .. 51

[Chapter 4. Torus Action on the Quiver Grassmannian| . . . .. .. ... .. 55
4.1. Property (S)and (C). . . . . . . . . 55
4.2, About C*-Actions|. . . . . . . . . . ... ... 56
4.3.  C*-Action on Quiver Grassmannians| . . . . . . . . . . . . . ... .. 57
4.4, Cellular Decomposition| . . . .. .. ... .. ... ... ... .... 58
4.5, Coeflicient Quivers| . . . . . . . . .. .. oL 63
4.6.  Euler Characteristics and Poincaré Polynomials| . . . . . .. ... .. 64
4.7. Application to Stratification| . . . . . . ... o000 68

[Chapter 5. The Affine Grassmannian and the Loop Quiver|{. . . . . . . . .. 71
P.1. The Loop Quiver| . . . . . . . .. .. ... o 71
0.2, The Affine Grassmannianl . . . . . . . . . . . .. L. 76
[5.3.  Finite Approximations by Quiver Grassmannians for the Loop|. . . . 77
[5.4. Linear Degenerations| . . . . . . . . . . o v v v i i 81




vi CONTENTS

p.0.  Ind-Variety Structure|. . . . . . ... ..o oo 83
[5.6.  'The Action of the Automorphism Groups in the Limit| . . . . . . .. 92
[5.7. Geometric Properties]|. . . . . . . . . . . ... 96
9.8. Cellular Decomposition and Poincaré Series| . . . . . ... ... ... 99
p.9.  Partitions and Cells in the Quiver Grassmannians|. . . . . . . .. .. 104
[Chapter 6. The Degenerate Aftine Flag Variety|] . . . . . .. ... ... ... 109
6.1.  Finite Approximation by Quiver Grassmannians| . . . . .. ... .. 110
16.2.  Irreducible Components and Grand Motzkin Paths| . . . . . . . . .. 114
[6.3.  Cellular Decomposition| . . ... ... ... ... ........... 115
[6.4. ne Dellac Configurations| . . . . . . . . .. ... ... ... .... 118
16.5.  Geometric Properties|. . . . . .. .. ... Lo o 132
6.6. The Non-Degenerate Affine Flag Variety| . . . . . . .. ... ... .. 132
6.7.  Linear Degenerations of Affine Flag Varieties|] . . . . . . . ... ... 135
[6.8.  Ind-Variety Structure|. . . . . . ... ... o000 140
[6.9. Partial Degenerations of Affine Dellac Configurations] . . . . . . . . . 144
16.10.  Poincaré Polynomials of the Approximations| . . . . . . .. ... .. 146
6.11. The Action of the Automorphism Groups in the Limit| . . . .. .. 150
[Chapter 7. Equivariant Cohomology and the Moment Graph| . . . . . ... 155
[r.1. The Euler-Poincaré Graph of a Quiver Grassmannian|. . . . . . . .. 156
[7.2." Torus Actions on Quiver Grassmannians for the Loop| . . .. . . .. 158

[Appendix A. Examples: Quiver Grassmannians for the Equioriented Cycle|. 163

A1, Strata outside the Closure of the Stratum of XI . . . . . . . ... .. 164
|A.2. Irreducible Components of different Dimension| . . . . . . . ... .. 166
|A.3. Intersection of Irreducible Components| . . . . .. ... .. ... .. 167
1A.4. Orbits and Strata of different Codimensionl . . . . . . . .. ... .. 169
[Appendix B.  Computer Programs|. . . . . . . .. .. ... ... .. ..... 171
IB.1. " For Approximations of Partial-Degenerate Affine Flag Varieties|. . . 171
IB.2. For Approximations ot Partial-Degenerate Afine Grassmannians| . . 176
[Appendix C. Euler Characteristics and Poincaré Polynomials) . . . . . . .. 181
.1. For Approximations ot Partial-Degenerate ne Flag Varieties| . . . 181
|C.2.  For Approximations of Partial-Degenerate Affine Grassmannians| . . 193




Introduction

Motivation

Quiver Grassmannians where first used by W. Crawley-Boevey and A. Schofield
[23], [68]. They are linked to cluster algebras as introduced by S. Fomin and
A. Zelevinsky [32]. The cluster variables admit a description based on the Euler
characteristic of quiver Grassmannians as shown by P. Caldero and F. Chapoton
[14]. By now there are may publications concerning quiver Grassmannians, their
Euler characteristic and Poincaré polynomials. But most of the research restricts
to quiver Grassmannians for Dynkin quivers. In this work we generalise some con-
structions by P. Caldero, S. Fedotov and M. Reineke [15], 27, [62], 63] to quiver
Grassmannians for bounded quiver representations which are equivalent to modules
over finite dimensional algebras.

On the one hand this thesis is based on the identification of the degenerate flag
variety with a quiver Grassmannian for the equioriented quiver of type A as shown
by G. Cerulli Irelli, E. Feigin and M. Reineke in [20]. On the other hand it is based
on the construction using quiver Grassmannians for the loop quiver to give finite
approximations of the degenerate affine Grassmannian which was introduced by
E. Feigin, M. Finkelberg and M. Reineke in [30]. We generalise their constructions
to describe finite approximations of linear degenerate affine flag varieties using
quiver Grassmannians for the equioriented cycle. The linear degenerations of the
affine flag variety are defined similar to the construction for the classical flag variety
by G. Cerulli Irelli, X. Fang, E. Feigin, G. Fourier and M. Reineke [19].

In some special case quiver Grassmannians for the equioriented cycle were
studied by N. Haupt [42], [41]. The variety of representations of the cycle was
studied by G. Kempken [48]. J. Sauter studied the quiver flag variety for the
equioriented cycle [65]. The Ringel-Hall algebra of the cyclic quiver was studied
by A. Hubery [44]. Based on the work by G. Kempken and A. Hubery we derive
statements about the geometry of quiver Grassmannians for the equioriented cycle
and obtain a generalisation of a result by N. Haupt.

Summary of Main Results

The Grassmannian Gry(n) is the set of all k-dimensional subspaces of the vec-
torspace C™. On this variety the group of invertible matrices GL,, := GL,(C) acts
transitively. Let P be the stabiliser of any point in the Grassmannian. Then the
Grassmannian is isomorphic to the quotient GL,,/P. This quotient construction
has been generalised to a great extend for various types of groups for example
algebraic groups or Kac-Moody groups and subgroups like (maximal) parabolic
and Borel or (maximal) parahoric and Iwahori. The resulting quotients are called

1



2 INTRODUCTION

Grassmannians or (full/partial) flag varieties depending on the type of the sub-
group.

The main goal of this thesis is the study of the degenerate affine flag variety of
type gl,, via approximations by quiver Grassmannians for the equioriented cycle.
Analogous to the classical setting the affine flag variety is defined as the quotient

Fi(gl,) := GL,/B,

where C/}in is the affine Kac-Moody group to the affine Kac-Moody algebra QA[n and
En is the standard Iwahori subgroup of C/}in [63] Chapter XIII]. It is not necessary
to know the precise definitions of these groups to understand the main part of this
thesis. Just bear in mind the definition of the full flag variety as the quotient of
the invertible matrices by the invertible upper triangular matrices. This variety
admits an alternative description as the set of all chains of vector spaces where the
dimension of the spaces increases by one for each inclusion.

The first step in the direction of approximations of the affine flag variety by
quiver Grassmannians is an alternative description of the affine flag variety which
is similar to the set of vector space chains in the classical setting. The affine flag
variety is infinite dimensional such that we have to replace the finite dimensional
vector space by some infinite dimensional objects. There are two approaches to
this problem.

The more common construction is via lattice chains [3], 36, [37]. Let C((¢)) be
the field of Laurent series and CI[t]] C C((¢)) be the ring of formal power series,
define A := CJ[t]]™. A lattice £ C C((¢))™ is a A-submodule such that there exists
an integer N € Zx>(o with tVNA C £ C t7NA and the quotient t*NA/L is of finite
rank over C. A is called the standard lattice.

A (full periodic) lattice chain is a tuple of lattices (£;)7=, such that

LoC L C--C Ly 1 Ct 1Ly

and each quotient £;11/L; is a C-module of rank one. The affine flag variety of
type gl,, is in bijection with the set of full lattice chains in C((¢))™. It is possible
to define approximations and degenerations of the affine flag variety in this setting
but we want to take a different path where the analogy to the classical setting is
more visible.

The second construction is based on Sato Grassmannians [30], [45]. For ¢ € Z
let Vp be the vectorspace

Vi = span(ve, ve—1, Ve—2, . ..)

which is a subspace of the infinite dimensional C-vectorspace V' with basis vectors
v; for i € Z. The Sato Grassmannian for m € Z is defined as

SGr,, := {UC V ¢ Thereexistsa £ <ms.t. V, CU and dimU/Vy; =m — ¢ }

The vector spaces in the chains for the classical flag variety are elements of the
Grassmannians Grg(n). Analogous we obtain a description of the affine flag va-
riety as a set of cyclic chains where the vector spaces are elements of the Sato
Grassmannians SGry.
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PrOPOSITION 1 ([30), 45]). The affine flag variety Fi (gAIn) as subset in the
product of Sato Grassmannians is described as

Fi(gl,) = { Ui\, € HSGrk : UOCUlc...CUn1Can0}

where s, : V. — V maps v; to v;yn,.

It is shown in [29] that the degenerate flag variety admits a description via
vector space chains where the spaces are related by projections instead of inclusions.
This construction is used to define linear degenerations of the flag variety and
degenerate affine Grassmannians in [19] and [30]. Here we want to follow the same
approach and degenerate the affine flag variety by replacing the inclusion relations
for the chains of vector spaces with projections.

DEFINITION 1. The degenerate affine flag variety FI1¢ (gT[n) is defined as

.Fla(a[n) = { Uk € H SGry, : pTHlUi C Ul'+1, prnUn,1 C SnUo}

where pr, : V' — V is the projection of v; to zero.

Later this degeneration is also refered to as the Feigin-degenerate affine flag
variety since its definition is analogous to the description of the degenerate classical
flag variety studied by E. Feigin in [28], [29]. Similar to the construction in [30] the
linear degenerate affine flag varieties are defined by writing linear maps f; instead of
the projections pr;. Most of the constructions below work in the setting of certain
linear degenerations of the affine flag variety.

Let @ be a finite quiver with a finite set of vertices (g and a finite set of arrows
Q1 between the vertices. A Q-representation R is a pair of tuples R = (V, M) with
a tuple of vector spaces over the vertices V = (V;)icq, and a tuple of maps between
the vector spaces along the arrows of the underlying quiver M = (My)aeq, -

A subrepresentation S C R is described by a tuple of vector subspaces U; C V;
which is compatible with the maps between the vector spaces of the surrounding
representation R, i.e. for all arrows o : i — j of Q we have M, (U;) C U;. The
entries of the dimension vector dim R € Z®° of a quiver representation R are given
by the dimension of the vector spaces V; over the vertices of the quiver.

DEFINITION 2. The quiver Grassmannian Gr& (M) is the set of all subrepre-
sentations of the Q-representation M with dimension vector e € Z%0.

M. Reineke showed that every projective variety is a quiver Grassmannian
[64]. Hence it makes sense to restrict the class of quiver Grassmannians which are
considered. In this thesis we focus on quiver Grassmannians for the equioriented
cycle:
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The set of vertices and arrows of A,, are in bijection with the set Z,, := Z/nZ.
These varieties yield finite dimensional approximations of the affine flag va-
riety of type gl,, and its linear degenerations. For a positive integer w the finite
approximation of the Feigin-degenerate affine flag variety is

]:ZZ (é\[n) = {(Ul)?:o € Fl* (é\[n) : Vfwn - UO - an}
THEOREM 1 (Theorem. Let w € N be given, take the quiver representation

M, = ( (Vi = Can)iGZn’ (Mai =810 prwn)iezn )

and the dimension vector e, := (e; := wn);ez,. Then the finite dimensional
approximation of the Feigin-degenerate affine flag variety is isomorphic to the quiver
Grassmannian corresponding to M, and e, i.e.

Fie(al,) = G (M.).
This construction allows us to obtain statements about the geometric properties

of the approximations from the corresponding quiver Grassmannians.

THEOREM 2 (Theorem . For w € N, the approximation FI2 (gA[n) of the
Feigin-degenerate affine flag variety satisfies:
(1) Tt is a projective variety of dimension wn?.
(2) It admits a cellular decomposition.
(3)  There is a bijection between the cells and affine Dellac configurations to
the parameter w.

The irreducible components of the finite dimensional approximation of the
Feigin-degenerate affine flag variety satisfy:

(4) They are equidimensional.
(5)  They have rational singularities and are normal, Cohen-Macaulay.
(6) There is a bijection between the irreducible components and
grand Motzkin paths of length n.
Grand Motzkin paths of length n are lattice paths from (0,0) to (n,0) with
steps (1,1), (1,0) and (1, —1). Accordingly the number of irreducible components is
independent of the parameter w and the same in every approximation. For classical

Motzkin paths we have the additional requirement that the path is not allowed to
cross the z-axis.
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The approximations of the affine flag variety are compatible with its ind-variety
structure in the sense that the local structure around the points is preserved along
the embedding into a bigger approximation. Hence the ind-topology and the Zariski
topology of the degenerate affine flag coincide.

Ordinary Dellac configurations are in bijection with the cells in the degenerate
full flag variety of type A. Affine Dellac configurations are a generalisation of
these configurations to match the structure of the cells in the degenerate affine flag
variety. Classically the configurations consist of marked and unmarked boxes in
a rectangle of boxes. For the affine case we need some additional parameters to
distinguish between the cells in the different approximations.

DEFINITION 3. The set of affine Dellac configurations to the parameter w is
denoted by DC',(w). A configuration D € DC,,(w) consists of a rectangle of 2n x n
boxes with 2n entries k; € {0,1,2,...,w} such that:

(1) There is one number in each row

(2)  There are two numbers in each column
2

(3)  XLi(pj +nry) =wn.

Here p; is the number of steps from the separator to the entry going left and
rj :=max{k; — 1,0}. If the entry is zero then the position is zero as well. The left
hand side and the right hand side of the rectangle are identified to obtain boxes on
a cylinder. The separator is a staircase around the cylinder. In the planar picture
we draw it from the lower left corner to the upper right corner of the rectangle of
boxes.

EXAMPLE 1. For n =4 and w = 3 the subsequent configuration

pji T‘jl

[N}
BN O N R NN ==
=N O = O N ==

Y= 16 8
is contained in the set 56’4(3) since 16 +4 -8 = 48 = 3 - 4%
There exists a function
h: l/)an(w) — Z
D +— h(D)

such that h(D) is equal to the dimension of the corresponding cell in the approxi-
mation of the affine flag variety.
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THEOREM 3 (Theorem [6.59). For w € N, the Poincaré polynomial of FI2 (é\[n)

is given by
R _ h(D)
Pria (at,) (a) >, P

DEDC (w)

For the linear degenerations of the affine flag variety as mentioned above we
introduce an order depending on the co-ranks of the maps f; to distinguish the
degenerations between the affine flag variety and the Feigin degeneration from the
other degenerations. For these intermediate degenerations we can define partial
degenerate affine Dellac configurations to parametrise their cells (Theorem [6.55).
Moreover there exist dimension functions for these configurations such that we
obtain analogous descriptions of the Poincaré polynomials of the partial degenerate
affine flag varieties (Theorem [6.61]).

Methods and Structure

For the proofs of Theorem [I] and Theorem [2] it is necessary to understand the
quiver Grassmannians for the oriented cycle and their geometric properties. In
Chapter [I] we recall some basic results, constructions and definitions concerning
quiver representations and quiver Grassmannians in general. We introduce the
two different realisations of quiver Grassmannians which are both used at various
points in this thesis. They arise from the different possibilities to describe a sub-
representation. We introduce the path algebra of a quiver and representations of
quivers with relations. For an admissible set of relations there is an equivalence of
bounded quiver representations and modules over finite dimensional algebras.

The link between representations of quivers and modules over finite dimen-
sional algebras is the foundation of the realisation of quiver Grassmannians as
framed module spaces which is proven in Chapter [2 This interpretation of quiver
Grassmannians allows us to translate properties between the variety of quiver rep-
resentations and the quiver Grassmannian. For the proof it is necessary that we
restrict us to representations which consist only of injective summands and satisfy
relations from an admissible set. In some cases it is easier to study the orbits
in the first variety instead of strata in the quiver Grassmannian. The proof that
this construction preserves the geometry is based on deframing of extended quiver
representations and stability conditions for quiver representations.

The equioriented cycle and the class of quiver Grassmannians which we want
to examine is introduced Chapter [B] Based on word combinatorics we prove a
dimension formula for the space of morphisms between nilpotent indecomposable
representations of the cycle. This is applied to parametrise the irreducible com-
ponents and prove the geometric properties of the quiver Grassmannians for the
cycle as claimed in Theorem [2] of this introduction. The proof of the geometric
properties utilises the construction of the quiver Grassmannian as framed moduli
space. Hence we can lift them from the variety of quiver representations which was
studied by G. Kempken [48]. In Section we summarise some results from her
thesis which was only published in German. This is one main ingredient for the
proof of Theorem [2]

In Chapter [f] we introduce a C*-action on the quiver Grassmannians for the
equioriented cycle and recall some facts about C*-actions and decompositions. This
action provides us a combinatoric tool to compute the Euler characteristic of these
quiver Grassmannians which was introduced by G. Cerulli Irelli in [16]. It induces
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a cellular decomposition which allows us to compute the Poincaré polynomials of
the quiver Grassmannians. For the proof of the decomposition it is crucial to find
the right grading for the action on the indecomposable summands of the quiver
representation which generalises to the action on the quiver Grassmannian.

The theory from the first chapters is applied in Chapter [f] to identify approx-
imations for partial degenerations of the affine Grassmannian with quiver Grass-
mannians for the loop quiver. This generalises the construction by E. Feigin,
M. Finkelberg and M. Reineke [30]. It is the foundation for the study of the
partial degenerations of the affine flag. The loop is a special case of the cycle such
that we can apply the theory from the previous chapters concerning the cellular
decomposition and the geometric properties. We compute different parametrisa-
tions of the cells and give formulas for the Poincaré polynomials for the partial
degenerations and their finite approximations.

The main part of this thesis is Chapter [6] where we identify finite approxima-
tions of partial degenerate affine flag varieties with quiver Grassmannians for the
equioriented cycle. Based on the previous chapters we generalise the construction
for the affine Grassmannian. This allows us to describe cellular decompositions
via successor closed subquivers in the coefficient quiver of the quiver representa-
tion which corresponds to the approximation. These subquivers turn out to be
parametrised by affine Dellac configurations. From the configurations it is possi-
ble to recover the dimension of the corresponding cell inducing a formula for the
Poincaré polynomial of the approximations. Moreover the notion of affine Dellac
configurations is compatible with the partial degenerations of the affine flag vari-
ety and the formula for the Poincaré polynomial generalises to this setting. The
parametrisation of the irreducible components of the quiver Grassmannians for
the cycle as computed in Chapter [3] allows to identify the irreducible components
of the degenerate affine flag variety and its approximations with grand Motzkin
paths. Together with the geometric properties which lift from the variety of quiver
representations this finishes the proof of Theorem

In Chapter [7] we recall the definition of a moment graph and its application to
compute the equivariant intersection comomology of varieties with a suitable torus
action. We introduce a combinatoric approach to compute the moment graph for
quiver Grassmannians which is based on the C*-action and the induced cellular
decomposition of the quiver Grassmannian. Some parts of this Chapter are still
conjectural.

The class of quiver Grassmannians studied in this thesis has some rather strong
restrictions. In Appendix [A] we give some examples to point out the various prob-
lems and difficulties which turn up if one leaves this class of quiver Grassmannians
or tries to relax the length condition for the nilpotent indecomposable representa-
tions. Moreover we give some counter examples for properties which could still not
be satisfied for the class of studied quiver Grassmannians.

The parametrisation of the cells via successor closed subquivers in the coeffi-
cient quiver of the representation describing the quiver Grassmannian as introduced
in Chapter [4 allows determine the Poincaré polynomials computationally. The im-
plementations of these programs are presented in Appendix [B] and some results of
the computations are given in Appendix [C]
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Outlook

For the study of the approximations of the partial degenerate affine Grass-
mannians new methods are required because the indecomposable summands of
the corresponding quiver representation do not have all the same length. In the
framework of this thesis it was not possible to prove an explicit formula for their
dimension and irreducible components or examine their geometric properties. The
same is true for the partial degenerations of the affine flag variety.

The explicit computation of the equivariant intersection comomology of a
quiver Grassmannian for the equioriented cycle or other quivers is still an open
problem. It would be interesting to see in which generality the combinatoric con-
struction of the moment graph is possible and if this induces some general descrip-
tion of the equivariant intersection comomology for quiver Grassmannians.



CHAPTER 1

Basic facts about Quiver Grassmannians

In this chapter we give a formal introduction to quiver Grassmannians and
recall some results which we want to apply in later Chapters. Let k be an alge-
braically closed field of characteristic zero. For the study of the affine flag variety
we will even restrict to the complex numbers. This introduction follows the article
by G. Cerulli Irelli [I7] and the reference therein. More detail and background
information are provided in the book by I. Assem, D. Simson and A. Skowronski
[2], the book by R. Schiffler [66], the lecture notes by O. Schiffmann [67] and the
book by A. Kirillov Jr. [50].

1.1. Quiver Representations

A (finite) quiver Q = (Qo, @1, s,t) is an ordered quadruple where:

1) Qo denotes a finite set of vertices,

2) (@1 is a finite set of edges,

3) The functions s,t: Q1 — Qo provide an orientation of the edges.

(
(
(

For an oriented edge a we write a: sq — 14, i.e. the function s sends an edge
to its source and the function ¢ sends it to its target.
A (finite dimensional) Q-representation is a pair of tuples

M = ( (Vi)ieQ(ﬂ (Ma)ate ) where :

(1) V;is a finite dimensional vector space over the field k for all i € Q,
(2) M, :V,, — V;_ is alinear map for all « € Q.

A Q-morphism v : M — N of two Q-representations is a collection of linear
maps

(% Vi W ) ‘
1€Qo
such that the following diagrams are commutative
Vs

Veoe ™ Ws,

w o s

Vie—— Wi,

U,

ie. ), o My = Ny o, holds for every arrow a € Q1. With Homg (M, N) we
denote the set of all Q-morphisms from M to N. We call an injective (-morphism
t: U — M embedding.
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The dimension vector of a Q)-representation M is defined as

dim M = (dim Vi )ier'

In the introduction the quiver Grassmannian Gr@ (M) is defined as the set

of all subrepresentations of the Q-representation M with dimension vector e € Z®o.

There are two different interpretations of the notion subrepresentation. The first

one as mentioned in the introduction parametrises a subrepresentation as tuple of

subspaces (U;)icq, in the vector spaces over the vertices of the quiver, i.e U; C M;

for all i € Qy. Additionally these tuples have to be compatible with maps between
the vectorspaces of M, i.e.

Ma (Usu) g Uta

for all oriented edges o € Q1. In the above notation for Q)-representations this type
of subrepresentation is written as

U:= ( (Ui)i6Q07 (Mo Uscx)ate )

and the embedding ¢ is given by the identity map.

In general a subrepresentation of M is a tuple (U, ¢) consisting of a Q-
representation U and a embedding ¢ : U — M such that the diagrams above
commute and all component mas ¢; are injective. These different interpretations
lead to the two different realisations of the quiver Grassmannian recalled below.

1.2. Universal Quiver Grassmannians

In this section we construct quiver Grassmannians based on the subspace
parametrisation of subrepresentations. Let rep(Q) be the category of finite di-
mensional @Q-representations. For a fixed dimension vector d € Zgg we denote by
repy(Q) the category of Q-representations with dimension vector d.

The objects of the category repy(Q) are parametrised by the variety

Ra(Q) := @5 Homy (k% k=)
€@

which is called the variety of quiver representations for the dimension vector d.
This means that for a fixed dimension vector every Q-representation is determined
by the maps along the oriented edges of the quiver up to base change of the vector
spaces over the vertices. The group

GLq = [] GLa, (k)
1€Q0

acts on the points M in this variety via base change, i.e.

g.M = (thMagS_al) .
a€Q:

The dimension of an orbit Oy, := GLq.M is given as
dim Oy = dim GLg — dim Endg (M) = > d? — dim Homg (M, M)
1€Qo

and the isomorphism classes of quiver representations and the GLg-orbits coincide.
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Now let e and d be two dimension vectors in Z@° such that 0 < e; < d; holds
for all i € Qg. We define the product of usual Grassmannians as

Gre(d H Gr,, ( kd
1€Q0

The universal quiver Grassmannian is defined as
Gro(d) == {(N, M) € Gre(d) x Ra(Q) : Ma(N,,) C N, for all a € Ql}.

From the universal quiver Grassmannian we have two projections to the different
components of its elements

GrQ(d)

e

Pe / \ Pd
Gre (d) Ra (Q)

Finally, for a quiver @, a dimension vector e and a representation M € Rq(Q) we
obtain the corresponding quiver Grassmannian as

Gr(M) = pg'(M).
1.3. Quotient Construction of Quiver Grassmannians

In this section we construct quiver Grassmannians arising from the parametri-
sation of subrepresentations of a representation M as pair of a quiver representation
N and an embedding ¢ : N < M. For two dimension vectors e,d € Zgg define
the variety of k-morphisms -

Homy, (e d EB Homk ke, k% )
1€Q0
and use triples
(N, M) = (Vo) ey (#0) e (Ma) e, ) € Re(@Q) x Homy (e,d) x Ra(Q)
to define the universal Q-morphism variety
Homg (e,d) = {(N,ap,M) tpr, No = My, for all a e Ql}.

Since we are interested in subrepresentations we have to restrict it to injective
@Q-morphisms

Hom% (e,d) = {(N,%M) € Homg (e7d) ‘ w; 1 k& — k% is inj. for all ¢ € QO}.

Similar as for the universal quiver Grassmannian we have projections from the
variety of universal @-morphisms to its components and analogous for the variety
of injective (Q-morphisms

Homg, (e, d) HomQ e,d)

Pre /0 N\ Pl pre / \prd

Re(Q) Ra(Q) Re(Q) Ra(Q)

The universal quiver Grassmannian is the quotient of the variety of universal in-
jective Q-morphisms by the group acting on the first component

CGr(d) = Homg) (e, d)/GLe.
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For a fixed representation M we define
~—1
Homg) (e, M) = prg" (M)

and obtain an isomorphic description of the quiver Grassmannian as the following
quotient

CGr@ (M) = Hom%(e, M)/GLe.
This isomorphism is proven in Proposition

1.4. Bound Quiver Representations and the Path Algebra

In the previous sections everything works in the setting of finite dimensional
representations of a finite quiver. For the class of quiver Grassmannians for the
equioriented cycle which is studied in this thesis we can restrict this generality
to derive stronger statements about their geometry. Namely we want to work in
the setting of finite dimensional modules over finite dimensional algebras. In this
section we describe how this is related to representations of a finite quiver.

A path p in a quiver @ is a sequence of arrows ai,...,qa, € Q1 such that

ta, = Sa;y, holds for all i € [r — 1] := {1,2,...,r — 1} and we write

p = (ilag ... arlj)
where i = s,, and j = t,,. Using the same notation as for edges, the source of
a path is defined as s, := so, and ¢, := t,, denotes its target. Let p be a path
with notation as above and M € Re(Q) be a quiver representation. The map M,
is defined as
M, =M, oM, ,o0---oM,,.
For two paths p = (il ... a.|j) and p' = (k|a] ... al|f) the concatenation
pp’ = (ilag ... apaf .. al]l)
is defined if j = k.

DEFINITION 1.1. The path algebra k@ of a quiver @) is the k-algebra with
basis consisting of all paths in @ and multiplication of two paths p and p’ defined
as

P
. [pp if t, = s
prp= { 0  otherwise.

We call two paths p and p’ in @ parallel if s, = s, and ¢, = t,,. For parallel
paths of length greater than one, a relation p is a linear combination

p = Z/\pp
p

where )\, € k for all paths in the sum. The pair (Q, R) consisting of a quiver @
together with a set of relations R defines a bound quiver.
A representation of (Q, R) is a representation M = ((V;)icqy, (Ma)acq,) of Q

such that
M, =" A\M, =0
P
holds for all relations p = Zp App in R. We call M bound quiver represen-
tation. For a set of relations R let I :=< R > be the ideal in the path algebra
k@ which is generated by the relations in R. If a representation M satisfies the
relations in R it also satisfies all relations in the ideal I.
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From now on we will write I for an ideal generated by some relations R and
call the pair (@Q,I) a bound quiver as well. For an ideal I with relations p, we
define the variety of bound quiver representations as

Ra(Q,I) :={M € Ra(Q) : M, =0 for all p € I}.

All the constructions of the previous sections can be done in the same way for bound
quiver representations. A subrepresentation of a representation M € Rq(Q,I)
satisfies the same relations as M. For this reason it is no restriction to assume the
boundedness of the candidates for the subrepresentations in the universal quiver
Grassmannian and the quotient construction of the quiver Grassmannian.

The arrow ideal R¢ of the path algebra A := k@ is the two-sided ideal gener-
ated by all arrows in (). It admits the vector space decomposition

Rq = Pk
>1
where k@ is the vector subspace of k@) with paths of length ¢ as basis. The vector
space decomposition of A runs over £ > 0. For the k-th power of Ry we have the

decomposition

s = @xa,

>k
and its vector space basis consists of paths of length greater or equal to k.
A two-sided ideal I of A is called admissible ideal if there exists an integer

k > 2 such that

R§, C1C Rp.
For an admissible I the pair (Q,I) defines a bound quiver and the quotient
k@/I is called bound quiver algebra (or bounded path algebra). The subse-
quent theorem connects the study of modules over finite dimensional algebras and

bounded representations of finite quivers. It is proven in the book by R. Schiffler
[66, Theorem 5.4].

THEOREM 1.2. Let A =kQ/I be a bound quiver algebra of a finite connected
quiver Q. Then there is an equivalence of categories between the category A-mod of
finitely generated right A-modules and the category rep, (Q, I) of finite dimensional
bound quiver representations.

REMARK. Every basic finite dimensional k-algebra is isomorphic to a bound
quiver algebra for a finite connected quiver ) and some admissible ideal I.

We call a quiver representation indecomposable if it can not be written
as the direct sum of two proper subrepresentations. A quiver representation is
called simple if all maps along the arrows are zero, one vector space over the
vertices is isomorphic to k and all other vector spaces are zero. Simple quiver
representations are indecomposable. Every finite dimensional quiver representation
has a decomposition into indecomposable representations which is unique up to the
order of the summands [50, Theorem 1.11]. Hence it is sufficient to understand
the indecomposable representations of a quiver. It is shown by P. Gabriel in [35]
that a quiver admits a finite number of indecomposable representations if and only
if it is a Dynkin quiver. This are quivers where the underlying graph (Qo, Q1) is a
simply-laced Dynkin diagram [66], p. 83].

Moreover for Dynkin quivers the path algebra is already finite. Certain quiver
Grassmannians for Dynkin quivers admit nice geometric properties like cellular
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decompositions into attracting sets of torus fixed points, irreducibility and nor-
mality as proven by G. Cerulli Irelli, E. Feigin and M. Reineke in [20]. But the
cycle is unfortunately not a Dynkin quiver such that we can not apply their results
for the study of the affine flag variety. Hence we have to develop methods which
work in a bigger generality. It is the setting of finite dimensional modules over
finite dimensional algebras which we choose. In Chapter [2] we will examine quiver
Grassmannians for quiver representations which are the direct sum of injective
representations of a bound quiver (Q, ).

The indecomposable projective representation P; of the bound quiver (Q, I)
is given by the pair of tuples

_ (3) i
Pi=((P) ca0 (P cor )
(

where P; " has a basis of equivalence classes p of non-constant paths from 4 to j in
Q@ and for an arrow « : j — £ in ) the map

P® . pY - pY
is defined on the basis consisting of paths by the composition of paths from ¢ to j
with the arrow «, i.e.
P (p) = ap.
The indecomposable injective representation I; of the bound quiver (Q, I)
is given by the pair of tuples

— (@) i
(

where [ ji) has a basis of equivalence classes p of non-constant paths from j to i in
Q and for an arrow « : j — £ in ) the map

i) . (@) (4)
191V - 1,

is defined on the basis consisting of paths by deleting the arrow a from paths going
from j to 1, i.e.
— ,
(i),:{p’ if p=ap
I (p ) 0 otherwise.

Using projective and injective we can interpret the path algebra and its dual

as
A= @Pi and A* = @Ij.
1€Qo JE€Qo
In Chapter 2| we will examine quiver Grassmannians for quiver representations
which are the direct sum of injective representations of a bound quiver (Q,I). It
turns out that for the oriented cycle this class of quiver Grassmannians is similar
to the class of quiver Grassmannians which are studied in [20].

1.5. Stratification of Quiver Grassmannians

For the variety of quiver representations its orbit structure has been studied
by many authors, see for example [1, [8), [9, [48]. The analogous structure for
quiver Grassmannians is their stratification. In Chapter 2] we study the connection
between the stratification of quiver Grassmannians and the orbit structure of the
variety of quiver representations.
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The stratum Sy of a subrepresentation N € Gr& (M) is the set of all subrep-
resentations U € Grg2 (M) isomorphic to N, namely

Sy ={V eGr(M):V = N}.

We can use the quotient construction of the quiver Grassmannian to give a more
formal definition. Restricting the projection to the first component pr, to the
pre-image of the representation M we obtain the following map

Po : HomOQ(e, M) — Re(Q)
and can redefine the stratum of N as
Sy 2 py ! (GLe.N) /GLe.

For a Q-representation with finitely many isomorphism classes of subrepresenta-
tions the quiver Grassmannian admits a finite stratification

Gr&(M) =[] sw.

This is for example true for representations of Dynkin quivers. Moreover we have
the subsequent formula for the dimensions of the strata. For Dynkin quivers this
statement is proven by G. Cerulli Irelli, E. Feigin and M. Reineke in the article
[20, Lemma 2.4].

LEMMA 1.3. Each Sy is an irreducible locally closed subset of Gr<(M) of
dimension
dim Homg (N, M) — dim Endg(N).

With the same methods it is possible to prove this statement in the setting of
modules over finite dimensional algebras. That is the generality which is required to
apply it to the representations of the equioriented cycle as introduced in Chapter [3]






CHAPTER 2

Framed Moduli Interpretation

In this chapter we introduce one of the main tools used in this thesis for the
study of quiver Grassmannians. It allows us to translate geometric properties
from the variety of quiver representations to the quiver Grassmannian for a certain
class of quiver representations M and dimension vectors e. In our setting the
variety of quiver representations has been studied intensively by G. Kempken in
[48] whereas about the corresponding quiver Grassmannians there is not a lot know.
Some special cases of quiver Grassmannians for the loop quiver were studied by
N. Haupt in [41]. The method to lift geometric properties from the variety of quiver
representations to the quiver Grassmannian was already known to K. Bongartz [10]
before it was proven by M. Reineke for Dynkin quivers in [62], [63]. Some parts of
the proof were generalised to the setting of finite dimensional algebras by S. Fedotov
in [27]. In the remainder of this chapter we generalise the statement and its proof
to the setting of finite dimensional algebras.

The extended representation variety is defined as

Rea(Q,I) := Re(Q,I) x Homg(e,d)

DEFINITION 2.1. A point (M, f) of Re a(Q,I) is called stable if there is no
non-zero subrepresentation U of M which is contained in Kerf C M. The set of
all stable points of Re a(Q, 1) is denoted by Rg 4(@Q, I).

THEOREM 2.2. Let Q be a finite connected quiver and I an admissible ideal
of the path algebra kQ. The indecomposable injective representation of the bound
quiver (Q, I) ending at vertex j € Qo is denoted by I;. Then

Gré(J) = M:q(Q,1)

J=P ek
JEQo
and Mg 4(Q, I) is the geometric quotient of Rg 4(Q,I) by the group GLe.

where

Deviating from the previous chapter d is a tuple with multiplicities of injective
bounded quiver representations and not the dimension vector of the quiver repre-
sentation J. The proof of this theorem is given in Section [2.I] This theorem was
fist proven by M. Reineke for Dynkin quivers in [63] Proposition 3.9]. S. Fedotov
used the same methods to derive the statement in the generality of modules over
finite dimensional algebras in [27] Theorem 3.5].

The subsequent theorem establishes a bijection between orbits in the variety of
quiver representations and strata in the corresponding quiver Grassmannian which
preserves geometric properties. It allows us to lift the properties of the variety of
quiver representation studied by G. Kempken to the quiver Grassmannians which

17
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are used for the finite approximations of the affine flag variety and its degenerations
in Chapter @ In the case of Dynkin quivers it is proven by M. Reineke in [63]
Theorem 6.4].

Define Réd)(Q, I) as the image of the projection
pr:RE4(Q, 1) = Re(Q, I).

THEOREM 2.3. There is a bijection between Autg(J)-stable subvarieties of

Mg 4(Q, I) and GLe-stable subvarieties ofRéd)(Q7 I) such that inclusions, closures,
irreducibility and types of singularities are preserved.

We postpone the proof to Section [2.5| until we established the framed module
interpretation of the quiver Grassmannians.

2.1. Quotient Construction and Framed Moduli Spaces

In this section we prove Theorem [2.2] following the approach by M. Reineke
[63]. For the proof we use the quotient construction of quiver Grassmannians by
P. Caldero and M. Reineke [15] Lemma 2]. They proved it in the setting of quivers
without oriented cycles. Below we generalise their proof to the setting of arbitrary
finite quivers. Based on the quotient construction of the quiver Grassmannian the
idea of the proof for Theorem is to define a map

®: RS 4(Q, 1) — Homp(e, J)

which is bijective and descends to an isomorphism of the GLe-quotients. In the
first part of this section we prove the quotient construction and introduce a map
whose properties are examined in the second part of the section.

DEFINITION 2.4. Let G be an algebraic group and X a G-variety. A geometric
quotient of X by G is a pair (Y,7) with a morphism 7 : X — Y satisfying the
properties:

(1) 7 is surjective and its fibres are exactly the G-orbits in X.

(2) A subset U CY is open if and only if #=1(U) C X is open.

(3)  The sheaves Oy and (m.Ox)¢ are equal on Y.

By (1) and (2) we can identify Y with the orbit space X/G and the variety
structure of Y is uniquely determined by (3). For an introduction to actions of alge-
braic groups we refer to the lecture notes by M. Brion [13]. Quiver Grassmannians
for finite quivers admit a description as certain geometric quotients.

PrOPOSITION 2.5. Let M be a representation of the finite quiver () and e a
dimension vector with 0 < e < dim M. The quiver Grassmannian

Grd (M)
isomorphic to the geometric quotient
Homg) (e, M)/GLe.
PRrROOF. Define the map
@ : Homg) (e, M) — Gr& (M)

(N,¥) = ($(N), Mlyy) = ((wi(ke")%er’ (Ma|w<zv>)ae@1)
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where NV; = k% since N € Re(Q). The map v is a @Q-morphism and hence satisfies
Wi, No = Mytps,, for all o € Q.
This implies that
Ma\w(N) (¢sa (]kesa)) =1, (Na(ke%)) for all @ € Q1.

Since N is a Q-representation it satisfies
Ny (k®e) C k% for all @ € @4
which implies
Mo lyny (Vs (k=) €ty (k=) for all @ € Q4

because v is injective and linear. Hence the tuple of vector spaces ¥(N) describes
a subrepresentation of M such that the pair (/(IN), M|y(n)) is indeed included in

the quiver Grassmannian Gr& (M).
Let

Vi= <(Vi)ier’ (MQM‘Z)QGQI)

be an element of the quiver Grassmannian Gr& (M) which is written in terms of the
interpretation of the quiver Grassmannian via the universal Grassmannian. The
inclusions V; C k% for all i € Qg can be described by injective linear maps

fi k% — k% such that V; = f; (k).
Define the pair (N, f) as

(N, f) = ((Na)ate’ (fi)ier)

—1
Ny = ftQ|VtG o M, Vi © (fsa Vsa) .

Then N € Re(Q) holds because f is injective and linear and M € Re(Q). If
M satisfies bounding relations from an admissible ideal I the same relations are
satisfied by N. The pair (N, f) we defined above is included in the space of injective
@-morphisms Hom%(e, M) by construction. Its image under the map ® is V' which
proves that ® is surjective. Now let (N,v), (U, ) € Hom%(e,M) be given such
that ®(N,v) = ®(U, ). For the first component of the images this implies the
equalities

where

'(/Ji (]ke’) = @; (ke’“) for all 7 € Qo.
Here v; and ¢; are injective linear maps with the same image such that we can
define

-1
9i = (w1|1m1/)1) °© SOi|1mgai and hl = (902'|Im<p1;> °© ¢i|lmwi € Endk(km)

and obtain h; = gi_1 and g; € GL, (k) = Auty (]kei). Hence the tuple of the g;’s is
included in the group GL, and we obtain

O(N, ) = @(9.U, g-).

So (N, ) and (U, ¢) have to live in the same GLe-orbit if they have the same image
under the map ®.

-1
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Conversely we compute ®(g.U, g.p) for (U, p) € Hom%(e,M) and g € GLe.
Using the formula for the action of GLe defined above we obtain

®(g.U,g.¢) = (g-so(gU),M\g.go(g.U))
= (i 1)) gy (Malpun (00 acr)
= ((2:)) cqs Maly_grieen)) acar)
= (i) segys Malg, o)) g, ) = Ui )

which proves that ® is constant on GLe-orbits. Let V e Gr?(M) and N €
Hom% (e, M) constructed from V as above. Then

® (V) = GLe.N for all V € Gro(M)

which implies the isomorphism. O

Let 7 be the quotient map
m:kQ — kQ/I
p—=p

where p denotes the set of all elements of the path algebra which are equivalent to
p, i.e.
D= {q € k@ : there exists an r € I such that ¢ = p + r}.

The bounded path algebra k@/I is finite dimensional since the ideal I is admissible.
The condition that I is admissible implies that there exists an integer m such that
all paths consisting of more than m arrows are included in the ideal I. Let B(Q, I)
denote a k-basis of kQ/I. For i,j € Qo let P; ;(Q,I) be the set of paths from ¢ to
j in the bounded path algebra, i.e.

P i(Q,1) = {pekQ:sp:i,tp:j andp%f}.

Here the condition p ¢ I ensures that for p,q € P; ;(Q,I) with p # ¢ we obtain
P # q. The sets P, ;(Q, I) are finite for all 4, j € Qo since the ideal I is admissible
and hence contains all paths which are longer than a fixed integer m. In the sets
P, ;(Q, I) we also have the constant path €; over the vertex ¢ € Qy. The sum of all
constant paths is the identity element of the path algebra k@.

PROPOSITION 2.6. A k-basis B(Q,I) of the bounded path algebra kQ/I is
given by

B(Q.I):==n(P@Q,D):= |J W(Pl,j(Q,I)).
1,5€Qo0
PROOF. The map 7 : P(Q,I) — B(Q,I) is injective by the definition of the
sets P; j(Q,I). For any p € kQ/I we can choose a representative p which is not
included in I. Hence p has to be included in one of the sets P; ;(Q,I) and it is
clear that the set B(Q,I) generates the bounded path algebra as k-vector space.
The generating system B(Q,I) is minimal since the image p of the path p ¢ I
can not be written in terms of the generators m(P(Q, I)\ {p}). This holds for any
p € P; ;(Q,I) by the definition of these sets. O
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Using the sets of paths in the bounded path algebra we can define a map
from the variety of framed quiver representations to the variety of Q-morphisms as
follows.

DEFINITION 2.7. For an admissible ideal I of the finite quiver @ and a injective
bounded @Q-representation J we define the map

® : Rea(Q,I) — Homg(e, J)
(M. f) = (M, o, p))

where n := dim J and the components of ¢y ) are given as

@Ei\z’f) == @ @ fioM, k% — k" = @ @ ki

J€Qo peP; ;(Q,1) J€Qo peP; ;(Q,1)
for all i € Q.

Here M, is the concatenation of the maps M, for the edges a which build the
path p as defined in Section and f; € Homy (k% k). The representation .J is
injective. Hence we obtain

Z Z djznzz(dim,])l
J€Qo pEP; ;(Q,I)
and ¢; € Homg (k% , k™) for all i € Q.
In order to show that ® is well defined we have to check that

(toz) — (Sa)
Piarg) © Ma = Ja 0 P(ap )

holds for all pairs (M, f) € Rea(Q,I) and all @ € ;. Form the definition of

@Ej\‘/‘j) ) We obtain that the map on the left is given by

(EB &P fjoMp> o M,.

J€EQo pEP,, ;(Q.I)
On the right hand side we have

Jy 0 (@ @ fjoMp>.
Q.I)

JEQo pePy, 5 (
The representation J is the sum of injective representations I, i.e.
J=EP I ok,
J€Qo

The vector space Ii(j) over the vertex ¢ € g belonging to the injective bounded

representation I; has a basis labelled by equivalence classes of paths from j to ¢
in @ and the map I,gf ) is the projection sending all basis vectors to zero whose
indexing path is not going through «. The other basis elements are send to those
whose indexing path is obtained by removing the edge .. Accordingly J,, is acting
in the same way and the right hand side is equal to

@ EB fj o M, o M,.
JEQ0 pEP:, ;(Q,1)

This proves ¢(us,5) € Homg(M, J) and that the map @ is well defined.
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LEMMA 2.8. The subspace Ker oy ¢y is the mazimal subrepresentation of M
contained in Ker f.

PRrOOF. First we have to show that Ker ¢y, r) is a subrepresentation of M.
Set U; := Ker ; then
Ma(Usa) < Utu

holds for all o € @Qp since Kery(y s is a morphism of @ representation and
commutes with the maps M,. It remains to show that U is maximal in Ker f.
Let N C Ker f a subrepresentation of M. Hence it satisfies

My(Ns,) C N, forall a € Q1
and this is also true for concatenations of arrows, i.e.
My,(Ns,) € Ny, for all p e P(Q,I).
Since N is contained in Ker f it also satisfies f;(N;) = 0 which implies
fjoM,(N;)=0forall pe P, ;(Q,I).

By the definition of ¢z, 7y this yields ¢;(IN;) = 0 for all i € Qo and hence we obtain
N C Kergy ). Accordingly the subrepresentation Kerys ) is the maximal
subrepresentation of M which is contained in Ker f. O

COROLLARY 2.9. The map ¢, 5) : M — J is injective if and only if the pair
(M, f) is stable.

PROOF. By definition of stability for the pair (M, f), the kernel Ker f contains
no proper subrepresentation of M. The kernel Ker ¢, ) € M is a subrepresenta-
tion of M and maximal among the subrepresentations of M which are contained
in Ker f C M as shown in the lemma above. Since the only subrepresentation of
M contained in Ker f is the zero representation, the kernel of ¢y sy is zero and
the map is injective.

If o5y + M — J is injective, the kernel of ¢y f) is zero. By the above
lemma, this is the maximal subrepresentation of M contained in Ker f. Hence
Ker f contains only the zero representation and the pair (M, f) is stable. (I

This implies that the image of Re.a (@, I) under the map ® lives inside the set

Hom% (e, J) which contains the injective @-morphisms to J. Now we have to show
that the image contains all injective @-morphisms.

ProrosITION 2.10. The restricted map
®: RS 4(Q, 1) — Homd(e, J)
is a bijection.

PROOF. The set of paths P; ;(Q,I) contains the empty path ¢; because the
ideal I is admissible and can not contain empty paths. By convention the map M.,
is equal to the identity map. We can split the maps ¢; into components indexed
by j € Qo and p € P; ;(Q,I). The component of ¢; indexed by i and ¢; equals the
map f;. Hence we can recover the maps f; form ; by applying the projection to
; which only keeps the component indexed by ¢ and ¢;. We want to denote this
projection by pr,, : k™ — k.

The first component of the map ® is the identity map on the variety of bound
quiver representations. Accordingly two pairs (M, f) and (IV, g) can not have the
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same image under ® if M # N. By the study of the second component of ¢ as
done above, it is clear that ¢ s 5y = @(n,g) is only possible if f; = g; for all i € Q.

Otherwise the components of @EE\Z P and gog\), p which are indexed by ¢ and €; can

not be equal since they are given by f; and g;. This shows that the map & is
injective.

Now let (U, 1) be an element of Hom%(e7 J). We have to find a pair (N, f) €
Rg 4(Q, 1) which is mapped to (U,%). Since ® is acting as identity on the first
component we can choose N := U and define f; := pr_ o;. Then f; is injective
and Ker f C N only contains the zero subrepresentation since 1); is injective. Thus
we have found a stable pair (N, f) satisfying that ®(N, f) = (U, ) which proves
that ® is surjective. Here the equality ¢y ) = 1 follows since both maps are
morphisms of Q-representations and hence commute with maps N, and J, for all
a € @1 and thus these commutativity relations also hold for paths. This allows to
deduce the equality of the maps ¢y r) and 9 from the equalities of the components
indexed by 7 and ¢; which are equal by definition together with the structure of the
map P. (Il

PrROPOSITION 2.11. The restricted map
®: RS 4(Q, 1) — Homd(e, J)
is GLe-equivariant.
PROOF. The action of the group GLe on Re(Q, I) extends to the action
GLe x R (@, 1) = RE4(Q, 1)
(9: (M, £)) = (9-M,g.f)
where
9-M = (91, Magy)) yeo, and g = (fig; Dieqo-
On the variety of injective @Q-morphisms to J the group GLe acts via
GL, X HomOQ(e7 J) — HomOQ(e7 J)
(9: (N, 9)) = (9-N, g-)
where
9N = (9. Nadi ) yeg, and g0 = (g iea-
To prove the GLe-equivariance of ® we have to show
9-2(M, f) = ®(g.(M, f)).

The first component of ®(M, f) is given by M and GL, acts on the first component
of Hom% (e,J) and Rg 4(Q,I) in the same way. Hence the first component of the
map P is GLe-equivariant. For the second component we have to check

9-L(m.f) = Pg.(M.f):
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By the definition of ® and the GLe-action this translates to the subsequent equa-
tions for all ¢ € Qg

(i) -1 _ (%)
P9 = Plg.Mg.f)

(B D nem)i' =B @ fig'olom),

JEQo peP; ;(Q,I) JEQo pEP; ;(Q,I)
(& @ nom)a =D D ho' oo
JEQo peP; ;(Q,I) JEQo peP; ;(Q,I)

= EB @ fjoMpgi_l-

JEQo peP; ;(Q,I)

Here we got from the second line on the right hand side to the third line since a
path p € P, ;(Q,I) can be written as

D=y, 00y, 0y,
where ¢ = s), = sq; and j =t, =t,, for some integer k. This means that M, is
given as
M, :Majk 0--+0Mg,, oMg, .
Hence for (g.M), we obtain

1

—1 — -1 —1
(g'M);D = gik+1MOzjk 9iy, © Yix Majk,lgik_l 00 giaMaj2 9i, © gizMah 9,

-1
= gik+1Majk 0---0 ]\4(%_2 o ]\Lljlgi1
-1
= 9iMyg;
where we write i, = Say, and g1 = 299 for simplicity and used j = ix41 and
i1 = 1 in the last step. O

Now we have collected all properties required to prove the isomorphism.

PROOF OF THEOREM 2.2 We have a GL-equivariant isomorphism
®: R 4(Q,1) — Homg)(e, J)
which hence descends to an isomorphism of the geometric GLe-quotients
2a(Q.1) == R2.4(Q.1)/GLq = Homd (e, J) /GLo = Gr2 ().

Here the existence of the geometric quotient of the left hand side is shown by
H. Nakajima in [60]. O

2.2. One Point Extensions and Deframing

In this section, we prove that the quotient map from the variety of extended
quiver representations to the framed module space is smooth. This is required for
the proof of Theorem [2.3] For this purpose we rewrite the framed moduli space in
terms of ordinary quiver moduli. Therefore we have to add one additional point
and certain additional arrows to the original quiver. This technique was called
deframing by W. Crawley-Boevey in [24]. In this section we follow the approach
of M. Reineke as presented in the articles [62}, [63].

As before, let @ be a finite quiver and I C k@ an admissible ideal of bounding
relations. A linear function

0:Z% -7
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is called stability for (). The dimension of Q-representation is given by the function
dim : rep, (Q,I) — Z9° — 7

U d:i=dimU~ Y d.
1€Qo
Combining both functions the slope og of a @-representation is obtained by the
function

oo :rep(Q, 1) — Q
O(dimU)
dimU
If we are working with a fixed stability © we drop the index and just write o.

U+r—

DEFINITION 2.12. A Q-representation V' € rep, (@, I) is called
a) o-stable if o(U) < o(V) for all proper subrepresentations U of V and
b) o-semistable if o(U) < o(V) for all proper subrepresentations U of V.

For a dimension vector d, the variety of o-stable QQ-representations is given by
RI7(Q,1) :={V € Ra(Q, ) : V is stable}
and the variety of o-semistable Q-representations is given by
R3*%(Q,I) :={V € Ra(Q,I) : V is semistable}.

Some properties of the variety of o-(semi-)stable Q-representations are col-
lected in the subsequent theorem. The proofs can be found in the article by A. King
[49] and this formulation is due to M. Reineke [63] Theorem 3.2]. In the article
by M. Reineke the statement is restricted to the case of finite quivers without ori-
ented cycles. The original article by A. King is written in the generality of finite
dimensional algebras, i.e. finite quivers with an admissible set of relations. This is
the generality we need for our application.

THEOREM 2.13. The o-semistable locus R3™°*(Q, I) is an open subset of the
variety of bound quiver representations Ra(Q, I) and the o-stable locus R3™*(Q,I)
is an open subset of RG™°*(Q, I). There exists an algebraic quotient MG **(Q, I) of
R3*(Q, 1) by the group GLq and a geometric quotient M3~ *(Q, 1) of R *(Q, I)
by the group GLgq. The variety M3 *(Q, 1) embeds as an open subset into the
projective variety M3~ **(Q, I).

In the version of this theorem by M. Reineke there is also a dimension formula
for the variety M3 **(Q, 1) and the quotient M3 *(Q,I) is a smooth variety in
his setting. These two statements are not true if we allow oriented cycles in our
quiver @. In this setting the path algebra k@ is not finite any more and we have
to introduce bounding relations I in order to apply A. Kings theory for modules
over finite dimensional algebras.

DEFINITION 2.14. For a finite quiver ) and a dimension vector d € 790 define
the one point extension Q(d). The set of vertices is given by adding one extra
vertex

Q(d)o := Qo U {o0}
and from every point i of @ we add d; many framing arrows to the extra vertex,
i.e.

O(d); == Q, U {az,k  Sep, =i and o, , = oo for all k € [di]}.
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We denote the set of extending arrows which are added to the arrows of the
original quiver by E(Q,d). For a dimension vector e € Z%° we define its extension

& € Z9Wo py

é;:=¢; for all i € Qg and €4, := 1.
These one point extensions can be used to identify the framed quiver representa-
tions with classical representations of an extended quiver. Let I be an admissible
ideal for the path algebra k@Q). Then I is also admissible for the path algebra kQ(d)
of the extended quiver Q(d).

PROPOSITION 2.15. There is an isomorphism between the variety of represen-
tations of the extended quiver and the variety of extended quiver representations,
i.e.

Ré (Q(d)a I) = Re,d(Qv I)

PROOF. The variety of quiver representations for the extended quiver is defined

as

Re(Q(d)) == €P Homy (k= k).
aeQ(d)
The set of arrows of the extended quiver consists of the arrows of the original quiver

and the extending arrows. So we can rewrite the variety of quiver representations
as

Re(Q(d)) = @5 Homy (k% k%)@ @ Homy (ke k)
aeQr a€EB(Q,d)
The dimension vector of the extended quiver is defined as
é;:=e¢;forall i € Qp and é, :=1
and the extending arrows all head towards the vertex oo which yields

Ré(@(d)) = @ Homy, (k%= , k) & @ Homy (k% k)

aEQq a€E(Q,d)

=Re(Q & P P Homy (k* k)

1€Qo kE€[d;]

~ Re(Q) ® P Homy (k*, k%)
1€Q0

= Re,d(Q)'

The relations in the ideal I only effect the first part of the direct sum decomposition
of the variety of quiver representations of the extended quiver such that every step
also works for the varieties of bounded quiver representations. ([

In order to carry this isomorphism to the geometric quotients we have to iden-
tify the group actions on these varieties.

PROPOSITION 2.16. On the variety of extended quiver representations
Ré (Q(d)a I)
the orbits of the groups PGLg := GLg/k* and GL, coincide.
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PROOF. The group GLg acts on the variety of representations of the extended
quiver via

GLs x Rs(Q(d),I) — Ra(Q(d), I)
(g,M) = g.M
where
9-M = (9t Magy.!) weay, -

The action of the group GLe on the variety of extended quiver representations was
defined as

GLG X RZ,d(Q7 I) - RZ,d(Q? I)
(9, (N, ) = (9-N,g.f)
where
9-N = (91.Na95 ) ueo, and  g.f = (fig; ieqo-
By the isomorphism between both varieties, each M in the variety of representa-

tions of the extended quiver corresponds to a pair (N, f) in the variety of extended
quiver representations. This isomorphism is given by the subsequent identifications

M, = N, for a € Qg and M, = f; if s, =i and t, = oco.
This induces an action of the group GLe on the variety
Ré (Q(d)a I)
where g € GL, acts via
o M(,Lgs’1 if t, = 00
9-M:= { gi.Mag; ! otherwise.

The above isomorphism is GLe-equivariant with respect to this action.
Every element of the group GLg can be written as a pair (g, \) where g € GL¢
and A € k* because

GLs:= [ GLé (k)= JJ GLe, (k) x GLe (k) = GLe x GLy (k) = GLe x k™.
i€Q(d)o i€Qo
The group PGLg is obtained by the relation
(9,\) ~ (h,v) :& There exists a p € k* s.t. ((1gi)icqo, #A) = ((hi)icqo, V)

on the elements of the group GLg. With this definition of the group PGLg, its
action on the variety

Ré (Q(d)a [)
is independent of the choice of the representative, i.e.
—1 -1, -1
(19)-M = ((nge )Mo (195.) ") neo@y, = (19t Mags 1) seoay,
—1 -1 -1
= (MM Gt Mags, )QEQ(d)l = (gto(MDégSa )aeQ(d)l
=g.M.
Hence in every class we can take (h,1) with h € GLe as representative and the
action of (h,1) coincides with the action of h as element of the group GLe with

its action on the variety of representations of the extended quiver as introduced
above. O
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COROLLARY 2.17. The isomorphism
Re(Q(d). I) 2 Re.a(Q.1).

is GLe-equivariant and the GLg-orbits and PGLg-orbits in the variety of represen-
tations of the extended quiver coincide.

With the same methods as in the proof of the above proposition it is checked
that the additional k*-action on the extending vertex has no effect on the orbits.
Given a A € k* acting on the vector space over the extending vertex rescaling the
matrices acting on the spaces over the points of the original quiver by the same
parameter leads to the same point in the orbit. Moreover the GLe-equivariant
isomorphism of these varieties is compatible with the notions of stability on both
sides such that it descends to an isomorphism of the quotients.

ProrosITION 2.18. For the stability
O: repk(Q(d),I) — Z
U —(dimU)-
there is an isomorphism
MZo™*(Q(d), 1) = Mg 4(Q, 1).

PROOF. In the previous proposition we have show that the variety of quiver
representations of the extended quiver and the variety of framed quiver representa-
tions of the original quiver are isomorphic. Hence we have to relate the notions of
stability on both sides and show that the isomorphism descends to an isomorphism
of the quotients.

Let V € Rs (Q(d),] be a bounded representation of the extended quiver
Q(d). By Proposition we can view V as a pair (N, f) € Rea(Q,I) where
N € Re(Q,I) and all f; : k® — k% are linear maps. With the stability © defined
in this proposition the representation V has slope

1
dimN +1
since ex, = 1. Let U be a non-zero proper subrepresentation of V. For the slope
of U we distinguish two different cases.

First we compute the slope for subrepresentations U with dimU, = 1. In
terms of framed representations U can be written as a pair (M, h) and the slope
computes as

oe(V) =

1 1
_ < — —
dim M +1 dim N +1
since U is a proper subrepresentation of V.
Now we consider subrepresentations U with dim U,, = 0 and obtain their slope
as

oo(U) = ae(V)

_* — 0 > _

dim M + 1 dimN +1
These computation shows that for this definition of stability the og-stable locus
and the og-semistable locus coincide. A representation V' can only be stable if
there exist no proper subrepresentations U of V such that the dimension of the

subrepresentations over the extending vertex is zero. Hence U is unstable if there
is a U C V such that dim U, = 0.

oo(U) = — oo(V).
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Again we write U = (M, h) and V = (N, f). Since dimU,, = 0 the framing
maps h; have to send everything to zero. Let ¢ : M — N be an embedding. Since
U is a subrepresentation of V' the maps f; have to send the image (M) C N
to zero. Hence (M) is contained in the kernels of the maps f; and the pair
(N, f) € Re.a(Q, I) is not stable.

Now let M be a proper subrepresentation of N which is included in the kernel
of the maps f;. Then U := (M, f|a) is a subrepresentation of V- = (N, f) in
Rs (Q(d),[). Since f|y = 0 we have dimU,, = 0 and the representation V is
not og-stable. Hence the notions of stability on the two isomorphic varieties are
equivalent and we obtain

RZ°7*(Q(d), ) =R (Q(d). I) = R 4(Q.1).
The insomorphism is GLe-equivariant and the GLg-orbits and GLe-orbits in the

variety RZ®™° (Q(d),] ) coincide. Hence the isomorphism of the varieties above
descends to an isomorphism of the geometric quotients

MZe~**(Q(d). I) = RZ®~**(Q(d), I) /GLs = RZ>™**(Q(d), 1) /GLe
= Rga(Q,1)/GLe = Mg 4(Q, I).

2.3. Free Group Action and Smooth Quotient Map

In this section we prove that the action of the group GLe on the variety of
extended quiver representations is free and that the quotient map to the framed
moduli space is smooth. The smoothness of the quotient map is required in order
to apply the theorem by K. Bongartz concerning the preservation of geometric
properties. For our purpose it is sufficient to work in the setting of algebraic
varieties over the field k. The statement we use to prove the smoothness of the
quotient map works for algebraic schemes and we recall it in the full generality of
its original formulation. Let G be an algebraic group and X an algebraic scheme
over k and

p:GxX = X;(g,z)— g
an action of G on X. The statement we want to apply needs the subsequent notion
of freeness as introduced in the book by D. Mumford [59] Definition 0.8.iv)].

DEFINITION 2.19. The action p is called free if
UV:GxX—>XxX
(9,2) = (g.2, )

is a closed immersion.

This is more restrictive than the notion of set theoretical freeness where the
map ¥ is only required to be injective.

DEFINITION 2.20. Let (Y, ) be a geometric quotient of X by G. Assume that
G is flat and of finite type over S = Spec(k). If the quotient and the group action
satisfy the properties:

(1) = is a flat morphism of finite type and

(2) U is an isomorphism of G x X and X xy X
we call X a principal fibre bundle over Y, with group G [59] Definition 0.10].
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To show that the quotient map from the variety of framed quiver representa-
tions to the framed moduli space is smooth, we use the subsequent proposition by
D. Mumford [59], Proposition 0.9].

PRrOPOSITION 2.21. Let G be an algebraic group and X be an algebraic variety
over k If the action p of G on X is free and (Y, ) is a geometric quotient of X by
G, then X is a principal fibre bundle over Y with group G.

If we can show that the action of GLe on RZ 4(Q,I) is free in the sense of
D. Mumford this proposition implies that the quotient map to the framed moduli
space is a principal fibre bundle. This property is necessary to prove Theorem [2.3
The proof of the subsequent lemma follows the proof in the article by M. Reineke
[62] Lemma 6.5].

LEMMA 2.22. The action of PGLe on RZ™55(Q, I) is free.

PROOF. For the stability o as introduced in the previous section we have seen
that the stable and semistable locus coincide. Thus every representation M &
RZ™%* (Q,I ) is already stable and the stabiliser of the group GL. acting on the
representation M is isomorphic to k*. Accordingly the stabiliser is trivial for the
action of the group PGLe := GLe/k* and the map

U : PGLe % Rg*SS(Q,I) — Rg*“(Q,I) x RZ™*¢ (Q,I)
(9, M) — (g.M, M)
is injective. This proves that the action is set theoretically free.

It remains to show that the image of U is closed and that ¥ and ¥~! are
continuous. In the first component of the map ¥ we have a tuple of matrix mul-
tiplications and the second component is an identity. The inverse of a matrix and
the multiplication of matrices admit polynomial descriptions for the entries of the

resulting matrices. Hence both components of ¥ are continuous. Now we show
that Im ¥ is closed. For the rest of the proof we use the abbreviations

R:® :=RZ™*(Q. 1), Ee := @) Endy(k*), G := GLe, PG := PGLe.
1€Qo
Define the map
®: R x R — Homg(Ee, Re)
(X,Y)— ®(X,Y):E. — Re
¢ = (Picqo — (X, Y)((9)ieqo) = (¢ta Xa — Yads.) a0,

Any @Q-morphism ¢ : X — Y commutes with the maps X, and Y, by definition
and hence is send to zero by the map ®. This implies that the kernel of the map ®
is given by Homg(X,Y") which is the space of all (-morphisms from X to Y. The
image of W is the set

ImW := {(g.M,M) : M € RS, g € PG}.

For some representative of g € PG the corresponding tuple of matrices parametrises
a Q-morphism ¢9) : M — g.M such that ®(M,g.M) is non-trivial. We want to
show that the image of ¥ has an equivalent characterisation based on the map ®,
i.e.

ImV¥ = {(Y,X) €RP xR i ker®(X,Y) £ {O}} =: B.
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But first we show that Im W it is closed if it is equal to B. Here ker ®(X,Y") # {0}
is equivalent to the condition that rank ®(X,Y) < m — 1 where m is the maximal
rank for the elements of Homy (Ee, Re). Accordingly the image of W is described as

I =& ({A € Homy (Ee, Re) : rank A < m — 1}).

The set on the right hand side is closed in Homg(Ee, Re) and hence its preimage
in RZ® x RZ® is closed because the map ® is continuous as its components have
polynomial descriptions. This proves that the image of W is closed under the
assumption of the above parametrisation.

It remains to show that the image of ¥ is equal to B and that there exists a
continuous inverse to W. The set B is covered by open subsets Uy ; for I, J € ([T])
which contain the pairs (X,Y’) where the I x J minor of ®(X,Y) is non-vanishing.
For a fixed minor we can construct a local inverse of the map ®(X,Y) and can
recover a tuple non-zero matrices in E satisfying the commutativity relations of
Homg(X,Y). From this tuple of matrices we can construct the unique element of
the group PG which sends X to Y. In this way we can locally invert the morphism
U. Analogous to the inverse of a matrix this local inverse ¥ ! has a polynomial
description and hence is continuous. ([l

Based on the technique of deframing we can use this lemma to prove the
freeness of the group action on the variety of extended quiver representations.

COROLLARY 2.23. The action of GLe on Rg 4(@Q, 1) is free.

PRroOF. In Proposition we have identified the action of GLe on Re(Q, )
with the action of PGLg on Rg (Q(d), I). For the stability og as introduced above
we have the isomorphism

2a(Q. 1) =RZ°™(Q(d), 1)
and to the PGLg-action on the latter variety we can apply Lemma [2.22] a

Finally we can put everything together.
COROLLARY 2.24. The set R 4(Q, 1) C Re,a(@, I) is open. The quotient map

™ REa(Q, 1) — Mg a(Q.1) = Grg (J)
(N, f) > [N, f] :== GLe.(N, f)
is a principal GLe-bundle. In particular, 7 is a smooth morphism.

PROOF. We have identified RS 4(Q,1) with RZ™**(Q(d),I) which is open in-
side Rs(Q(d),I) by Theorem The latter space is identified with Re q(Q,I)
and hence the variety of stable framed representations is open in this space. By
Corollary we know that GLe acts freely on Rg 4(Q, I). Applying the proposi-
tion by D. Mumford we arrive at the desired statement. (I

2.4. Non-emptiness of the Framed Moduli Space

The interpretation of the quiver Grassmannian as framed moduli space al-
lows to lift geometric properties from the variety of quiver representations to the
corresponding quiver Grassmannian. Let @ be a finite quiver and take a dimen-
sion vector e € Z%° with at least one positive entry. Then the variety of quiver
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representations is non-empty since it always contains the direct sum of simple rep-
resentations
Se = @ Si ® ke
1€Qo
where the simple representation S; has the vector space k over the i-th vertex and
the rest is zero.

For quiver Grassmannians the question of non-emptiness is much harder to
answer since it depends on the choice of dimension vector of the subrepresentations
and the shape of the indecomposable embeddings. For equioriented quivers of type
A these embeddings are easy to understand but in general their shape can be
arbitrarily complicated. This makes it hard to give a general criterion for the non-
emptiness of quiver Grassmannians. For Dynkin quivers there exists a criterion by
K. Mollenhoff and M. Reineke [58, Theorem 1.1].

If the quiver Grassmannian admits a description as framed moduli space there
is a criterion based on this parametrisation. In the setting of Dynkin quivers the
subsequent Lemma, is proven by M. Reineke in [63] Lemma 4.1]. With the same
methods it is possible to prove the generalisation to modules over the bounded
quiver algebra of a finite connected quiver.

LEMMA 2.25. Given a representation M, there exists a map f : M — V making
the pair (M, f) stable if and only if

dim Homg (Sl-, M) < d; for all i € Q.

For a pair (M, f) in the framed module space Re a(@Q, I) it is possible to define
the map

P(M,f) * M —J

as in Definition This map is injective if and only if the pair (M, f) is stable as
shown in Corollary 2.9] Hence we arrive at the following corollary.

COROLLARY 2.26. Given a representation M, there exists an embedding
v M—J

if and only if
dim Homg (S;, M) < d; for all i € Q.

This criterion for the existence of embeddings is important to parametrise the
image of the projection from the quiver Grassmannian to the variety of quiver rep-
resentations as done in Section for the equioriented cycle. This parametrisation
of the quiver Grassmannian is useful to determine strata of maximal dimension
computationally. More details about these computations are given in the section
where the parametrisation of the image is developed and in Section [3:2] where the
framed moduli interpretation is applied to compute the dimension of certain quiver
Grassmannians for the equioriented cycle.

2.5. Orbits and Strata of Quiver Representations

This section is devoted to the proof of Theorem [2.3] which links the action
of the group GLe on the variety of quiver representations and the action of the
automorphism group on the quiver Grassmannian. This link allows us to translate
various geometric properties between both varieties.
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The structure of the proof is based on the approach by M. Reineke [63]. All
the steps in the proof are similar to the Dynkin case but have to be generalised to
the setting of finite dimensional algebras, i.e. the setting of finite connected quivers
@ with an admissible ideal I describing relations on the paths.

Let m be the map

™ REq(Q, 1) — MZ 4(Q, 1) = Gr(J)
(N, f) — [N, f] := GLe.(N, f).
Define Réd)(Q, I) as the image of the projection
pr:Rg4(Q,I) — Re(Q, 1)
(N, f)— N.

The automorphism group for a quiver representation M with dimension vector
e :=dim M is defined as

Autg(M) = {1/} € Homg (M, M) :4; : k* — k® is bijective for all i € Qo}
and it is 1somorph1c to the stabiliser group of M in GLe, i.e.
Ath( ) & Stabgr, (M) = {g € GLe:g.M = M}

LEMMA 2.27. Given a representation M and two embeddings @,y € HomOQ (M, J)
of M into an injective representation J, any automorphism a € Autg(M) of M
extends to an automorphism A € Autg(J) of J such that Ap = va.

PROOF. Let J' C J be the injective hull of (M) C J, i.e. the smallest injec-
tive subrepresentation of J containing the image ¢(M). The quiver representation
J is injective and can be written as direct sum of injective indecomposable represen-
tations of Q. Hence we can write it as J = J' & J” where J” is the complement of
J’ in J. For the morphism ¢ there also exists a decomposition into the components
¢’ and ¢" such that ¢'(M) = (M) and ¢” =

By definition the injective hull of a representatlon is unique up to isomorphism.
Hence the map

Yvoa: M —J
factors into (1) 0 a)’ and (¢ o a)” with (¢p o a)' (M) =1 oa(M) and (poa)’ =0
together with an injective hull .J” such that there exists an isomorphism A’ : J' — J’
satisfying A'¢p’ = va.

Since J, J' and J’ are injective Q-representations which can be written as direct
sums of indecomposable injective @ representations and J’ and J' are isomorphic
there also exists an isomorphism

AT

The map A with components A’ and A” becomes an automorphism of J and
satisfies Ap = ¥a by construction. O

LEMMA 2.28. Two subrepresentations of an injective representation J are con-
jugated under the action of Autg(J) if and only if they are isomorphic.

PRrROOF. Following the universal Grassmannian construction, subrepresenta-
tions U of the representation J can be described by subspaces U; in the vectorspaces
J; for i € Qp which are compatible with the maps J, for a € Q1. The maps U,
can be defined as the restrictions of J,, i.e. U, := Jo|u
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An element A of the automorphism group Autg(J) acts on J as
— . . -1 — .
AJ = ( (Al(‘]l) )ier’ (Ata JaAsa )aer ) - ( (Jl )ier’ (JOC )ang )
This induces an action on the subrepresentations of J by

AU = ((Awy) Ta

ieoo (Jalan, ) ) aco, )

Hence two subrepresentations U and V of J are conjugated by the automorphisms
of J if and only if there exists an A € Autg(J) such that

A(U;) =V,
holds for all 7 € Qg and the restrictions a; := A;

v, which are invertible satisfy
=V,.

This proves that U and V are conjugated by some element of GLe where e := dim U
and hence they are isomorphic.

For the other direction let U and V' be two isomorphic subrepresentations of
J. Hence there exists an isomorphism p : U — V and two embeddings ¢ : U < J
and ¢ : V — J such that

1 “1
atr, Usay = ar, Jolu,, a5, = Jala,, w..) = Jalv.

Sa

Y (U) :=¢opU)=0¢(V).
Now we can apply the previous lemma to U, ¢ and ¥ and obtain an automorphism
A of J conjugating the subrepresentations (U, ¢) and (V, ¢). O

The subsequent lemma is commonly known and for example applied by K. Bon-
gartz to obtain Corollary 1 from Theorem 3 in [8].

LEMMA 2.29. Let G and H be special algebraic groups and Z a G x H-variety
with two morphisms ¢ : Z — X and o : Z — 'Y such that:

(a) ¢ is a G-equivariant smooth H -quotient,

(b) 1 is a H-equivariant principal G-bundle,

(c)  The image of a G-orbit in X under the map v o ¢~ is a H-orbit in Y.
Then the map ¥ o ¢~' : X = Y induces a bijection between G-stable subvarieties
of X and H-stable subvarieties of Y. This correspondence preserves and reflects
closures, inclusions and types of singularities occurring in orbit closures.

In the setting of the article by K. Bongartz a stronger version of (a) is satisfied.
Namely it is of the same form as part (b). But it is still sufficient to make the above
assumption in order to obtain the properties of the orbit correspondence. It would
even be sufficient to use analogous requirements for part (b) as in part (a) of
the above version. We prove Theorem [2.3] by showing that the above conditions
(a), (b), (c) are satisfied in our setting where Z = Rg 4(Q, 1), X = R.(gd)(Q,I),
Y = M 4(Q, 1), G = GLe and H = Autg(J). For the original version it was
sufficient to assume that the groups are algebraic and with the above version it
still might be sufficient to assume that the algebraic groups are connected. But the
groups in our application are even special such that it is not necessary to extend
the generality of the above lemma.

Proor oF THEOREM [2.3l The proof in the setting of bound quiver represen-
tations works in the same way as the proof for quivers without relations given by
M. Reineke in [63]. Hence we prove the statement following his approach. We have
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GLe G : QIO Auto(J

p?/ \ﬂ'
cLe (ROQ ) M;4(Q DY) Autg(d)

were 7 is the geometric GLe quotient and pr is the projection as defined above.
The projection pr factors into and open immersion

t:R3a(Q.1) < Rea(Q.1)

and a projection

P:Red(@,I) =Re(Q,I) x Homy(e,d) — Re(Q, I)
along an affine space since the stability form the above definition describes an open
subset of Re a(®,I) and the projection to the variety of quiver representations
is given by forgetting the information about the framing which is encoded by an
element in Homyg(e, d).

Open immersions are smooth and trivial fibrations where the fibre is a smooth
variety are also smooth. Hence the map pr is smooth as the concatenation of two
smooth morphisms. By the definition of the map pr it is clear that this map is
GLe-equivariant and it is Autg(J)-invariant since it forgets the framing in J. The
surjectivity of pr follows from the definition of R (Q I) and we can apply the
quotient criterion [51l Satz 3.4] to show that pr is a Autg(J)-quotient. It follows
that all assumptions of (a) are satisfied.

The quotient map 7 is Autg(J)-equivariant because the action of GLe and the
Autg(J) action commute. This follows from the GLe equivariance of the isomor-
phism of Rg 4(Q, ) and HomOQJ(e, J) and the properties of both actions on the
second space. Moreover 7 is a principal GLe-bundle and smooth by Corollary 2:24]
Accordingly it satisfies part (b) of Lemma [2.29]

By Lemma [2:28 we know that two subrepresentations of J are conjugate under
the action of Ath(J ) if and only if they are isomorphic. Hence the image of a

GLe-orbit in R (Q I) under the map

mopr~t i REV(Q,T) = Mg 4(Q. 1)
is a Autg(J)-orbit in Mg 4(@,I). This proves that part (c) of Lemma is
satisfied. Moreover distinct GLe-orbits cannot have the same Autg(J)-orbit as
image. From the definition of R(¥ (@, 1) it follows that all of the Autg(J)-orbits in
Mg 4(Q, I) are obtained in this way. Thus we have even shown the bijectivity of the

map between GLe-stable subvarieties of R\ (@, I) and Autg(J)-stable subvarieties
of Mg 4(@, I). Hence all conditions of Lemma are satisfied and we can apply
it to obtain the statement of the theorem. (]






CHAPTER 3

The Equioriented Cycle

In this chapter we introduce nilpotent representations of the equioriented cy-
cle and a class of quiver Grassmannians containing subrepresentations of certain
nilpotent representations. These quiver Grassmannians are used to describe ap-
proximations of partial degenerations of the affine Grassmannian and the affine
flag variety of type gl,, in Chapter [5] and Chapter [6]

The geometric properties of these quiver Grassmannians are examined in Sec-
tion [3:4] In Section [3:2] we develop a formula to compute the dimension of the
space of morphisms between two nilpotent representations of the cycle based on
word combinatorics for the representations. In Section [3.1] we recall results about
the variety of quiver representations for nilpotent representations of the equiori-
ented cycle which were obtained by G. Kempken in her thesis [48].

From now on let A,, be the quiver

Qp aq

P
AN

Q; Q1

The vertices of the equioriented cycle are in bijection with Z,, := Z/nZ. For every
i € Z,, we define the path with ¢ arrows starting at vertex ¢ as

pz-(é) = (7;‘041'0414_1 .. .O{i+g_1|i + E)
The path algebra kA, is denoted by A,. This algebra is not finite dimensional
because there are paths p;(¢) of arbitrary length around the cycle. To stay in
the setting of finite dimensional algebras we have to define an admissible ideal of
relations. Let

In = (pi(N):ieZ,) CkA,

be the ideal of the path algebra generated by all paths of length N. For N € N
we define the bounded path algebra AY := kA, /Ix. The subsequent result is a
special case of Theorem [T.2]

PrOPOSITION 3.1. The category repy,(A,,In) of bounded quiver representa-
tions is equivalent to the category AN-mod of (right) modules over the bounded
path algebra.

37
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Let P; € repy(A,,In) be the projective bounded representation of A,, at vertex
i € Zy,. Define the projective representation

X = @ P, @ k%
i€Zy,
where z; € N for all ¢ € Z,,. Analogous let I; € rep,(A,,In) be the injective
bounded representation of A,, at vertex j € Z, and define the injective represen-

tation
Y= P Lok
JE€Ln
with y; € N for all j € Z,.
Throughout this chapter we study quiver Grassmannians of the form

Grn (X @ Y)

where e := dim X is the dimension vector of X. This class of quiver Grassmanni-
ans is similar to the class of quiver Grassmannians for Dynkin quivers studied by
G. Cerulli Irelli, E. Feigin and M. Reineke in [20]. The main difference is that here
we take a non Dynkin quiver which additionally has an oriented cycle such that its
path algebra is not finite any more.

It turns out that this generality is sufficient to provide finite dimensional ap-
proximations of the affine Grassmannian and the affine flag variety and their degen-
erations in type gl,,. This is done in Chapter[5|and Chapter[6] One key to the study
of these varieties is the observation that all bounded projective representations of
the equioriented cycle are bounded injective representations.

Let M € repi(A,,) be a representation of the equioriented cycle. By definition
it consists of a tuple of vector spaces (V;);ecz, and a tuple of linear maps

(M Vi = Vi)

1€Lin
Define V := ®;¢z, Vi and the linear map Ay : V' — V which is of the form
0 0o ... 0 0 M,
M,y 0 ... 0 0 0
Ay = M,
0 0 0
0 M, _o 0 0
M,1 0

where all blocks in the matrix below the diagonal with the blocks M; for i € [n—1]
are equal to zero. The representation M € repy(A,,) is called nilpotent if there
exists an integer £ € N such that AIIZ\/[ = 0. This is equivalent to the condition that
M, ) = 0 for all i € Z,. Accordingly the nilpotent representations of the cycle are
representations of the bound quiver (A, Iy) for some bounding parameter N € Z.
For ¢ € N and i € Z,, define V := k’ and the map A : V — V. It acts on the
standard basis vectors of V by
_ fei i <UL
Alej) = { 0 ifj=¢
This describes a representation of A, by the decomposition of V into the spaces
V; for i € Z,, induced by e € V1. This representation of the oriented cycle is
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denoted by U;(¢). For j := i+ ¢ — 1 in Z, this decomposition of V' and the map
A are represented by the following picture where the dots correspond to the basis
vectors e; for j € [(] and an arrow indicates the map e; — e;41 and the separation
of the dots into tuples over the vertices of the quiver represent the basis vectors for
the spaces V;.

PROPOSITION 3.2 (Proposition 3.24 in [67]; Theorem 7.6 in [50]). All inde-
composable nilpotent representations of A,, are of the form U;(¢) for i € Z,, and
¢eN.

These graphical interpretations of quiver representations are called coefficient quiv-
ers. Under certain circumstances they turn out to be useful in the computation of
the Euler characteristics of quiver Grassmannians. Coefficient quivers are formally
introduced in Definition [I.8] We give some examples and applications in Sec-
tion In the Chapter [f] and Chapter [0] they are used to compute the Poincaré
polynomials for the approximations of the affine Grassmannian and the affine flag
variety. Based on this description of the indecomposable nilpotent representations
of the equioriented cycle we can prove that projective and injective representations
are isomorphic. This is a direct consequence of their definition based on paths in
the quiver as given in Section

COROLLARY 3.3. For n, N € N and all i,j € Z, the projective and injective
representations P; and I; of the bound quiver (A, Iy) satisfy

P=U(N)=Liin-1 and I; 2Uj—np1(N) = Py

This allows us to apply Theorem to the class of quiver Grassmannians as
introduced above. Accordingly it is possible to realise these quiver Grassmannians
as framed moduli spaces

GIa" (X ®Y) 2 M (An, In)

where d; = y; + v;—ny1. With this identification we are able to deduce re-
sults about the geometric properties of the quiver Grassmannian from the variety
of quiver representations using Theorem [2.3] The latter variety was studied by
G. Kempken in her thesis [48]. Below we recall some of her results about orbit
closures and singularities.
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3.1. Orbits and Singularities in the Variety of Quiver Representations

In this section we collect some of the main ideas from the thesis of G. Kempken
[48]. Originally it was published in German and can not be found online and is
only available in a few libraries. If not pointed out differently, everything which
is written in this section can be found in her thesis and the translation is as close
to the original text as possible. The aim of her work is to describe the orbit
structure of Re(A,) and the types of singularities occurring in the orbit closures.
We want to use her results to derive informations about the structure of the quiver
Grassmannians for A, as introduced in above. The remarks in this section are
added to the original material to point out the connection to quiver Grassmannians.

Let Z be an irreducible variety of dimension n and f : W — Z is a resolution
of singularities, i.e. W is smooth and f is proper and birational. Z has rational
singularities if Z is normal and the higher direct images R’ f.Ow of the structure
sheaf Oy vanish for ¢ > 0.

THEOREM 3.4 ([46], p. 50). Z has rational singularities if and only if
a)  Z is normal and Cohen-Macaulay.

b)  For every n-form w defined on the smooth points of Z it is possible to
extend f*w to W.

THEOREM 3.5 (p. 67). The orbit closures inside Re(Ay) have rational singu-
larities.

REMARK. For a representation U € Re(A,,Iy) the closure of the orbit in-
side Re(A,,) and its closure in Re(A,,In) coincide such that we can apply this
theorem to bounded quiver representations. By application of Theorem by
K. Bongartz we get rationality of the singularities in the closures of the strata in
the corresponding quiver Grassmannians.

3.1.1. Minimal Degenerations of Orbits. Every quiver representation X €
Re(A,,Iy) can be written as direct sum of indecomposable nilpotent representa-
tions U;(¢) with ¢ < N. This is proven in the thesis and can also be found in [50|
Theorem 7.6].

DEFINITION 3.6. For a nilpotent representation U;(¢) of the equioriented cycle
on n vertices the corresponding word w;(¢) is defined as

wi(l):=1 i+1 i+2 ... i+£—-2 i+L-1
where we view each number in Z,,.

To each quiver representation X we assign a diagram

w1
w2
79X = .
Wy
consisting of words w1, ..., w, corresponding to the indecomposable summands in

the decomposition of X with the same order as for the summands of X.

REMARK. By convention we always write the words in a diagram such that
the last letters of the words are in one column. This helps us to count repetitions
of certain letters in the words starting from their end as used in Proposition [3.10]



3.1. ORBITS AND SINGULARITIES IN THE VARIETY OF QUIVER REPRESENTATIONS41

EXAMPLE 3.7. Let n =4, X = Uy(5) @ U2(4) ® Us(3) @ Us(2). Then

12341
2341
341
41

19)(:

PROPOSITION 3.8 (p. 28). Two elements of Re(A,,,Ix) are conjugate under
the action of G := GLg if and only if their diagrams are the same with respect to
permutations of the words.

Let X and Y be elements of Re(A,,Iy) with diagrams ¥x and dy. If G.Y
is included in the closure G.X, we write Jdy < 9x. We call Y and X (resp.
Yy and ¥x) adjacent if G.Y C G.X and there exists no Z € Re(A,,Iy) with
GY C G.Z C G.X,ie. the orbit G.Y is dense in G.X \ G.X. For adjacent X and
Y we call G.Y C G.X (resp. ¥y < ¥x) a minimal degeneration.

The subsequent proposition characterises the orbits and orbit closures in the
variety of nilpotent representations. Fori € Z,, j € Zy and U € Re(A,,Ix) define

U i=Usq,,, o U, o--0U,,, ,oU

Qitj—1 Q42 Q41 o UOéi'

i+
PROPOSITION 3.9 (p. 32). The orbit closure of the nilpotent representation
X € Re(Ap,Iy) is given as
G.X = {Y € Re(Ay) : corankY(jf > corankX;’f foralli € Z,,j € ZN}.

In particular G.X contains only nilpotent representations of A,,.

For a representation X € Re(A,,,In) let z,(i) be the number of repetitions of
the letter ¢ € Z,, in the last p columns of the diagram ¥ x.

PROPOSITION 3.10 (p. 69). Let X, Y € Re(A,,Iy). Then
GY CGX <= y,(i) >x,(i) for all i € Z,, and all p € [N].

For two words w; and ws in the letters Z,,, we can build the word wiws if wy
ends with ¢ and wsy starts with ¢ + 1.

EXAMPLE 3.11. Let n = 4 and consider the words w; = 23412 and wo = 341234
which correspond to the representations U (5) and Us(6). It is possible to build

wywe = 23412341234

which corresponds to the indecomposable representation Us(11) but wew; does not
exist.

THEOREM 3.12 (p. 73). For a minimal degeneration Uy < ¥x it is possible to
obtain the diagram of Y from the diagram of X by replacing a pair of words w, w’
in Ox of the form w = wiwaws, w' = wy by the pair wows, wiws. Here the w;
satisfy one of the following conditions:

A) lws| < n and |wy| > |ws,
B) |lw1] < n and |ws| > |wq|,
C) |wi|=n and |lws|=7r-n forr>1.

REMARK. This result can also be used to describe the degeneration starting
from Y. Thus it is possible to determine the orbit structure of Re(A,, Ix) starting
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from the orbit of Se which is zero-dimensional and is included in every orbit closure
of nilpotent representations.

Moreover we can describe the structure of the stratification of a quiver Grass-
mannian for A, if we start with a representative of the stratum of smallest di-
mension and use that by Theorem [2.3] the representatives of closures of strata and
closures of orbits coincide. This stratum can be determined using Lemma [£.19]

THEOREM 3.13 (p. 96). Let 9y < 9x be a minimal degeneration of type A,B
or C from Theorem[3.13 and let e denote the number of words in ¥y which are of
the form wiwy or wows. Then

e—1 in case A and B

codimgx G- = { 2(e—1) in case C

REMARK. The results in Section [3.2 about the Hom-space dimensions allow
us to use this theorem to compute the codimension in the closures of the strata.

3.1.2. Singularities in Minimal Degenerations and in Codimension
2. Let U and W be two varieties with u € U and w € W. The singularity of U
in u is called smooth equivalent to the singularity of W in w if there exists a
variety Z, a z € Z and two morphisms

fiZ—->Uandg: Z—->W

such that f(z) = u, g(2) = w and f and g are smooth [1], [43].
This defines an equivalence class of punctured varieties (U, u) which we denote
by Sing(U, u). For the action of an regular algebraic group on U we get
Sing(U, u) = Sing(U, v)

if u and u’ belong to the same orbit O. In this case Sing(U, O) denotes the equiv-
alence class.
Let U and W be vector spaces of dimension p respective g and define
D, q = {X € Hom(U,W) : rankX = 1}.

For the closure we obtain

Dy,q = Dp,q U {0}

and 0 is an isolated rational singularity in D, , [48] Section 4.5.], [47, §3]. We
denote this equivalence class by dp, 4, i.e.

dpq == Sing(Dpﬁq, O).
In End(U) there exists a uniquely determined nilpotent conjugation class C' of
minimal dimension 2(p — 1) [48] Section 5.9.c)].

The closure of C'is C = C' U {0} and 0 is an isolated singularity in C' [52} 2.3].

We denote this equivalence class by a,_1, i.e.

a,—1 = Sing(C,0).

Let N be the set including all nilpotent elements of End(U). There is a unique
nilpotent orbit of codimension 2 in N, the so called subregular orbit O;. By a
result of E. Brieskorn we get

Slng(N7 OS) = Ap_l
where A,_; := Sing(Z, 0) is the singularity of the surface
Z:={(z,y,2) €C*: 2P + yz =0}
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in the origin [12].
We have the following relations on the types of singularities:

Ar = a1, dpg=dgp

and m is smooth for p=1or ¢ = 1.

Now we want to determine Sing(G.X,G.Y) explicitly. For type A and B we
define p as the number of words of the form wyws in ¥y and g as the number of
words of the form wows in Jy.

For type C we distinguish the cases:

Cl): |wy| = |ws| = n, i.e. wywy = wows. Here we set £ as the number of words of
the form wiws in Yy
C2): |wr| =n and |ws| =r-n for r > 1. We set £ :=1r+ 1.

THEOREM 3.14 (p. 114). Let X and Y be adjacent elements of Re(Ap,In).
Then
dp,q; incase A and B
Sing(G.T,G.Y) = { ag—1 1in case C1
Ay_1 in case C2.

THEOREM 3.15 (p. 132). Let X and Y be adjacent elements of Re(Ap,In)
and codim g G.Y = 2. Then G.X is smooth in G.Y or Sing(G.X,G.Y) = Ay for
some ¢ € N.

This ¢ is determined uniquely and the closures of the orbits are smooth in
codim < 2 if e; = 0 for some i € Z,. If codimg=G.Y = 1, the closure G.X is
smooth in the orbit G.Y because G.X is normal [69] IT, §5, Theorem 5].

3.2. Morphisms of Quiver Representations and Words

In this subsection we develop the main tools required to prove the parametri-
sation of the irreducible components for the class of quiver Grassmannians for the
equioriented cycle as introduced in the beginning of this chapter.

Recall that to each indecomposable nilpotent representation of the equioriented
cycle there is assigned a word with letters in Z,,. Define r;(w) as the number of
repetitions of the letter j in a word w. These numbers can be used to compute
the dimension of the space of morphisms between two indecomposable nilpotent
representations of the cycle. The linearity of the morphisms allows us to generalise
this formula to compute the dimension of the morphism space for all nilpotent
representations of the cycle.

PROPOSITION 3.16. For two indecomposable nilpotent representations U;(¢)
and Uj (k) of A, let w;(¢) and w;(k) be the corresponding words. Then the dimen-
sion of the space of morphisms from U;(¢) to U;(k) is computed as

dim Homa,, (U;(¢),U;(k)) = min {r;(w;(k)),rj4+x—1(w;(£)) }
=Tj+k—-1 (wz(m))
where m := min{¢, k}.

This proposition is just a different formulation of the subsequent theorem by
A. Hubery [44], Theorem 16 (1) |].
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THEOREM 3.17. Let M.y and M.y be two indecomposable nilpotent rep-
resentations of the equioriented cycle. The dimension of the space of morphisms
from M;.py to M.y is computed as

dim Homa,, (Mie), M(jim)) = H max{0,{—m} <r<{—1:r=j—1imod n}|

In this statement the orientation of the quiver is the other way around, i.e.
the index of the vertices decreases by one along an arrow whereas in this work it
increases by one.

Moreover the indecomposable nilpotent representations have an injective la-
belling, i.e. M.ny = I; in repy(A,,Ix) where in this work we label the inde-
composable nilpotent representations U;(¢) projective such that U;(N) = P; in
repy (An, In).

For some applications it is useful to work with the injective labelling of rep-
resentations of the equioriented cycle. This is the case if we look at embeddings
of indecomposable representations or successor closed subquivers of the coefficient
quiver of a quiver representations as done in Chapter 4] Hence we define

U(j; N) :=Uj—n+1(N).

Proor or ProrosITION [3.16]l Translating the theorem of Andrew Hubery
into our notation we obtain

dim Homa, (U;(¢),Uj(m)) = |{0 <r <min{¢,m}—1:7r=j—i+m—1modn}|

This holds since both sets count the possibilities to write the words corresponding
to the source and target representation of the morphisms parallel such that in the
overlap both words have the same letters, the word of the source representation
does not start before the word of the target representation and the word of the
target representation does not end after the word of the source representation.

In our notation this equals the number of repetitions of the letter j +m — 1
in the word corresponding to U;(k) with k = min{¢, m} where we have to use the
minimum to ensure that the word of the source representation U; () does not start
before the word of the target representation U;(m).

This can also be done by taking the minimum of the repetitions of the letter
j +m — 1 in the word corresponding to U;(¢) and the repetitions of the letter i
in the word corresponding to U;(m) such that both, the ending and the starting
condition are handled in the same way. ([

It is also possible to compute the dimension of the space of morphisms by
counting certain repetitions of the letter ¢ in the word corresponding to Uj(k).
Here we have to exclude the repetitions coming before max{0,m — ¢} such that
the parametrisation of the word wherein we have to count the repetitions becomes
more complicated and we exclude this case from the proposition.

DEFINITION 3.18. An embedding of quiver representations ¢ : U < V' is called
decomposable if there are embeddings

’L/)llUl;)Vl and wQZUQ‘—)VQ

such that U = U; U, holds and for the decomposition V' = V; V5 both summands
are non-zero. An embedding which is not decomposable is called indecomposable.
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This does not imply that the original embedding ¢ equals the embedding of
the decompositions
Y= (Y1,92) : U1 Uz = Vi @ Va.

PROPOSITION 3.19. In the category rep,(A,,Ix) all indecomposable embed-
dings of representations are of the form

@ : Ul(g) — Ui,k(f—l- k)
for k € Zzo.

REMARK. With the notation using an injective labelling of indecomposable
representations, the indecomposable embeddings are of the form

UG 0) = UG L+ k)
for k € ZZO'

This result about the structure of the embeddings of quiver representations for
A, helps us to examine the structure of the corresponding quiver Grassmannians.
For the proof we require some statements about the structure of coefficient quivers
which will be introduced in Chapter @ This section is independent of the current
section and therein we give a proof of this proposition using Corollary .12}

It is also possible to prove this statement independent of the results about
torus fixed points. For that independent proof we require information about the
structure of Auslander Reiten quivers for A,,. But since we do not need it elsewhere,
we decide to omit their construction and the results about their shape from this
thesis. The structure of Auslander Reiten quivers for A, is very similar to the
structure of Auslander Reiten quivers for equioriented quivers of type A.

We can use the word combinatorics to compute the dimension of the space of
morphisms from an arbitrary representation in Re(A,,Ix) to an indecomposable
representation of maximal length in this variety of quiver representations.

PROPOSITION 3.20. Let M € Re(A,,Iy) then
dim Homa,, (M7 Ui(N)) =e;jyn—1 forall i € Z,.
REMARK. Here it is important that the indecomposable representation U;(N)
is of maximal length or at least longer than every summand of M. Otherwise
M could contain U;_1(N + 1) which contradicts the statement of the proposition

because
dim Homa,, (Ui—1(N +1),U;(N)) =0

by Proposition since 74N (wl(N)) = 0. For the injective labelling of the
indecomposable representations the statement of the proposition reads as

dim Homa,, (M7U(j;N)) =e; for all j € Z,,.

PROOF OF PROPOSITION [3.20l Every representation M € Re(A,,, Iy) is nilpo-
tent and can be written as direct sum of indecomposable nilpotent representations,

namely
M=D D uiekrm

jE€Zn LE[N]
Thus

dim Homa, (M,Ui(N)) = Y Y~ mj, - dim Homa, (U;(¢), Us(N))
JEZLn LE[N]
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because the morphisms of quiver representations are linear.
Now it suffices to show

dim HomA“ (U](E), Ul(N)) = (dlm UJ(E))erNfl

We want to apply Proposition [3.16] By assumption we know that £ < N and hence
we have to count the repetitions of the vertex ¢ + N — 1 (which is the end point
of U;(N)) in the word w;(¢) corresponding to U;(¢). This value is given by the
(i + N — 1)-th entry of the dimension vector of U;(¢). O

Proposition implies that the codimension of the orbits in Re(A,,Inx)
equals the codimension of the strata in the quiver Grassmannian Gr2" (X @ Y).
Accordingly we can compute the orbit dimensions in Re(A,,,Iy) for the elements
of the Grassmannian Grﬁ" (X @Y) in order to find the strata of highest dimen-
sion in the quiver Grassmannian. By Lemma [I.3] the dimension of the stratum of
UeGri"(X @Y) is given as

dimHoma, (U, X ®Y) — dimEnda,, (U).
For the first part we can apply Proposition [3.20| and obtain
dim Homa, (U, X @Y) = dim Homa, (X,X ®Y)

for all U € Gr2" (X @Y) because X and Y consist of summands of the form U;(N)
and the morphisms are linear. Hence we are interested in the value of

dim Enda (U) = dim Homn, (U7 U)

and want to find the elements of the quiver Grassmannian minimising this value.
This is equal to the codimension of an orbit in the variety of quiver representations
because for U € Re(A,,,In) we compute its orbit dimension as

dim GLe.U = dim GLe — dim Homa (U, U).

For the rest of this section, we turn our attention to the dimensions of the
orbits in Re(A,,Ix) for elements of the quiver Grassmannian Gri (X &Y).

REMARK. Let @ be a Dynkin quiver and let X, Y be exceptional representa-
tions of @) such that Exti?(X, Y) =0. Then

dim Homg (U, U) > dim Homg (X,X)

holds for all U € Gr@(X @Y), i.e. the dimension of the orbit of X in Re(Q) is the
highest among all elements of the quiver Grassmannian. Thus we obtain

dim Gr¥(X @ Y") = dim Homy, (X,Y)

and the quiver Grassmannian is the closure of the stratum of X. For more details
on this see Section 3.1 in [20].

Unfortunately this does not hold in full generality for the equioriented cycle.
PROPOSITION 3.21. Let N =w - n for w € N. Then
dim Homa , (U, U) > dim Homap , (X, X)

holds for all U € Gr5™ (X @ Y).
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There are counter examples for this result if N # w - n. To carry out the
computations in the examples is lengthy such that we put them in the appendix
to this thesis (see Example and Example .

The indecomposable representation U;(wn) has length wn which means that in
the picture of Proposition [3.2]it is winding around the cycle on n points exactly w
times. For this reason we refer to w as winding number.

PROOF. The idea of the proof is to show that for every element U € Gri (X &
Y') its orbit in the variety of quiver representations degenerates to an orbit with
the same codimension as the orbit of X or already has the same codimension. In
the first case it follows from the definition of the degeneration of orbits that the
codimension of its orbit is strictly bigger. The subsequent property of a subrepre-
sentation helps us to decide how far the representation is degenerate from X.

For U € Gr&" (X @ Y) define the set

S(U) :={U;(f) CU summand : ¢ < N}

including all direct summands of U which are not of maximal length. If the set
S(U) is empty, we directly obtain

dimHoma,, (U,U) = dimHoma, (X, X)

since

dimHoma,, (U;(N),U;(N)) =w
for all i,j € Z, and N = w -n. This follows from Proposition [3.20] if we set
M =U;(N).

Now let U € Gr2"(X @ Y) be given such that S(U) # (. Since all entries of
the dimension vector dim U are equal and it is divided into segments of length at
most N, S(U) has to contain at least two elements.

We can find U;(¢),U;(k) € S(U) and can assume without loss of generality
that j is contained in the word w;(¢ + 1). This pair has to exist because otherwise
the dimension vector of U could not be homogeneous, i.e. all entries are equal. By
changing the labelling of the two representations we can ensure that they satisfy
the relation we want.

Let wy be the overlap of the words w;(¢) and w;(k). We can write them as
w;(£) = wywy and w;(k) = wows where it is possible that ws is the empty word.

We define

U=UaUi—j+L+k) Ui —1i)\Ui(0) \ U; (k).

This representation U embeds into the same summands of X ® Y as U did. By
Proposition we know that U;(¢ — j + £ + k) embeds into the same U,(N) as
U, (k) and U;(j — i) embeds into the same U,(N) as U;(£). Moreover U and U have
the same dimension vector. It remains to show that dim Oy < dim O .

In the terminology of words the representation U, (i — j + ¢+ k) corresponds to
wiwowz and Uj (j — %) corresponds to ws. We can assume that the word wjwaws
has not more than N letters because there have to exist w;(¢) = wiws and w;(k) =
wows such that this is satisfied. Without such words it would not be possible that
the dimension vector of U is homogeneous and that all words corresponding to it
have at most N letters.

Following Theorem the orbit of U degenerates to the orbit of U. Hence
we get Oy C Op and dim Oy < dim Op;. This degeneration might not be minimal
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but here it is not of interest to find minimal degenerations. Thus we do not have
to satisfy the restrictions on the words in the theorem.

Since all the vector spaces U; for i € Z, corresponding to the subrepre-
sentation U are equidimensional we can apply this procedure starting from any
U e Gre"(X @ Y) until we arrive at an U € Gr5™ (X @ Y) with S(U) = 0. Thus
we obtain

dim Homa,, (U, U) > dim Homa,, (X, X)

for every U € Gr5" (X @Y) with S(U) # 0. O

For the proof it is crucial that the dimension vector of the subrepresentations is
homogeneous and that the length of the cycle divides the length of the indecompos-
able projective and injective representations. This is guaranteed by the condition
N = wn. Otherwise we can not assure that the gluing procedure of the words ends
in a representation with S(U) = 0. In this setting it is not possible to control
the minimal codimension of the orbits which could be obtained as explained in

Example and Example

3.3. Irreducible Components of the Quiver Grassmannian for N =w - n

For the remainder of this chapter we restrict us to the case N = wn. The
bounded projective and injective representations in repy (A, L,,) will be denoted
by P and I¢¥. From the proof of Proposition @ it follows not only that all

subrepresentations in GreA" (X @Y) have bigger or equal codimension than X. We
even get a characterisation of the subrepresentations with the same codimension
as X. Namely they are parametrised by the condition S(U) = (. Based on this
observation we can determine the dimension and the irreducible components of the
quiver Grassmannian which we already know to be equidimensional. The dimension
of the quiver Grassmannian is given by the dimension of the stratum of X, and is
computed below.

LEMMA 3.22. Let
X, =P P ok™ and Y, := @ Iy o k¥
1€ Zn J€ZLn

and set e, := dim X,,, where z;,y; € N for all i,j € Z,, . The dimension of the
quiver Grassmannian is computed as

dim GreAw" (X, ®Y,) = wk(m — k),
where k=) ey xi and m =3, x; + Y.

ProoOF. From Proposition and Proposition and Lemma[I.3]it follows

that
dim SU S dim SXW

holds for every U € Grﬁ: (X, ®Y,). This inequality does not hold for arbitrary
N as Example [A:2] and Example [A-3] show.

It remains to compute the dimension of the stratum of X,, which is given by

dim Sx, = dim Homa,, (Xw,Xw &) Yw) — dim Homax,, (Xw, Xw)
= dim Homn, (Xw,Yw).
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Applying Proposition [3.:20| we obtain
dim Homa,, (U;(wn),Uj(wn)) = (dim U;(wn))

Jjtwn—1 =w

for all 7, j € Z,, and compute the dimension of the stratum explicitly as

dim Homa , (Xw, Yw) = Z Z dim Homa , (Pl“’ ® kmi,lf ® ]kyj)

i€%n, jELn
= Z T z y; dim Homa,, (Pf,]f) = Z T z Yj - w
1€Ln  JE€ELn €Ly JELn
= Zmi~w~(m—k):w~k(m—k)
1E€ELm,
where Py = U;(wn) and I¥ = Uj_gny1(wn). O

Based on the characterisation of the strata with the same codimension as the
stratum of X, from the previous section we obtain the subsequent parametrisation
of the irreducible components of the quiver Grassmannians.

LEMMA 3.23. The irreducible components of Grfw” (X, ®@Y,) are in bijection
with the set

Cr(d) := {p €Z% :p; < d; for all i € Zy,, Z D = kz},
€2y,

where d; := y; + x;41 and they all have dimension wk(m — k).

REMARK. In particular, the number of irreducible components is independent
of the winding number w.

PROOF. We use the interpretation of the Grassmannian as framed moduli
space
Gram (X, ® Y.) 2 RS 4(Ap,Lun)/GLe, -

Here the entiries of d are given by the multiplicities of the injective representations
I¥ as summand of X, @Y, and these numbers are independent of the winding
number w. We can apply Theorem to this setting such that the irreducible
components of GreAw "(X, ®Y,) which are given by the closures of some strata

are in bijection with the maximal elements of Rég)(An,Iwn) /GLe, with respect
to the partial order induced by the inclusion of orbit closures as introduced in
Section Bl

In the proof of Proposition [3.21] we have seen that the maximal elements for
this order are given by the U € GreAw" (X, ®Y,) such that S(U) = 0, ie. all
summands of U have the same dimension vector and are of the form U;(wn) for
some i € Z,. The set of all such subrepresentations of X, @ Y,, with dimension
vector e, is parametrised by the set Cj(d). For every tuple p € Ci(d) define the
representation

U(p) = @ Uir1(N) @ k.
i€Zn,

We get i + 1 as index since d; is the multiplicity of I; which is isomorphic to
Ui—n+1(N) =U;11(N) for N = w - n. The assumption on the summation

Zpi:k

1€%Ln
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ensures that the dimension vector of U(p) is e. The restriction
p; € {0,1,...,d;} for all i € Z,

guarantees that the representation U(p) corresponding to the tuple p embeds into
X, ®Y,. The dimension of the irreducible components is computed in the same
way as done for the stratum Sx,_ in Lemma [3.22] O

For arbitrary N we would have d; := y; + z;_n41 but for N = w - n the shift
by N does not change the index because it is considered as a number in Z,. The
number of irreducible components is bounded by (”ﬂlfl) since

Cu(d) C O, = {p €22y :p <kforallicZ, . pi= k:}.
i€2Zn
The set Cy contains all partitions of the number k into at most n parts. This is
equivalent to choosing n — 1 points out of n + k& — 1 points to be the separators
between the n parts of a partition of the remaining k& points. The number of these
choices is given by the binomial coefficient

n+k—1 n+k-—1
= () =)

For the case N = n, this parametrisation of the irreducible components together
with a precise count is proven in the thesis of N. Haupt [41] Proposition 3.6.16].
Because we have discovered above that the number of irreducible components is
independent of the winding number w we can use his formula for the case w =1 to
compute the number of irreducible components of the quiver Grassmannian

Grom (X, @Y.)

€w

for arbitrary winding numbers w.

3.4. Geometric Properties of the Quiver Grassmannian

Back in the setting where the indecomposable summands of X and Y have
arbitrary but all the same length N we do not have a parametrisation of the
irreducible components but nevertheless we get the subsequent properties.

LEMMA 3.24. The irreducible components of GrS" (X &Y) are normal, Cohen-
Macaulay and have rational singularities.

PROOF. In her thesis G. Kempken shows that the orbit closures inside Re(Ay,)
are normal, Cohen-Macaulay and have rational singularities (compare Theorem
combined with Theorem [3.4). Her result holds for arbitrary representations of A,,.
We can apply it to orbit closures of nilpotent representations in Re(A,,, 1) because
by Proposition [3.10] there are no non-nilpotent representations inside these orbit
closures. Combining this with Theorem [2.3|by K. Bongartz we get that the closures
of the strata in the quiver Grassmannian have rational singularities which again
combined with Theorem yields that they are normal and Cohen-Macaulay.
Applying it to the highest dimensional strata we obtain the desired result. O

Moreover G. Kempken gives a description of the types of singularities which
can occur and we recall it in Section She also describes the structure of
the orbit closures and the codimension of the minimal degenerations of orbits as
summarised in Section B.1.11
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3.5. Image in the Variety of Quiver Representations

For any set of relations Iy as defined in the beginning of Chapter[3] we have seen
that every projective bounded representation of A, is isomorphic to an injective
bounded representation. Hence the class of quiver Grassmannians we introduced
in Chapter [3] satisfies the assumptions of Theorem [2.3] such that the image of the
projection

pr: R q(An, In) = Re(Ap, In)

which is denoted by R (Ap,In) carries all information about the structure of the
stratification of the quiver Grassmannian

G2 ()
with
J=U@EN)eCh.
€Ly,
In this section we describe two different possibilities to parametrise this image
explicitly. One arises from the special shape of the bounding relations and the
criteria for non-emptiness of the framed moduli space. The other is based on

the C*-action on the quiver representation and the resulting characterisation of
subrepresentations as successor closed subquivers.

3.5.1. Parametrisation by Relations and Morphisms. By Corollary
we know that there exists an embedding of a quiver representation U into the rep-
resentation J if and only if

dim Homa , (Si, U) < d; for all i € Z,.
For the description of the image the subsequent formulation is more suitable.

ProPOSITION 3.25. Let U be a nilpotent representation of the equioriented
cycle A,. Then

dim Homa , (Si, U) <d; forallie€Z,
if and only if
dimker U, < d; for all i € Z,.

PrOOF. Every nilpotent representation of A, is isomorphic to a direct sum
of indecomposable nilpotent representations U(j;£¢) of the cycle. The dimension
of the space of homomorphisms from a simple representation S; € rep(A,) to an
indecomposable nilpotent representation U(j; ) is given as

Homa, (SiU(j;0)) = 655

Hence
dim Homa (Si, U) <d; forallie€Z,

is satisfied if and only if U contains at most d; indecomposable summands U (i; £)
ending at the vertex . This is independent of the lengths ¢ of the summands. The
map along the arrow «; : i — i + 1 corresponding to the representation U (i; ¢) has
a one-dimensional kernel and the kernel is zero for the all maps along the other
maps of the quiver. Hence the dimension of the kernel of the map U,, matches the
number of summands of U ending at the vertex i. O
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For a linear map, the dimension of the kernel equals the co-rank of the matrix
U,,. Thus we arrive at the equivalent condition

corank U,, < d; for all i € Z,.

A representation of A,, satisfies all relations in Iy if and only if it satisfies the
generating relations, i.e.

USN :=Uqyin o U,

Qi+ N Qi+ N—1

o...oU

Q42

oU,

Q41

oUy, =0 forallieZ,.
Combining both we obtain the subsequent parametrisation of the image.
PROPOSITION 3.26. For the quiver Grassmannian
G ()
the image in the variety of quiver representations is parametrised as

RW(A,,Iy) = {U € Ro(A,) : U2N =0 and corank U, < d; for all i € zn}.

The orbit structure of this variety can be studied using the methods from the
thesis by G. Kempken as sumariesed in Section [3.1

3.5.2. Parametrisation by Indecomposable Representations. Every quiver
representation U € repg(A,,Ix) is conjugated to a direct sum of indecomposable
nilpotent representations, i.e.

N
U= P U)o ch:

1€ 70m £i=1

where d; s, € Z>o for all i € Z,, and ¢; € [N]. For the space of homomorphisms we
obtain

N N
dimHoma, (S;,U) = > > dj,, dimHoma, (Si,U(j34;)) = Y di,.

JELn £;=1 £;=1

Hence for every U € Rf;”(Am In) we can rewrite the direct sum of indecomposable
representations as

d;
U= Putir) = U

I€Ln k=1
where £;, € {0,1,2,...,N} =: [N]p for all i € Z, and all k € [d;]. Here the
restriction k € [d;] is obtained from Corollary with the same arguments as in
Section m For ¢ = 0 the representation U (;0) is the zero representation which
is independent of the index i. We arrive at the subsequent description.

PRrROPOSITION 3.27. The Ge-orbits in the variety of quiver representations
Re(A,,,In) which correspond to strata of the quiver Grassmannian

Gre™ (/)

are parametrised by the set

S (A, Tx) = {1 = (i) € [N]o: dimU(l) = e and £, > ei,kﬂ}.
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This set is finite and can be used for the computational study of the structure
of the stratification for quiver Grassmannians of the equioriented cycle. Using the
result about the dimension of the space of homomorphisms from Proposition [3.16
we can define functions to compute the dimensions of orbits or strata and determine
the irreducible components of the quiver Grassmannians computationally.






CHAPTER 4

Torus Action on the Quiver Grassmannian

In this chapter we introduce an action of the torus C* on the quiver Grassman-
nians for the equioriented cycle. This allows us to compute cellular decopositions,
Euler-Poincaré characteristics and Poincaré polynomials of these quiver Grassman-
nians. But first we want to recall the general definitions and methods we are using.

4.1. Property (S) and (C)

DEFINITION 4.1. A finite partition (X;);e[m) of a complex algebraic variety X
is said to be an a-partition if

U X, is closed in X for all k € [m].
i€ k]

DEFINITION 4.2. A cellular decomposition or affine paving of X is an
a-partition into parts X; which are isomorphic to affine spaces.

We say X has property (C) if X admits a cellular decomposition. For a com-
plex variety X, the Borel-Moore homology with integer coefficients of X equipped
with the analytic topology is denoted by

Hy(X) = H(X(C);Z).

Equivalent definitions of the Borel-Moore homology can be found in the book by
N. Chris and V. Ginzburg [22] Chapter 2.6]. If X is an algebraic variety, the group
generated by k-dimensional irreducible subvarieties modulo rational equivalence is
denoted by Ay (X). There exists a canonical homomorphism

which is called cycle map by W. Fulton [34].

DEFINITION 4.3. The variety X has property (S) if
(1) numerical and rational equivalence on X coincide,
(2) Hi(X) =0 for i odd and
(3) the cycle map ¢; : A;(X) — Hz;(X) is an isomorphism for all i.
The concept of property (S) was introduced by C. De Concini, G. Lusztig and

C. Procesi in [25] in order to replace the notion of cellular decompositions. Indeed
we have the following implication. The converse is not true in general.

LEMMA 4.4. X has property (S) if X admits a cellular decomposition.

ProOOF. C. De Concini, G. Lusztig and C. Procesi showed that X has property
(S) if it admits an a-partition into pieces having property (S) [25, Lemma 1.8].
Moreover they proved that for a vector bundle E — X, E has property (S) if X
has property (S) [25, Lemma 1.9]. Since X admits a cellular decomposition, we

55
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have an a-partition of X into affine spaces (X;)ie[m]- Hence we can view X as
vector bundle over

Y :={p;:i€[m]}
where p; is some point in X;. Points have property (S) and Y admits an a-partition
into the sets Y; := {p;}. By [25] Lemma 1.8] Y has property (S) and it follows by
[25] Lemma 1.9] that X as vector bundle over Y has property (S). O

In general it is a open question which class of quiver Grassmannians admit
cellular decompositions. It was conjectured that quiver Grassmannians for rigid
representations of acyclic quivers have property (C). This question is still open but
it is shown by G. Cerulli Irelli, F. Esposito, H. Franzen and M. Reineke in [18] that
quiver Grassmannians for Dynkin quivers have property (C) and if M is a rigid
representation of an arbitrary quiver the corresponding quiver Grassmannians have
property (S). In Section we show that certain quiver Grassmannians for the
equioriented cycle have property (C) and hence also property (S). This will allow
us to use the combinatorics of the coefficient quiver in order to study properties
of the corresponding quiver Grassmannians. In Chapter [5] and Chapter [f] this is
applied to examine approximations of the affine Grassmannian and the affine flag
variety.

4.2. About C*-Actions
Let X be a complex projective variety with an algebraic C*-action

C'xX—>X

(z,2) — z.x.
Let S be the set of fixed points (stable points) of the C*-action on X, i.e.

S = {xEX:z.x:xforallze(C*}.
For p € S the attracting set X, is defined as
Xp = {xeX:ig%z.x:p}.

If this action has finitely many fixed points, the variety X admits a decomposition
into their attracting sets. For smooth varieties this is stated by N. Chris and
V. Ginzburg in [22| Theorem 2.4.3]. The formulation we gibe below is based on

the article by R. Gonzales [38], Theorem 4.3]. The original version of this theorem
is stated in the article by A. Bialynicki-Birula [6].

THEOREM 4.5. Let X be a normal projective variety with a C*-action and a
finite number of fixed points. The attracting sets of the fixed points form a disjunct

decomposition,
x=x
peS
and this decomposition is an a-partition.

Sometimes decompositions of this from are refered to as Bialynicki-Birula-
decompositions or BB-decompositions because they first appeared in the article by
A. Bialynicki-Birula [5].

COROLLARY 4.6. If the attracting sets X, are affine varieties, a C*-action on
X with finitely many fixed points implies that X admits a cellular decomposition.
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For any topological space X the i-th Betti number b; is defined as the rank of
the i-th singular homology group with integer coefficients H;(X,Z), if this group
is finitely generated [70l p.176]. The Euler-Poincaré characteristic of X is defined

as the alternating sum
X(X) =) (=1)'bs,
i
if there are only finitly many non-zero Betti numbers. If the topological space X
admits a finite cellular decomposition the Euler-Poincaré characteristic of X equals
the alternating sum
X(X) = (1) ex,
k
where ¢, is the number of k-dimensional cells over the ground field R [40, Chapter
2.2.2]. Let The Poincaré series of X is the generating function of the Betti numbers
of X. If X has a cellular decomposition it equals the sum

o0
px(t) = Z cpth
k=0

and the coefficients of t* with & odd are equal to zero since X has property (S).

In our setting X is a finite dimensional variety over C and we denote by by :=
bx(X) the number of cells in X with complex dimension k. We set g := t2, d :=
dim X and call

d
px(q) ==Y brd*
k=0

the Poincaré polynomial of the variety X. Sometimes we also refer to by as the k-th
Betti number. The Euler Poincaré characteristic of X is given by x(X) = px (1).

In Section [£:4] we define a C*-action on certain quiver Grassmannians for the
equioriented cycle and show that it has finitely many fixed points and that the
attracting sets are affine spaces. This implies by the above corollary that these
quiver Grassmannians have property (C) and (S). Moreover by a result of G. Cerulli
Irelli the Euler-Poincaré characteristic of these quiver Grassmannians equals their
number of torus fixed points [16l, Theorem 1]. Computing the dimension of the
attracting sets of the fixed points we obtain the Poincaré polynomial of these quiver
Grassmannians.

4.3. C*-Action on Quiver Grassmannians

In the rest of this chapter we use torus fixed points to compute the Euler-
Poincaré characteristic, the Poincaré polynomial and a cellular decomposition of
quiver Grassmannians for A,,. First we recall two important results by G. Cerulli
Irelli which are the foundation for these computations. For certain quiver represen-
tations the subsequent theorem shows that the quiver Grassmannians correspond-
ing to these representations have non-negative Euler-Poincaré characteristic.

THEOREM 4.7 ( [16] Theorem 1 ). Let M be a Q-representation, m := dim M
its dimension vector and xe(M) the Euler-Poincaré characteristic of the quiver
Grassmannian Gr2(M). For everyi € Qo let B; be a linear basis of k™ such that
for every arrow a : i — j of Q and every element b € B; there exists an element
b € B; and X € k (possibly zero) such that

M,b=M\v.
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Suppose that each v € B; and all its multiples v for X € k* is assigned a degree
d(Av) = d(v) € Z such that:
(D1)  for alli € Qo all vectors from B; have different degrees;

(D2)  for every arrow « : i — j of Q, whenever by # by are elements of B;
such that M,b; and M,bs are non-zero we have:

d(Maby) — d(Mabs) = d(by) — d(bs).

Then
xe(M) = |{N € Gr@(M) : N(i) is spanned by a part of Bi}|.

Subrepresentations with the properties as assumed for the set in the last line
are called coordinate subrepresentations since their vector spaces are spanned by
subbasis of the basis of the surrounding representation. The proof of this theorem
is based on the fact that if there is a C*-action on a complex projective variety with
finitely many fixed points, the Euler-Poincaré characteristic of the variety equals
the number of fixed points. Constructing a C*-action on the quiver Grassmannian
which has the coordinate subrepresentations as fixed points yields the statement
of the theorem.

Let M be a representation in Ry, (@) and B, a collection of basis B; of the
vector spaces k" belonging to the representation M.

DEFINITION 4.8. The coefficient quiver T'(M, B,) is a quiver whose vertices
are identified with the elements of B, and the arrows are determined as follows:
For every arrow « : i — j of @ and every element b € 5; we expand M,b in the
basis B; and draw an arrow from b € B; to b’ € B, if the coefficient of b’ in this
expansion is non-zero.

By T?F(M, B,) we denote a successor closed subquiver T of I'(M, B,), i.e.
a subquiver T" where « : ¢ — j is an arrow of T when ever it is an arrow of () and
i € T is a vertex of T'.

PROPOSITION 4.9 ( [16] Proposition 1). Let M be a Q-representation satisfying
the hypotheses of Theorem [£.7} Then

Xe(M) = [{TCT(M,B,) : |Toy N Bi| = e;, for all i € Qo }|
where Tj) denotes the vertices of T'. In particular ye(M) is positive.

Once we established a torus action suiting the requirements of Theorem [£.7]
we can use this proposition to determine the Euler-Poincaré characteristic of quiver
Grassmannians for A,, combinatorially. We have a closer look at coefficient quivers
and some examples in Section [£.5]

4.4. Cellular Decomposition

In this section we want to define a torus action on the quiver Grassmannians
for A,, satisfying the conditions of Theorem For this purpose we need the
realisation of the quiver Grassmannian coming from the universal Grassmannian.
In the previous chapters we worked over an algebraically closed field of character-
istic zero. From now on we restrict us to the case k = C because this is required
for the computation of the cellular decomposition and some of the results in later
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chapters are based on the existence of the cellular decomposition. We consider
quiver Grassmannians for the representation

M :=U(d) := @ Ui(N) ® C*
1€Ly
and denote its dimension vector by m := dim M. This is the same class of quiver
representations as introduced in Chapter [3] but for this section it is more conve-
nient if we do not distinguish between projective and injective representations. A
subrepresentation of M is viewed as a collection of vector spaces

V= (Vi)iGZn € H Gr, (C™) = Gre(m)
1€Qo
which are compatible with the maps M, corresponding to the quiver representation
M,ie
Mz(‘/z) - ‘/i+1 for all i € Z,,.

Following Theorem [4.7] we can assume by rescaling that there is a basis

Bi = {vl(j)}ke[mi]

of the space C™: for all i € Z,, such that Miv,(f) is equal to zero or given by a

basis vector v,EHl) € B;11. This basis B, is called standard basis of M. Now we
renumber the basis elements such that
() _  (i41)
M;v,” = Vktdii
holds for all i € Z,, whenever it is non-zero. Here d; is the multiplicity of U;(N) as
summand of M. This order is well defined and unique up to changing the order of
the copies of U;(NV). It induces the grading

d(v,(j)) =k

which satisfies the conditions of Theorem '

A segment of M is a maximal collection of vectors {v,(:)} C B, such that
there is a unique starting point v,(cz) and every other element v,(j) of the collection
can be computed by applying a sequence of maps M, to the starting point which
corresponds to a path starting in ¢ and ending in j (possibly going around the
cycle more than once). The segments of M correspond to the indecomposable
representations U; (N).

Using this grading, we can define a torus action on the quiver Grassmannian
where an element A of the torus T := C* acts on M as

b= A0

for every element b € B,. By linearity this action extends to all elements of M and
also to the quiver Grassmannian [16], Lemma 1.1].
For a torus fixed point L € Gr5 (M)T its attracting set is defined as

e(L) = {V € Grg (M) : lim AV = L}

Following the approach in Section 6.4 of [19] we obtain the subsequent result.
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THEOREM 4.10. For every L € Gra(M)T, the subset C(L) C Gra» (M) is an
affine space and the quiver Grassmannian admits a cellular decomposition

Griom(M)= [ cw).

LeGran (M)T

PROOF. We use the action of the torus T’ on the quiver Grassmannian Gr2 (M)
introduced above to define a cell decomposition of the product of classical Grass-
mannians Gre(m). Considering the torus fixed point L as a collection of subspaces
L € Gre(m) we define the cells

C(L;) == {v € Gr,, (m;) : lim \.V; = Li}
A—0
for every i € Z,,. This induces a decomposition of the classical Grassmannians
Gre, (m;) = H C(L;).
LeGre, (m;)T
For a representation N in an attracting set of a torus fixed point L we have
VeC(L) eV eGre" (M) and lim \.V =L
—
&V e Gre (M) and lim \.V; = L; for all i € Zy,
—

e VeGr(M)n [] cL).
i€Zn
Hence the cell decomposition of the classical Grassmannians is compatible with the
structure of the quiver representations, i.e.

C(L) = Grg (M) 0 [ c(Ls)
i€Ln,

and we have the desired cell decomposition of the quiver Grassmannian. It remains
to show that the cells in the quiver Grassmannian are affine spaces.
First we show that the cells C(L;) are affine spaces. The space L; € Gre, (m;)

is spanned by the vectors
(o2, o)

for some index set K; := {k1 < ko < --- < ke, }. Here e; is the i-th entry of the
dimension vector e of the subrepresentations in the quiver Grassmannian. Thus a
point V; € C(L;) is spanned by vectors

[l ), @)
of the form _ -
wgz) :Ul(c?‘F Z u§-2v§-z)
i>ks,JEK;

with coefficients ﬂgl)s € C because these vectors parametrise all spaces V; with limit

L;. Hence the cells C(L;) are affine spaces for all i € Z,.

In order to prove that the cells in the quiver Grassmannian are affine we have
to describe the coordinates in the intersection of the cells in the classical Grass-
mannians with the quiver Grassmannian. Let V' € C(L) be a point in the some
cell. Like above it corresponds to a collection of spaces V' with V; € C(L;) which is
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parametrised by the collection of coefficients {ugll} The conditions M,V,, C Vi,

for all arrows « of A,, translate to Miwsi) being included in the span of

[wffHD, uftD, ).

s Wer
If Miwgi) is non-zero, this leads to the equation
Miwgi) = Mﬂ)l(j) + Z MggMﬂ}j(l)

j>ks 1]¢K1

_ ,(+1) } : (@), (i+1)
- Uks+di+1 + Hjxsvj+di+l
>k i €Ki, Miv ) £0
i+1 . .
where Ul(c“; d)_+1 € L;4+1 because L is a subrepresentation of M.
This vector is included in V;41 if it lives in the span of

{w§i+1)7 wit, . ,wéiﬂ)}
and this is satisfied if and only if
0O (D) (1) (i4+1) (i+1)
leg) - ws+di+1 - Uks+di+1 + Z Hjs "5

J>kstdip1,jEKit1

_ . (+1) E (i+1) (i+1)
- vks+d1:+1 + /”Lj+d1:+173 J+dit
i>ks,jtdip1¢ Kt

which leads to the subsequent equality of coefficients

1+1 i i
M§:di)+l,s = u;l whenever Mivj(. ) £0

showing that the cells in the quiver Grassmannian are affine spaces. O

COROLLARY 4.11. The cellular decomposition of the quiver Grassmannian in-
troduces a cellular decomposition of the strata

Sy = 11 c(L).

LeGr5™ (M)T:L2N

ProoF. The stratum of N contains all U € GreA”(M ) which are isomorphic
to N. Thus we have to show that every point U € Griw(M) is isomorphic to
the torus fixed point L attracting it. We show that up to choice of basis U and
L have the same image in Réd)(An, In). For this we need the parametrisation of
subrepresentations via tuples of subspaces in the vectorspaces over the vertices of
A,

Let

{v,(;l), v,(jz), ce 11,(62_ }
be the basis for the vectorspaces over the vertices of A,, for the torus fixed point
L which is obtained as a subbasis of the basis for the vectorspaces corresponding
to the representation M.

Isomorphism classes of representations in Re(A,,Ix) and orbits of the group
GLe in Re(Ay,,Iy) coincide. For an element U of the attracting set C(L) let

{wl 0.,
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be the basis for its vectorspaces over the vertices. By Theorem [1.10| we know that
the coefficients expressing this basis in the basis of L are subject to the conditions

(i+1) (@)

I al s = Hys Whenever Mﬂ;]@ # 0.

These equations together with the parametrisation

il
J>ks jEK;

yield that the maps M; act on both basis in the same way, i.e.

i i+1) . . j i+1
szl(:()> = vl(cz(i>4r)1lf and only if Miw](z) = wj(.:_l ),
J J
Accordingly the restrictions of the maps M; for i € Z, to the basis of the
subspaces coincide for the representations U and L. Hence both subrepresentations
are isomorphic and the strata decompose into the attracting sets of torus fixed
points. ([l

COROLLARY 4.12. The possible types of subrepresentations in Grf "(M) are
given by the fixed points of the torus action.

PROOF. The subrepresentation types are given by the strata. In Section [3.5.2]
we computed that the strata in the quiver Grassmannian are parametrised as

d;
S (A, Iy) = { = (i) € PPN : dimU(1) = e and £ > ei,,m}.

1€Ly k=1

From this information we can directly construct one successor closed subquiver in
the the coefficient quiver of M which has this subrepresentation type. The other
way around we take the length of the segments of a successor closed subquiver
and rearrange them such that they satisfy ¢;; > ¢; y41 for all ¢ € Z, and all
k € [d; — 1]. The resulting tuple is contained in the set above and parametrises a
subrepresentation type of M. O

This corollary will be helpful to deduce information about the structure of the
stratification from the torus fixed points as done in Section [£.7} Moreover it allows
us to prove Proposition |3.19

PrROOF OF PROPOSITION [B.191 The subrepresentations of a quiver represen-
tation M are determined by the successor closed subquivers in the coefficient quiver
of M. There exists an embedding U;(¢) — U; (k) if and only if i+¢ = j+k and k > £.
This is equivalent to the segment of U;(¢) being a successor closed subsegment of
the segment corresponding to U;(k). Thus the embedding of a representation into
M can be decomposed into the embeddings of the subsegments which are of the
form
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4.5. Coefficient Quivers

In this subsection, we want to give some examples of coefficient quivers and
their use before we turn our attention to formulas for the Euler characteristics and
the Poincaré polynomials.

EXAMPLE 4.13. Let n = N = 3 and define X := U;(3)®U2(3) and Y := Us(3).
We compute the dimension of Gr5™ (X @Y) and its Poincaré polynomial using the
coefficient quiver. Following the order of the vector space basis we defined above,
the coefficient quiver of X @Y is given by

o}
O\O
s O\OO

In this coefficient quiver we mark the subquivers using black vertices. The
following list contains all successor closed subquivers T of this quiver satisfying
|T0 ﬂBz\ =e¢; =2 for all i € Zs.

(]

The dimensions of the cells could be directly read of from the picture. We have to
count the white vertices between each starting point of a segment and the center
of the picture. For simplicity we will refer to this as below a point. The dimension
of the cell is given by the sum of these numbers.

Accordingly the first cell is zero-dimensional. The next three cells are one-
dimensional since there is only one white vertex below one of the three starting
points of the segments in each picture. For the last three pictures we have one
white vertex below two of the three starting points and the dimension of these cells
sums up to two.

Collecting this information the Poincaré polynomial of Grﬁ‘” (X®Y) is given
by

Pexay (t) =32 + 3t + 1.

Hence the dimension of the Grassmannian is 2 and its Euler characteristic is 7.

REMARK. The approach to compute the cell dimension as described above
works in the full generality of Theorem
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PROOF. The points in the cells are described by the coefficients
{,ugzz 11 € Zp,s Ele],j>ksand j ¢ Ki}

which are subject to the relations

Mg'l:dlirl,s = uglz whenever Mivj@ # 0.
The number of free parameters in this set is equal to the dimension of the corre-
sponding cell. By the order of the vector space basis it is clear that the number of
parameters ,ugll in the set above is the biggest for the vector corresponding to the
starting point of a segment.

The parameters for the later points of a segment are all determined by these
starting parameters since they have to satisfy the relations above. Hence the num-
ber of free parameters is given as the sum of parameters for the vectors correspond-
ing to the starting points of the segments. By the restrictions j > ks and j ¢ K;
these numbers are given by the number of holes below the starting points of the
the segments. ([l

4.6. Euler Characteristics and Poincaré Polynomials

We use the C*-action defined above to compute the Euler characteristic and
the Poincaré polynomial of quiver Grassmannians for the equioriented cycle.

REMARK. The parametrisation of the strata in the quiver Grassmannians as
introduced in Section [3.5.2] is also suitable to compute the cell structure of the
quiver Grassmannians since cells are in bijection with successor closed subquivers
and for the equioriented cycle these subquivers are parametrised by the set

C (A, Iy) = {1 = (tix) € PN : dimU() = e}.
1€Ln
Introducing a new dimension function arising from the coefficient quivers we can
use this set to compute the Poincaré series of the quiver Grassmannian

G ()

and the cardinality of this set equals the Euler Poincaré characteristic of the quiver
Grassmannian. The code for a program to compute Poincaré polynomials for ap-
proximations of the affine flag variety and the affine Grassmannian which is based
on this parametrisation is presented in Appendix [B] Some of the results of the
computations are presented in the Appendix [C}

Despite this computational description for the Euler characteristic and the
Poicaré polynomial we want to have closed formulas for this data. In the rest of
this section we examine some cases where it is possible to constract such formulas
from the coefficient quiver parametrisation of the cells.

PROPOSITION 4.14. Let M := @,.; Ui(n), e := dimU;(n) and denote the
Euler characteristic of the corresponding quiver Grassmannian by ye(M) and let
Pe m(q) denote its Poicaré polynomial. Then

(i) dimGrs"(M)=n—1
(ii)  xe(M)=2"—1
(i) pem(q) = (¢+1)" —q™
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Proor. Part (i): From Lemma we know
dim Gr3" (M) =k(m —k)=1(n—1)=n—1

where in this setting £ = e; = 1 and m is the sum over the multiplicities of the
Ui(n) as summand of M which is given by n.

Part (iii): For every k € {0,1,...,n — 1} we have to determine the succes-
sor closed subquivers of the coefficient quiver of M corresponding to the cells of
dimension k. Since e = (1,...,1), we have to partition Z, into at most n non-
overlapping intervals in order to find a subrepresentation of M with dimension
vector e = (1,...,1). All U;(n) occur as summand of M with multiplicity one.
Hence the number of cells is equal to the number of subrepresentations and both
are in bijection with the partitions of Z,.

The dimension of a cell depends only on the length of the intervals in the cor-
responding partition because the segments are non-overlapping and the dimension
of a cell could be read of from the subquiver of the coefficient quiver corresponding
to the cell by counting the number of free points below the starting points of the
segments as shown in Section [4.5]

Namely in this setting the dimension of a cell is given by the sum of the length
of a segment over all segments belonging to the cell, where the length of a segment is
given by the number of arrows from the coefficient quiver contained in the segment.
This number is the same as n minus the number of segments corresponding to the
cell.

Accordingly for £ = 0 we have to partition Z,, into n segments of length zero
and there is only one possibility to do this. For &k = n — 1, we have to take one
segment of length n and there are n possibilities to do this.

In general there is a unique partition of Z,, into ¢ segments for every choice of
{ starting points of the segments and this gives all partitions into ¢ segments. The
dimension of the corresponding cell is n — £ and there are (7[}) = (n’i 13) possibilities
to choose the starting points of the intervals. Summing them up we obtain the
formula

n—1
n
o) =3 (1)

k=0

Finally we show
~ n

> (1)t =+
k=0

by induction and plug it into the formula.
Part (ii): By Theorem the Euler characteristic equals the number of torus
fixed points. Hence we get xe(M) = pe (1) which leads to

Xe(M) = pe (1) = zn: (Z)l’“ — (Z)l” =(1+1)"-1=2"-1.

k=0
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LEMMA 4.15. Let M == @,y Ui(n) ® k%, m = > icz, di, € == dimU;(n).
Then

(i) dimGron(M) =Y d;—1

i€Zn
(@) xe(M)= [ (d+1) -1
V€L,
d;+1 _ 1
(i7i)  pe,m(q) = H qT —q".
iEZn q

PROOF. Part (i) follows from Lemma [3.22] again.

Part (ii): We prove this statement by induction over the d;’s. The beginning
of the induction is the result from Proposition [£.14] Without loss of generality we
assume that we get d’ from d by increasing the i-th entry by one. Then

Xe(M') = xe(M) + |{cells using the new U;(n)}|

where the set above contains alls cells with a segment in the new part of the
coefficient quiver. Now we have to determine the cardinality of this set.

For every I C Z,, we can define a unique representation with dimension vector
e = (1,...,1) corresponding to the set I as we did in the proof of Proposition
In the quiver Grassmannian Grs™ (M) for

M = P Ui(n) @ k*
i€Zy,
there are [[,.; d; cells corresponding to this representation.
For a fixed i € Z,, with d; > 0 we consider U;1,,_,(¢) for arbitrary £. There are
21 possibilities to find an I C Z,, with i € I and to every I we can assign a unique
representation. The number of all cells corresponding to these representations is

given by
IT @ +0.
JELy,j#1
Applying the induction hypothesis we obtain

XeM) =[]+ -1+ J] +1)

JE€Ln JE€Ln,jF#i

=di+2) ] W@+n—-1=T]]@+1)-1
JELp,Jj#i JELn
Part (iii): In this case the number of free points below the starting points of
the segments depends on the length of the segments and the index k; € {1,...,d;}
of the copy of U;(n) we embed it in. As seen before the length is determined by
the starting points and thus the cells are in bijection with tuples of the k;’s. By
this correspondence every cell is in bijection with one factor in the product

d;
T (>4)
1€Zn k=0

where we take the power d; — k; whenever a segment embedded into the k;-th copy
of U;(n) belongs to the cell and otherwise the power will be d;. Then the cell
dimension is equal to the exponent of ¢ and in the polynomial its coefficient counts
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the number of cells with this dimension. Hence the only factor in this product
which is not in bijection with the cells is

quEZn i

which we have to subtract. The formula follows by writing the sums as fractions,
ie.

S =

k=0 q—1
O

Yet we are only able to give closed formulas for the Poincaré polynomial if
every entry of the dimension vector e is equal to one. For other dimension vectors
e we would have to consider partitions of multiples of n if we still assume it to be
homogeneous. In the case that e is not homogeneous it is not possible to control
the cells using partitions.

Furthermore this proof relies on the fact that for every 7 at most one segment is
embedded into the copies of U;(N') which is not true for the entries of the dimension
vector e being larger than one. But in the more general setting there are still some
symmetries.

PROPOSITION 4.16. Consider the representation M :=(P,c, Ui(n) ® k| the
dimension vector of subrepresentations e := dim U;(n) ® k? and set m := dim M.
Then

Pe,m(q) = Pm—e,m(q)-

PROOF. The quiver A, is self dual and every cell in the coefficient quiver of
M with dimension vector e corresponds to a cell with dimension vector m — e for
the dual of M which is isomorphic to M. O

Moreover the Poincaré polynomial can not detect permutations of the d;’s. But
this equality does not have to come from an isomorphism of the quiver Grassman-
nians.

EXAMPLE 4.17. Let N = n = 4 and consider the tuples of multiplicities of
indecomposable nilpotent representations d := £(1,2,1,2), d := *(1,1,2,2) and
the dimension vector e := %(2,2,2,2). Then we have an equality of Poincaré
polynomials

Pe,u(a)(q) = pe)U(a)(q) =8¢% +24¢7 + 43¢° + 48¢° + 40¢* + 24¢> + 12¢® + 49+ 1

for the quiver Grassmannians Grs™ (U(d)) and Gran (U(a)) The quiver Grass-

mannian for d decomposes into 66 strata whereas for d we get a decomposition
into 65 strata. Hence the structures of the Grassmannians are different and there
is no isomorphism between them.

We are not able to give an explanation in the general setting but can show that
two Grassmannians with the same Poincaré polynomial share the same motive using
the Cut and Paste property and isomorphisms at the level of cells which are affine
spaces by Theorem [£.10} For definitions and more detail on this see the articles by
T. Beke [4] and M. Larsen and V. Lunts [57]. There are even quiver Grassmannians
for A, with the same Poincaré polynomial and the same stratification which are
still non-isomorphic.
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EXAMPLE 4.18. Let N = n =4, d := ¥(1,2,3,2), d := %(1,3,2,2) and take
the dimension vector e := ¥(2,2,2,2). Then

Pe,v(a) (@) = Do py(a)(t) = 9¢'% + 31¢M" + 71¢*° + 112¢° + 142¢® + 143¢7 + 123¢°
+8¢° + 56¢* +29¢° + 13¢® + 4qg + 1.

Moreover the quiver Grassmannians Grs™" (U(d)) and Grin (U (&)) have the same
stratification. But there is no isomorphism between the quiver Grassmannians
since it is not possible to match the structure of the stratifications and the cellular
decompositions, i.e. there are strata with the same representative but different
cellular decompositions in the different quiver Grassmannians.

4.7. Application to Stratification

In this section we use the coefficient quiver combinatorics to deduce information
about the stratification of the quiver Grassmannians.

LEMMA 4.19. In every Grassmannian GreA" (M) there is a unique stratum of
smallest dimension which is included in the closure of every other stratum. A
representative Be can be found taking the subrepresentation of M corresponding to
the e; inner points of the coefficient quiver at every vertex i € Zy,.

In the following, we refer to Be as base of the stratification. The cell of
this stratum as obtained in the proof of Lemma [£.19] is zero-dimensional. With
the base of the stratification we are able to compute the full stratification of the
quiver Grassmannian using the methods concerning degenerations of orbits and
singularities as developed in the thesis of G. Kempken and recalled in Section (3.1

EXAMPLE 4.20. Let n = 4,N =5, X := U3(5) ® Us(5), Y := Uy (5) & U1 (5)
and

e:=dimX = (1,1,2,1) + “(1,1,1,2) = (2,2,3,3).

The successor closed subquiver in the coefficient quiver of X &Y corresponding to
the stratum of smallest dimension is given as

1

Q

Q

\

4006 e e ® @ 002

\

wOo O @
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This gives the representative
Be = Ua(3) ® Us(3) ® U2(2) ® Ua(2)

and its stratum is one-dimensional. The dimension of the stratum is obtained as
the maximum over the dimension of all cells with this representative.

PrOOF OF LEMMA [4.19] Define the tuple q component wise as
¢; := min{d;, e;}

and consider the representation

Sq = @ S,L ®k%

€Ly

This representation is unique by construction and its orbit Og,_ in the variety of
quiver representations is zero-dimensional. If q = e, this finishes the proof because
Sq is contained in the orbit closure of every representation in Rq(A,,Ix) and the
end points of the segments in the coefficient quiver of M are the inner points over
the vertices.

Now assume that q # e and that there is at least one index i € Z,, such that
q; < e;. Starting at one i € Z, with ¢; < e; and ¢;41 > 0 enlarge the shortest
segment of B := Sq ending at i + 1 € Z,, by one. If there is no unique segment
with this property, enlarge the lowest one of the shortest segments in the coefficient
quiver.

We order the elements j € Z,, by the length the shortest path from j to ¢. The
largest element in this order is ¢ and the second largest is ¢ — 1. We do the same
enlargement as above for the next biggest j < ¢ with ¢; < e;. Here gj41 > 0 is not
required since we take the largest j. We repeat this procedure until dim B = e. It
is clear that this method terminates in a subrepresentation of M with the desired
dimension vector but it might be necessary to go around the circle more than once
until there are no more i € Z,, with ¢; < e;.

This algorithm gives the same representative Be as the approach using the
coeflicient quiver because each step in the algorithm corresponds to taking the
next lowest point in the coefficient quiver of M.

By construction, the representation B, is unique up to permutation of the
summands and the words corresponding to the summands are as short as possible
for a subrepresentation of M with dimension vector e. The orbit Op, is included
in the orbit closure inside Re(A,,Iy) for any U € Gra” (M) by Proposition
Hence its dimension has to be minimal among all elements of the quiver Grass-
mannian and the same holds for the stratification of the Grassmannian because of
Theorem 2.3 O

Let y be a n-tuple of multiplicities of injective nilpotent representations I,
and let x be a tuple of multiplicities of projective nilpotent representations P;. By
Corollary [3:3] we obtain

PlgUZ(N) and Ingj—N—i-l(N)
for P;, I; € repy(An,In). We define

Iq = @ Uin+1(N) @ k%
i€ln
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where d; := y; + z;_n+1 for all ¢ € Z,,. For the tuple x we set

Px = P Ui(N) @ k™.
1€Ln
The tuple of multiplicities q is defined entry wise as
¢i == min{d;, e;}

where e; is the i-th entry of the dimension vector e := dim Pyx. Observe that
S; :=Ui(1) < Ui_n41(N) and hence Se € Gr2" (I,) where

Se = @ Si ®ke7
1€Ln
LEMMA 4.21. The images of the projections from the quiver Grassmannians
Grﬁ" (Id) and Grﬁ" (Iq) to the variety of quiver representations coincide, i.e.

R (A, Iv) 2 RY(A,,1y).

PROOF. The types of subrepresentations obtained from torus fixed points are
the same in both quiver Grassmannians. O

REMARK. This Lemma proves that the two quiver Grassmannians in Exam-
ple have the same stratification.

Hence for a fixed dimension vector e the stratification of the quiver Grass-
mannian Grs™ (Ia) stays the same if we increase entries of d which are already
bigger than the corresponding entry of e whereas the number of torus fixed points
of this Grassmannian grows exponentially fast. Moreover for a fixed e there are
only finitely many d’s leading to different stratifications of Grﬁ" (Id).

It is possible to classify these d’s using the property above and the fact that
the structure of the quiver Grassmannian GreA" (Id) does not change with cyclic
permutations of the entries in e and d.



CHAPTER 5

The Affine Grassmannian and the Loop Quiver

The loop quiver is an equioriented cycle for n = 1. In this chapter we want
to apply the theory developed for the quiver Grassmannians for the equioriented
cycle in Chapter [3] to study finite approximations of the affine Grassmannian. We
define linear degenerations of the affine Grassmannian and study the finite approx-
imations of the partial degenerations based on the same approach. For the Feigin
degeneration of the affine Grassmannian, these approximations were developed and
studied by E. Feigin, M. Finkelberg and M. Reineke in [30].

The constructions and methods used in this chapter are similar to what is
needed for the study of the affine flag variety in Chapter [6] Both chapters are in-
dependent of each other but in this chapter the notation is less complicated. Hence
it can be viewed as motivation or preparation to the more general constructions
given in the chapter about the affine flag variety.

5.1. The Loop Quiver

The loop is a special case of an equioriented cycle and some of the results about
quiver Grassmannians for the cycle can be sharpened or simplified in notation for
the loop quiver. In this section we modify the constructions for the equioriented
cycle A,, as introduced in Chapter |3[to the special case of the loop quiver

o

A = O.l

The loop has only one arrow such that all paths consist of concatenations of
this arrow. Hence the path algebra CA; is isomorphic to the polynomial ring in
one variable C[t]. The generating paths of the ideal Iy boil down to the single path

p(N):= (1] o™ |1).

Accordingly the bounded path algebra is isomorphic to the truncated polynomial
ring, i.e.

AN = (CAl/IN = C[t]/(tN)

The indecomposable nilpotent representations as determined by Proposition [3.2]
are denoted by U, and have coeflicient quivers of the shape

YA /N
[ ] [ ] [ ] ce [ [ ]
by b bs be_1 by

71
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They are all isomorphic to a truncated polynomial ring, i.e.
U, = C[t]/(t°) = Ay.

Moreover the projective and injective representations in rep(Aq, Iy ) are isomorphic
and there is exactly one indecomposable projective/injective bounded representa-
tion since the loop has only one vertex, i.e. Pl(N) = Il(N).

For the loop quiver, the class of quiver Grassmannians we introduced in Chap-

ter [3] for the equioriented cycle reads as

Griy (Ay 9 CH)
where z,y € N. It is possible to apply the results from Chapter [2] since Ay is an
injective representation of the loop quiver.

5.1.1. Homomorphisms of Representations of the Loop Quiver and
Words. The alphabet (i.e. the set of vertices) for the words corresponding to inde-
composable representations of the loop quiver only consist of one letter. Hence the
dimension of the space of homomorphisms between indecomposable representations
of the loop is given by the length of the shorter word.

ProrosITION 5.1. For two indecomposable representations U, and Uy of the
loop quiver, the dimension of the space of morphisms from U, to Uy is given by

dim Homa, (Ug, Uk) = min {6, k:}

PROOF. The loop quiver is an equioriented cycle with only one vertex. The
words corresponding to the indecomposable representation are repetitions of the
same letter. Adapting Proposition to this setting yields the claimed formula.

|

This statement can also be proven by a direct computation using the shape of
the maps belonging to the quiver representations U, and Uy and the commutativity
relations defining morphisms of quiver representations.

5.1.2. Geometry of Quiver Grassmannians for the Loop Quiver. The
formula for the dimension of the space of homomorphisms allows us to compute
the dimension of this special class of quiver Grassmannians.

ProPoOSITION 5.2. Let N € N and z,y € N. Then the dimension of the quiver
Grassmannian for the loop quiver computes as

dim Gr2y (Ay ® C*MY) = Nay.
PROOF. Since the loop quiver has only one vertex, we can apply Proposi-
tion [3:21] to every N and obtain

dim Homa, (U7 U) > dim Homa, (AN QC" AN ® (CI)

for all U € Gr?j\,\’ (A N® (C“‘y). Accordingly the dimension of the quiver Grass-
mannian computes as

dim Grfj\," (AN ® (C”H'y)
= dim Homa, (Ay ® C*, Ay ® C**Y) — dim Homa, (Ay ® C*, Ay ® C*)
= dim Homax, (AN QC*, AN ® (Cy)
= dim Homa, (AN, AN)xy
= Nuy.
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Here the last equality follows by Proposition [5.1] and the linearity of the space of
homomorphisms yields the other equalities. O

PrOPOSITION 5.3. The quiver Grassmannian
Gy (Ay © C*H)
is irreducible, normal, Cohen-Macaulay and has rational singularities.

ProOF. By Lemma we know that the irreducible components of this
quiver Grassmannian satisfy these properties because the loop quiver is an oriented
cycle with one vertex. The parametrising set of the irreducible components as
determined in Lemma [3.23]is given as

Ca(z +y) = {pe LZ>o:p < x+y,p:w}-
It contains only the element p = x. (Il

5.1.3. Parametrisation of the Image in the Variety of Quiver Repre-
sentations and the Orbits therein. The parametrisation of the image of the
quiver Grassmannian for the loop quiver in the variety of quiver representations
by relations and morphisms is given in the subsequent proposition.

PROPOSITION 5.4. For m := x + y, the image of the quiver Grassmannian
Gri¥ (Ay ® C™)
in the variety of quiver representations is parametrised as

R;%)(Al,IN) = {U € Run(A1): U(iv = 0 and corank U, < m}.

PROOF. For the loop quiver there is only one generating relation of Iy be-
cause there is only one arrow. The computations in Section [3.5.1] concerning the
dimension of the space of morphisms are true for an arbitrary number of vertices
in the cycle. Hence we obtain a similar description of representations embedding
into Ay ® C™ based on the rank of the map U,. O

For the parametrisation of the orbits based on the decomposition into inde-
composable representations we obtain the following result.

ProroSITION 5.5. The GL,y-orbits in the variety of quiver representations
Rzn(A1,In) which correspond to strata of the quiver Grassmannian

Grig (Ay ©C7)

are parametrised by the set

S (A In) = {1e [NJg' s 3 6y = o and £y > b }.
k=1

PROOF. The dimension vectors for representations of the loop quiver have only
one entry. We obtain that the dimension vector of a indecomposable representation
is equal to the length of the word corresponding to the representation. Hence the
condition about the dimension vector of the subrepresentation can be replaced by
a summation of the length of its direct summands. The other simplifications also
come with setting n = 1. O
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5.1.4. C*-Action and Cellular Decomposition of Quiver Grassmanni-
ans for the Loop Quiver. Define My := Ay ® C*TY. The vector space V of the
quiver representation My over the single vertex of the loop quiver has dimension
mN where m := x + y. We label the standard basis of the vector space V' by

B :={v1,v2,...UmN—1,UmN}.
The grading
d(vg) =k
of the basis B satisfies the assumptions of Theorem [I.7] Hence the Euler Poincaré
characteristic of the Grassmannian Grfj\," (My) is given by the number of torus
fixed points in this Grassmannian for the action
C* xV =V (\b) = Ab:=\Op,

Restricting the number of vertices to one we derive the subsequent statement from
Theorem .10} The proof of the special case works analogous to the general version.

PROPOSITION 5.6. For every torus fixed point L € Grfj\," (My)T, the attracting
set C(L) C GrN (My) is an affine space and the quiver Grassmannian admits a
cellular decomposition

Giymy) = [T cw).

LeGraN (My)T

By Proposition [1.9] we know that we can count successor closed subquivers in
the coefficient quiver of My in order to determine the number of torus fixed points
of the quiver Grassmannian.

The coefficient quiver of the representation My can be drawn as follows

../.\//.\/ ././..//

Y .\/.\//.\//./

In each block we have m dots corresponding to the m indecomposable representa-
tions My consists of. There are N blocks and the i-th point in the k-th block has
one outgoing arrow to the i-th point in the k + 1-th block. For better visibility we
decide to draw no complete arrows. Otherwise we would have very long or a lot of
crossing arrows in the planar picture.
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The successor closed subquivers described by Proposition[4.9] contain N of the
mN points in the coefficient quiver of My. Each subsegment in the m segments
has to be successor closed. Hence it is uniquely described by its length which can
vary between zero and N. Collection the length of all subsegments in the segments
of My is sufficient to describe the corresponding successor closed subquiver. This
yields the subsequent parametrisation of the cells.

ProprosITION 5.7. The cells of the quiver Grassmannians for the loop are
parametrised by the set

™ (A, Ty) = {1 E iﬁk = xN}.
k=1

The cardinality of this set is equal to the Euler Poincaré characteristic of these
Grassmannians. In Section [5.8 we compute the cardinality of this set for the special
case ¢ = y. We can also use this set to compute the Poincaré polynomial for the
quiver Grassmannian by defining a function computing the dimension of the cells
which is based on this parametrisation.

5.1.5. Poincaré polynomials of Quiver Grassmannians for the Loop
Quiver. This section is devoted to the description of the Poincaré polynomial for
the quiver Grassmannian

Gri¥ (Ay ®C™).
In Chapter [4] we have seen that the dimension of a cell equals the number of holes
(i.e. white dots) below the starting points of the segments in the successor closed
subquiver corresponding to the cell. Now we describe how to compute this number
directly from the length of the segments.

ProproOSITION 5.8. The function
h:COW (AL IN) —Z
p—h(p) = > h;(p)
j€[m]
where
h;(p) := max {0, (m—1)p; —j+ 1}
— ( Zmin{pi,pj} + Zmin {pi, max{p; — 1,0} } )
i>j i<j
computes the dimension of the corresponding cells in the quiver Grassmannian
Gri¥ (Ay @ C™).

PROOF. It remains to show that the function h;(p) counts the number of holes
below the starting point of the j-th segment in the coefficient quiver. The length
of this segment is given by the number p;. Accordingly

maX{O,m —j+(m-=1)(p; — 1)} = max {O, (m—1)p; —j+ 1}
is the number of points below the starting point of the j-th segment which do not
belong to the segment itself. From this we have to subtract all points which belong
to other segments. For this we have to distinguish segments with endpoints above

the endpoint of the j-th segment and segments with endpoints below the endpoint
of the j-th segment. This corresponds to the cases i < j and ¢ > j. For ¢ > j, the
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number of points from the i-th segments which are below the starting point of the
j-th segment is given by
min{p;,p;}.
For i < j, the starting point of the i-th segment is above the starting point of the
j-th segments if both segments have the same length. Hence the number of points
from the i-th segment which are below the starting point of the j-th segment is
given by
min {pi,max{pj — 1,0}}.
O

Combining this dimension function h with the parametrisation of the set of
cells Cg(j\;ry) we obtain the subsequent description of the Poincaré polynomials.

PROPOSITION 5.9. The Poincaré polynomial p, , n(t) for the quiver Grass-
mannian

Gri (Av ® C™H)

PeyN(t) = Z th(P)

(z+vy)
peC,

is given by

REMARK. The parametrisation of the cells and the function to compute their
dimension we have introduced in this section is suitable to be implemented as
a computer program as done in Appendix [B:2} With a program following this
approach we computed all the examples for Poincaré polynomials in this chapter
and more examples are given in Appendix [C.2]

5.2. The Affine Grassmannian

DEFINITION 5.10. Let G be the Kac-Moody group corresponding to the affine
Kac-Moody Lie algebra g. For the maximal parahoric subgroup P = P, of G the
affine Grassmannian is defined as

GI‘(E) = é/Po

In this chapter we study the affine Grassmannian for the affine Kac-Moody
Lie algebra gln and refer to it as the affine Grassmannian. In order to identify its
approximations with quiver Grassmannians we need a different description of the
affine Grassmannian which is closer to the subspace interpretation of the classical
Grassmannian. It is possbile to identify the affine Grassmannian with the set of
lattices as shown for example in the survey by U. Gortz [37]. But there is an other
approach which realises the affine Grassmannian by a construction which is even
closer to the classical interpretation. This is based on the embedding g[n C gl
and is described in the article by V. Kac and D. Peterson [45].

Let V be an infinite dimensional vector space over C with basis vectors v; for
i € Z and consider the subspaces

Ve = Span(vévvf—lvvf—Qa o )

which are infinite in the direction of the negative indices.
The Sato Grassmannian SGr,, is defined as

SGr,, := {U CV : Thereexistsal <ms.t. Vo, CU and dimU/V, =m — ¢ }
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The points in this Grassmannian are vector subspaces of V' which are infinite in
the direction of negative indices. But for each space there exists a number ¢ such
that the part of the vector space living above the vector v, is finite dimensional.
More precisely every point in SGr,, can be described as

U:span({vi:igé}u{wk:kel})

where |I| = m — ¢ and the wy, are linear independent combinations of the v;’s with
i > {. For example

Vi and Spaﬂ({vi 1 <m— 3} U {Um+1, Um+5, Um+13}>

describe points in the Sato Grassmannian SGr,,.
There exists an alternative parametrisation of the affine Grassmannian as a
subset in the Sato Grassmannian SGry. Let

Sp V=V v = vy,
be a shift of indices by n.

PROPOSITION 5.11. As a subset of the Sato Grassmannian SGrq the affine
Grassmannian is described as

Gr(gl,) = {U eSCr: Ucs,U}.

ProorF. In [30] E. Feigin, M. Finkelberg and M. Reineke introduce the affine
Grassmannian as

Gr(gl,) = {UeSCry: Uct U}

This description goes back to V. Kac and D. Peterson who studied representations
of gl,, and gl in [45]. The infinite dimensional vectorspace V is identified with
C" @ C[t,t~1] via

Un(h—1)4j = € @1
where {e; : i € [n]} is the standard basis of C™. With this identification of vec-

torspaces the multiplication by ¢t~! in C" @ C[t,t~!] corresponds to an index shift
by n in the basis of V. O

5.3. Finite Approximations by Quiver Grassmannians for the Loop

In this section we define the Feigin-degenerate affine Grassmannians Gr® ( gA[n )
and approximate them by quiver Grassmannians for the loop quiver. This con-
struction was introduced by E. Feigin, M. Finkelberg and M. Reineke in [30].

On V we define the projection

0 ifi=k
pric: V.=V v = { v; otherwise.
DEFINITION 5.12. The degenerate affine Grassmannian is defined as
Gra(gA[n) ={U €SGrg: prUC s,U }
where

pr := pr; Opry 0 -0 pI,,.
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We refer to this degeneration as the Feigin degeneration of the affine Grass-
mannian if we have to distinguish between different degenerations because it is
defined analogous to the interpretation of the Feigin degeneration of the classical
flag variety by E. Feigin [29] Theorem 0.1].

For a parameter N € N the finite approximation of the degenerate affine
Grassmannian is defined as

Grd (gl ) = { UeGr(gl,) : Vigy CUC Viy }

REMARK. In [30, Definition 2.2] the approximations are defined by the condi-

tion
C"et"CitjcU cC" ot NCt.
This is equivalent to our description because of the identification of basis we made
above. Namely the basis vector v, corresponds to e, ® t~ since
n(N —1)4+n=nN.
This is the biggest possible index in the basis of V' which the basis elements of
C" @ t~NCJt] can have. The basis vector v_,y corresponds to e, ® tV because
n(—N —1)+n=—nN.

This is the biggest possible index for the basis elements of C* ® tNC[t].

Finite approximations of Sato Grassmannians are the same as classical Grass-
mannians.

ProprosITION 5.13. For £ € N and m < { the approximation
SGrp g = {UeSGrm : V,chch}
of the Sato Grassmannian SGr,, is isomorphic to the classical Grassmannian
Grose(20) = { UcC¥: dimU=m+ e}.

PROOF. Let U be a point in the classical Grassmannian Gry,4¢(2¢). It is of
the form
U= span(wl,wg, . ,wm+g)
where the w;’s are linear independent linear combinations of the standard basis
vectors e; of C*. Namely every w; is of the form

20
wy; = E )\1‘61'
i=1

with \; € C. The vectors

20 ¢
Wy = E Ai Vo1 = E Aot1-i Vs
i=1

i=—f+1
are linearly independent in V. We define

U := span({vi 11 < —é} U {@17@,...,@%4})

which describes a point in the approximation SGry, . For a different choice of

the basis of U we obtain the same point U in the approximation of the Sato
Grassmannian. Moreover this map

¢ : Gropye(20) — SGrpp; U U
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is injective.
Let U be a point in SGr,, (. By definition we have V_, C U C V; and
dim U/V_y; = m + £. This means that we can write it as

U= span({vi 1 < —E} U {121,1]2, SN ,ﬂm+g})

where the 1;’s are linear independent linear combinations of the basis vectors v; of
V with —¢ < i < £. Hence every 1; is of the form

14
ﬂj = Z HiU;.

i=—0+1

Accordingly the vectors

‘ 20
Uj = E Hi€e+1—i = E He+1—i€5
i=1

i=—f41
are linearly independent in C?¢ and
U = span(ul, U, . . . ,um_,_g)

describes a point in the classical Grassmannian Gry,1,(2¢). This is again indepen-
dent of the choice of the basis for U. The map

Y : SGrpp — Crypig(20); U = U
is injective and inverse to the map ¢. ([
This observation about the shape of approximations of Sato Grassmannians

allows to identify approximations of the affine Grassmannian with quiver Grass-
mannians for the loop quiver.

PROPOSITION 5.14. For every N € N the approximation Gr?\,(gA[n) of the de-
generate affine Grassmannian is isomorphic to the quiver Grassmannian
GryyY (Ay ® C*")
where Ay = C[t]/(tY) is the truncated path algebra for the loop quiver with paths
of length at most N.

For the loop quiver there is exactly one indecomposable bounded injective and
one indecomposable bounded projective representation. Both are isomorphic to
the truncated path algebra Ay of the loop quiver.

ProOOF. The vector space R corresponding to the quiver representation Ay ®
C?" is 2nN-dimensional. We label its standard basis vectors by r; for i € [2nN].
The map M, : R — R which corresponds to this quiver representation is given by

0 if i+n>2nN
Ma:rin—>{0 ifie{nN,nN—-1,....,nN—n+1}
Tit+n  Otherwise

In other words

Ma =S OPIry,NOPTy,N—109 " " OPIy,N—n+1-
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This description of the map M, is obtained as follows. Ay is isomorphic to
the bounded projective representation Pl(N) and bounded injective representation

I{N) of the loop quiver. Hence we can view Ay ® C?" as

Megcrer™ g

which is analogous to the general case studied in the section about the quiver
Grassmannians for the equioriented cycle. In the coefficient quiver of this repre-
sentation we arrange the segments corresponding to the injective summands above
the segments of the projective summands, i.e.

1

A

n+1

\. n(N —1)+1

2n(N — 1) + 1

\ 2nN

In this picture the arrows go from ¢ to i + n if both indices are smaller than n/N
or both are strictly bigger than n/N. From this picture we obtain the map M, as
introduced above.
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The points in the quiver Grassmannian can be identified with points U in the
classical Grassmannian Gr,y(R) such that M, (U) C U. By the identification of
points in Sato Grassmannians and classical Grassmannians as above, this corre-
sponds to the points U in the approximation SGrg,nn such that

s_noprUC U.

This condition is equivalent to the description of the approximation of the affine
Grassmannian as subset of the Sato Grassmannian SGry. (Il

5.4. Linear Degenerations

In this section we describe linear degenerations of the affine Grassmannian fol-
lowing the degeneration approach by G. Cerulli Irelli, X. Fang, E. Feigin, G. Fourier
and M. Reineke as introduced in [19]. For a map f : V — V define the f-
degenerate affine Grassmannian as

Gt/ (gl,) := {U € SGr : f(U) C 5, U}.

If f is a linear map, the degeneration is called linear. The degenerations we study
here are choosen such that the quiver Grassmannians approximating them can be
studied using the methods developed in this thesis. Even for this small class of
maps the degenerations behave very different from the linear degenerations of the
classical flag variety studied in [19]. For this reason we do not consider a more
general class of degenerations here.

For

f=pryopryo---opr, =:pr
we obtain the Feigin degeneration of the affine Grassmannian
Gra(g[n) = {U € SGrg:prU C an}

as studied in [30].

The goal of this section is the characterisation of the intermediate degenerations
between the Feigin degeneration and the affine Grassmannian. For integers n and
k the set of k-element subsets of [n] := {1,2,...,n} is defined as

([;j) = {1 ) 111 =k and i, # i, for all p,.q € K] with p # q}.

Take an index set [ € ([Z]) with I = {i1,...,i;} and define the function
pry i=Ppr;, Opr;, 0--- 0PI, .
Let I = [k] for k € [n] and define
G (g, ) == o (g1, )
which is called the standard partial degeneration to the parameter k.

LEMMA 5.15. For every linear map f : V. — V with corank f = k there is an
isomorphism of degenerate affine Grassmannians

Crf (gl, ) = Gr* (gl ).



82 5. THE AFFINE GRASSMANNIAN AND THE LOOP QUIVER

The proof of this Lemma will be divided into several parts. At first we want
to construct approximations of the standard partial degeneration to the param-
eter k. Later we prove that all partial degenerate affine Grassmannians admit
approximations by quiver Grassmannians for the loop quiver and identify their
approximations with the approximations of the standard partial degeneration.

The approximations by quiver Grassmannians for the loop quiver exist for a
much bigger class of degenerations than introduced above. But the examination
of the degenerations we introduce here shows that already for this class we lose
some properties of the corresponding quiver Grassmannians which were used in
the previous chapters. Namely we can not describe the approximations by quiver
Grassmannians containing subrepresentations of representations which only consist
of injective representations of the loop. Hence we can not apply Theorem [2.3] and
can not study the variety of quiver representations to understand the geometric
properties of the quiver Grassmannian.

For this reason we restrict our further study to the linear degenerations of the
affine Grassmannian between the Feigin degeneration and the non-degenerate affine
Grassmannian. Some of the results about the geometric properties of the corre-
sponding quiver Grassmannians as introduced in the first section of this chapter
are generalised to this setting later.

LEMMA 5.16. For every N € N the approzimation Gr’fv(gA[n) of the degenerate
affine Grassmannian is isomorphic to the quiver Grassmannian

Gy (Ay © C* @ Ay @ C7).
PROOF. The vectorspace R corresponding to the quiver representation
MY = Ay @C* @ Ayy @ C*F

is 2n/N-dimensional. It is possible to arrange the segments in the coefficient quiver
of M 1’3 such that the map M, corresponding to this representation is given by

My = $n0pr, Ny OPr,N_1 0 " ODPIyN_ft1-

The nN-dimensional subrepresentations of M J’f, are described by the points U in
the Grassmannian Gr,y(2nN) satisfying M, (U) C U. This Grassmannian is iso-
morphic to the approximation SGrg x of the Sato Grassmannian SGrg. Following
the isomorphism of Grassmannians the map M, corresponds to the map

M, =5 _poprjopryo---opry:V =V

which parametrises the points in the approximation of the affine Grassmannian by
the condition M, (U) C U for U € SGrg . O

With the same methods we can construct the approximations of the other
degenerations where the linear map is projection.

PROPOSITION 5.17. Let I,J € ([Z]), then
Grprr(g[n) =~ GrP™ (gl, ).

PrOOF. Without loss of generality we can assume that I = [k]. For N > 1 let
V(N) be the subspace of V which is spanned by the basis vectors

{vi:—nN<i§nN}.
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The maps
S_p OPry OPry O -+ 0PIy : 7ACAPIENG yaCL))
and
S_pOPr; OPI;, O---O0Dr, : v @)
can be realised by different arrangements of the segments of the quiver representa-
tion
M]]% = AN ® C2k ® Aoy ® crk

hence the quiver Grassmannians providing the approximations of the partial degen-

erate affine Grassmannians are isomorphic and the isomorphism for N = 1 extends
to the isomorphism for all bigger approximations. O

In the same way we prove the isomorphism for the other partial degenerations
of the affine Grassmannian.

Proor oF LEMMA 515l Let N € N be the smallest number such that the
corank of f as endomorphism of V is the same as the corank of f as an endomor-
phism of VN). Then there exists a matrix g € GL3,~(C) such that

g9fg~' =priopryo---opr.
Hence the quiver representations whose quiver Grassmannians provide the approx-
imations of

Gr’fv ( gl, ) and Gr{v ( gl, )
are isomorphic. This isomorphism extends to an isomorphism for all bigger ap-
proximations. 0

From now on we will restrict our study to the degenerations Gr* ( gA[n ) because
their properties translate to all other degenerations in the corresponding isomor-
phism class of partial degenerate affine Grassmannians.

5.5. Ind-Variety Structure

The affine Grassmannian and its linear approximations are in contrast to the
classical case not finite dimensional. Hence we have to give some structure to
their finite dimensional approximation in order to lift geometric properties from
the finite approximations to the infinite dimensional object.

DEFINITION 5.18. A set X is called ind-variety if there is a filtration of finite
dimensional varieties Xy C X; C X5 ... such that

(1) UiZO Xi=X,
(2)  X; = X,y is a closed embedding for all i € Z>.

In this section we construct closed embeddings

O Gz (An @ C* @ Aoy ©C™ %) = Grt3 (Ani1 ®CH @ Agy 1, CF).

These maps provide the ind-variety structure for the finite approximations of
the partial degenerate affine Grassmannian by quiver Grassmannians for the loop
quiver. For the affine Grassmannian and the Feigin degeneration these maps pre-
serve the dimension of the cells in the quiver Grassmannians. This implies that
the ind-topology and the Zariski topology on the ind-variety coincide [71l Propo-
sition 7].
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5.5.1. Ind-Variety Structure of the Feigin Degeneration of the Affine
Grassmannian. Before we introduce the construction of this map in the general
setting, we consider it for the special case of the Feigin degeneration, i.e.

‘I)‘IZV : Grﬁﬁ (AN ® (C2n) — GI(AA},V:i)n(AN_H ® (CQn)
For the definition of this map we need an explicit description for the coordinates
of the points in the quiver Grassmannians. The vector space V corresponding to
the quiver representation My := Ay ® C2" is 2nN-dimensional and we denote its
basis by
B = {”[)1,1127 e ,UgnN}

following the notation in Section

Each point p in the quiver Grassmannian corresponds to a n/N-dimensional

subspace of V which is compatible with the map M, corresponding to the quiver
representation Mpy. It can be written as

p = Span{wy,...,w,n}
with w, € C*N. Below we work out an explicit description of the vectors wy,
following the construction in the proof of Theorem [£.10}

PROPOSITION 5.19. The cells of the quiver Grassmannian

G (A i C7)
are in bijection with the set
Zyn(@2nN):={I C 2nN]: |I|=nN and k+2n e [ if k € I}.

PROOF. The cells are in bijection with successor closed subquivers on nN
points in the coefficient quiver of Ay ® C?*. By definition, every point in the
coefficient quiver is labelled by some basis vector vi. Hence, any full subquiver in
the coefficient quiver of My can be described by a subset I C [2nN]. The arrows
in the coefficient quiver of My are going form the point labelled by v to the point
labelled by vg42,. Accordingly a subquiver is successor closed if and only if k € T
implies that k + 2n € I if the second number is not bigger than 2nN. The correct

dimension of the subrepresentations in the quiver Grassmannian above is obtained
with the condition |I| = nN. O

To an index set I € Z,,ny(2nN) we assign the torus fixed point
pr = Span{vy : k € I'}.
Following the computation in the proof of Theorem we obtain that the

points in the attracting set of p; can be described as Span{ws, ..., w,xN} where
we =g+ Y Ay
J>ks. ¢l

with Ajyon¢ = Aj s € C whenever M, maps vk, to vg,.
The dimension of the cell ¢(py) is obtained as the number of independent
parameters in the set

{Aj,szks efandj>ks,j¢1}.

This number equals the number of holes below the starting points of the segments
corresponding to I in the coefficient quiver of M.
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The coefficients describing a point in the quiver Grassmannian are collected in

a matrix
M()\) € MQn]\LnN(C)

where the s-th column of the matrix has the entries A;; from the description of
the points as above. We set \; ; = 0 if the vector v; does not turn up in the above
sum. Then entry A, s is set to one because vy, turns up with coeflicient one in
the above summation.

We define the map

Uy @ Monnnn(C) = Map(n41)m(nv+1)(C)
where the matrix M := U (M) is defined by

Mp—n,q if n<p<2nN+nand g€ [nN]
ﬁzp7q::{ 1 if ¢ >nN and p—2nN =g —nN
0 otherwise.
This matrix has a block structure of the following shape
_ On,nN On,n
M= M 0,Nn
On,nN idn
where 0, , is a p x ¢ matrix with all entries equal to zero and id,, is the n x n
identity matrix.
Using this map we define the closed embeddings for the ind-variety structure
on the affine Grassmannian. Therefore it needs to send points of the smaller quiver
Grassmannian to points in the bigger quiver Grassmannian.

PROPOSITION 5.20. Let M := M(X) € Mapnnn(C) describe a point in the
quiver Grassmannian
Gy (Ay ® C*).
Then ¥y (M) describes a point in the quiver Grassmannian
A 1 2n
Grn(]\]]\?—+l) (AN+1 ®C )
PrOOF. Each point in the quiver Grassmannian
Grgﬁ(Aﬂz@3C2n)

is contained in some cell which is corresponding to an index set I € Z,,n(2nN).

Hence the point can be described as Span{w;, ..., w,y} where
Wy = Vg, + Z Aj,sVj
J>ks. ¢l
with Ajyon s = Aj s € C whenever M, maps vk, to vg,.
Let
B = {171,’[72, N 7ﬁ2n(N+1)}

be a basis of the vector space V which corresponds to the quiver representation
Mpy+1. The image of the vector ws under the map ¥y is given by

Wy i = \I/N(ws) = 'IN)kSJrn =+ E )\j,sﬂj+n
J>ks, g1

with Ajjpon = Ajs if M, sends vy, to vg,. For k € [n(N +1)]\ [nN], the map ¥y
generates the additional vectors Wy = Up(N41)+k-
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Accordingly the image of Span{ws,...,w,n} under ¥y is given as
Span{wl, ce ,’lI)nN, 62nN+n+1’ ce 362n(N+1)}'
We define the index set I C [2n(N 4 1)] which contains the indices of the first

non-zero coefficient in the rows of the matrix W (M())). By the shape of the map
Wy we know that the set I is obtained from the index set I as

IT={k+n:kel}U{2nN+n+1,2nN+n+2,...,2n(N +1)}.

Now we check that 3
I€Zynty (2n(N + 1)),

i.e. the index set I describes a cell in the quiver Grassmannian

Gr oty (AN ®C).

By definition we know that I has the right cardinality. The index set I satisfies
that £ +2n € I if kK € I. Thus for every k € I there exists an ¢ € N such that
k+2ntl € T and k+2nl € [2nN]\ [2n(N —1)]. This means that k+2n({+1) > 2nN
such that we do not have to consider this repetition for the index set I C [2nN].

In the index set I this corresponds to k + n + 2n(f + 1) > 2nN 4 n. By
construction this element is contained in the index set I because it contains all
indices bigger than 2nN 4+ n. Moreover it is the largest element which has to be
contained in I since k +n + 2n(f +2) > 2n(N + 1).

For smaller ¢ the index k+ 2n/ is included in T if k is included in I because this
part of the index set I is obtained as a shift of I by n and I satisfies this condition.
Accordingly the index set I satisfies the requirements to be included in

It remains to show that the point Span{wy,ws, ..., Wy(n+1)} is included in the
attracting set of the fixed point

Dj = Span{ﬁk ke f}.

The points ¢ in the cell of p; are of the form ¢ = Span{ay, iz, ..., Unn+1)}
where
Us = f),‘cs + Z )\375173.
G>ks, gl

For ks > 2nN + n there are no indices j > k, with j ¢ I because the index set I
contains all indices bigger than 2n/N + n. Thus we have 4, = 0;_ for these indices
and there are n-many of them. This matches the generators

W N+1, WnN+2; - - -, Wn(N+1)

of the image of the point from the smaller quiver Grassmannian.
The other k, € I are obtained as ks + n for k; € I. Hence the condition

J>kej¢l
is equivalent to
J>ksj ¢l
for j = j — n. With this index shift we can rewrite the vectors as
Us = Vpyqn + Z 5‘j+n,877j+n~
J>ks,j &l
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By setting 5\j+n75 = \j s we obtain that the remaining 0, are of this form. Therefore
the point

Span{ﬁ)l, Wa, . . . ,wn(NH)}
is contained in the attracting set of the torus fixed point p;. (I

It remains to show that this map preserves the dimension of the cells in the
approximations.

PrOPOSITION 5.21. The cell in the approximation Gr?v(gA[n) of the Feigin-
degenerate affine Grassmannian which is parametrised by the index set I is of the
same dimension as the cell in Griy,_(gl,,) which corresponds to the index set 1.

PROOF. In the proposition above we have seen that both index sets corre-
spond to cells in certain quiver Grassmannians for the loop quiver. Because of the
C*-action the cells of these quiver Grassmannians are in bijection with successor
closed subquivers in the coefficient quiver of the representation Ay ® C2" respective
ANt1 ® C?". The coefficient quiver of Ay ® C2™ has 2nN points. We can assign
subquiver to an index set I € Z,n(2nN) by colouring the points corresponding
to the indices k € I black and the remaining ones white. The properties of the
index sets in Z,n(2nN) guarantee that this subquiver is successor closed. This
correspondence is bijective as described earlier in this section.

In the coefficient quiver parametrisation we can compute the dimension of cells
by counting the holes below the starting points of the subsegments. The way how
we obtain I from the index set I guaranties that the number of holes below each
segment stays the same by passing from I to I. More precisely we shift all the
segments corresponding to I by n and add only black dots below the lowest hole
of the subquiver corresponding to I. O

In the subsequent example we study the shape of the map between the approxi-
mations in the parametrisation using coefficient quivers. There exists an equivalent
characterisation of the index sets I € Z,,ny(2nN) which helps to compute them.

PROPOSITION 5.22. The cells of the quiver Grassmannian
Griy (Ay & C)

are parametrised by the set

N
Tn oy (20) = {1 = U LS C- CIyC[2n]and Y |I] = nN}.
/=1

PROOF. The cells of this quiver Grassmannian are parametrised by the set

Z,n(2nN). To a tuple I = (I;))_, we assign the index set
Ji=|J {k+2m(-1):kel}
Le[N]

which is contained in Z,, 5 (2nN) because the shifts of the indices do not change the
amount of all indices and the index sets satisfy I, C I,4; for all £ € [N — 1].

Starting with an index set J € Z,,n(2nN) we define

I = {kan(ﬁf 1):keJandk—2n(f—1) € [Qn]}.

The elements of the set J satisfy that k + 2n € J if k € J. This yields k € Iy41 if
k € I;. Again the number of indices is not changed by this map. Accordingly the
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resulting tuple I = (I g)évzl is included in the claimed set. This proves the bijection
since both maps are inverse to each other. O

EXAMPLE 5.23. Let n =3 and N = 2. In the approximation Grg(g[?,) we have
a cell which parametrised by the pair of index sets

I= (Il ={1,4}, I, = {1,3,4,6}).
The corresponding index set J € Zg(12) is given by
J=1{1,4,7,9,10,12} = {1,4,1+ 6,34+ 6,4 + 6,6 + 6}.
The index set J € T9(18) which is computed using the map above is given by
J =1{4,7,10,12,13,15,16, 17,18} = {1+3, 443, 7+3,9+3, 10+3, 12+3}U{16, 17, 18}.

For the successor closed subquivers, the mapping is of the form

|

|

‘/d/‘/‘/d/‘//) PALLEA
CLLLL LA o 5

5.5.2. Ind-Variety Structure of the Affine Grassmannian. In this sec-
tion we use the properties of the approximations of the Feigin-degenerate affine
Grassmannian and the maps between them to introduce the maps for the ind-
variety structure of the non-degenerate affine Grassmannian.

For this purpose we need an alternative description of the cells in the quiver
Grassmannian arising from the successor closed subquivers in the coefficient quiver
of Aoy ® C™. Analogous to approximations of the Feigin degeneration we prove
the following statement.

PROPOSITION 5.24. The cells of the quiver Grassmannian
GryzY (Asy ©C")
are in bijection with the set

70 (2nN) = {I C[2nN]:|I|=nNandk+nelifke 1}.
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Again there exists an alternative characterisation using tuples of index sets.
For the proof of the subsequent proposition we have to replace N by 2N and 2n
by n in the proof of the analogous statement for the approximations of the Feigin
degenerations.

PROPOSITION 5.25. The cells of the quiver Grassmannian
Gl (Aay & C)
are parametrised by the set
2N

Tonon(n) i= {T = (I)eciam s h ST € -+ C Loy € [n] and Y |Io] = n .
=1
We can use the same map ¥y as above to introduce the ind-variety structure
of the non-degenerate affine Grassmannian. The proof that the image of a point p
in the quiver Grassmannian

Gro (Ao © C")
is a point p in the quiver Grassmannian
Az(N41)
Grn(N+1) (A2(N+1) ® Cn)
is similar to the proof for the approximations of the Feigin degeneration. We
describe the points explicitly as the span of certain ws which have the same shape

as above. Only the parametrising index sets for the cells have changed. All steps
in the proof work in the same way. Hence we arrive at an closed embedding

n A n
Oy : Gro3Y (Ao @ C") = Gr, ) (Aavn) @ CT)
which preserves the dimension of the cells.

REMARK. For the parametrisation of the cells by the index tuples in Zoy ., (1)
the map between the approximations has a simpler description than for Z,(2nN).
Namely let I be an index tuple in Zon ,,n(n) then the image of I under the map
®y is given by the tuple I € Ty 19 5 (n+1)(n) Where

I =011 =1, for £ € [2N] and Innyos = [n].

On the level of cells we study the maps between the approximations for the
different parametrisations in the subsequent example.

EXAMPLE 5.26. For n =5 and N = 1, the pair of index sets

I=(L={1,4}, 1, ={1,2,4})

which is included in Z; 5(5) describes a cell in the approximation Gri(gls). Its
image in Z4 10(5) under the map ®y is given by

I=(L=0,I,={1,4},13 = {1,2,4},I, = [n]).
In the parametrisation by one index set, I corresponds to
J=1{1,4,6,7,9} = {1,4,1 4+ 5,2+ 5,4 + 5} € 72(10)
and the image of .J in Z9(20) is given by
J =1{6,9,11,12,14,16,17,18,19,20}
={1+5,44+5,6+57+59+5}U{16,17,18,19,20}.

For the successor closed subquiver interpretation the map is given by
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|

|

S 0o o 0
SASSEI LA AA AL 00 0 5

5.5.3. Ind-Variety Structure of Partial Degenerations of the Affine
Grassmannian. The parametrisations of the cells in the approximations of the
affine Grassmannian and the Feigin-degenerate affine Grassmannian using index
sets or tuples of index sets as studied above are more complicated for the inter-
mediate degenerations. This is the case because in the coefficient quiver of the
representation

MJ]% = AN ® C2k ® Aoy ® crk

the segments do not all have the same length.

Hence it is not possible to describe the maps between the approximations
via the index shift Wy which was used for the Feigin degeneration and the non-
degenerate affine Grassmannian. Nevertheless there exists a universal approach to
compute the assignment of basis vectors in all approximations. It specialises to the
cases studied above.

For the definition of this map we choose the successor closed subquiver parametri-
sation of the cells in order to visualise where the difference in the assignment arises.
In both cases of the map between the approximations that we have studied so far
the number of points in the coefficient quiver grows by 2n. We add n points be-
low and n points above the points of M ]’f, Then we extend the segments of M ]’f,
to the new points matching the structure of M} _ ;. This is the step where the
intermediate degenerations behave different from the Feigin degeneration and the
non-degenerate affine Grassmannian.

EXAMPLE 5.27. We study the map between the coefficient quivers of M ]’f, and
MYk for n =3, N =2 and k = 2. The map between the coefficient quivers of

M2 :=A4,C*® A, ®@C" and M7 := A3 C*® A @ C!
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is given by

)

‘/‘/‘/‘/‘T/’/////'
CLLLLG LA o b A

|

where we coloured the vertices corresponding to the long segment in gray.

The part of the coefficient quiver of M% corresponding to the segments of
Ayn ® C"™ is embedded into the coefficient quiver of Mf, ;. The long segment
and the two upper short segments are extended to the three new vertices below the
embedded quiver. This is analogous to the previously studied embeddings.

But on top of the embedded quiver we have to change the assignment in order
to match the structure of M% 4+1- Namely the other two short segments have
to be extended here such that their starting points are below the other vertices
corresponding to the long segment which is also extended by one point at the top.

In general the image of the coefficient quiver of Ay ® C"** inside the coef-
ficient quiver of M}, determines how the new arrows of this coefficient quiver
have to be drawn. Only for the two special cases studied above they have the
nice interpretation in terms of the index shift. For the intermediate degeneration
the index shift applies only to points in cells whose corresponding subquivers live
completely inside of the coefficient quiver of Ay ® C"**. For the other cells it is
more complicated to describe the mapping of the index sets describing the cells.

Based on the method described above it is possible to define polynomial maps
®fy - Grizy (An @ CH @ Aoy @ C"F) = Gr{2Ve? (An1 @C* @ Ay ®C"F)
for every k € {0,1,2,...,n} such that the image in the bigger approximation is
closed.

Moreover this map sends cells to cells and it preserves the dimension of the
cells if the cell we start with is representable by a subquiver in the coefficient quiver
of Ay @C"™t*. This follows with the same arguments as for the Feigin degeneration
of the affine Grassmannian.
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5.6. The Action of the Automorphism Groups in the Limit

In this section we examine the action of the automorphism groups Auta, (M%)
on the quiver Grassmannians
Gryvy (MY)
for the special case k € {0,n} and if there exists an embedding of automorphism
groups
SDIICV : AutA1 (M]]f/) — AUtA1 (MJ]%-&-l)
which is compatible with the maps

Dy Gr (MY) = Griis, (MR ).

Before we study the the automorphism groups Auta,(My) and Auta, (M%)
we work out the explicit shape of the endomorphisms

EndA1 (AN) = HOIIIA1 (AN,AN)

for the indecomposable nilpotent representation Ay of the loop quiver.
This quiver representation is of the form

Ay = (CN,é‘l)
where the map s; : C¥ — C¥ acts on the basis vectors e; as

o { €it1 ifi<N
516 = 0 otherwise.
For a vector v € CN this corresponds to left multiplication with the matrix
H, € My(C) with entries h; ; := §;_1; for i,j € [N]. The endomorphisms of
the representation Ay are all linear maps p : CV — C¥ such that

poHy = Hjop.
The entries of p o Hy are given by
Pij+1 if ] <N
(po Hl sz Wi = Z’Dl KOk—15 = { otherwise.

For H; o p we obtain the entries

N . .
' [ picry ifi>1
H1 °p)i ZHz kPk,j = Z(Sz—lakp’w - { 0 otherwise.

Accordingly we obtaln Pi—1,j = pij+1 for i > 1 and j < N which is equivalent to
Pij = Pi+1,j+1 for 7,7 < N. Moreover we have p; ; = 0 for 7 > 1 and p;,, = 0 for
i < N. This yields that all entries of p above the main diagonal are equal to zero
and that the entries are constant on the remaining N diagonals.

Hence the matrix p is described completely by the values of the entries p; ; for
1 € [N] and these entries are independent of each other. This implies that the space
of endomorphisms of Ay is N-dimensional. The automorphisms of Ay are the
endomorphisms such that p ; is invertible since this implies that the corresponding
matrix p is invertible.

Given a tuple (Ag)ge[n) with entries A, € C we define the entries of the lower
triangular matrix A(\) € Myn(C) by

a-~'—{)\k ifk=i—j+1
“7 L 0 otherwise.
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This matrix is an element of the automorphism group Auta, (Ayx) if Ay # 0 and all
elements of the automorphism group can be described in this way. For this reason
the automorphism group is also N-dimensional.

It acts on the quiver Grassmannian by multiplication from the left with the
vectors spanning a point in the quiver Grassmannian. This description of the
points in the quiver Grassmannians is introduced in the section about the ind-
variety structure and the image of the action is independent of the choice of vectors
spanning the point.

The quiver representation My = Aoy ® C™ corresponds to the map

St (CQnN N (C2nN

and analogous we compute the endomorphisms of My as the matrices in M,y (C)
which commute with the matrix H,, € Ma,n(C). These matrices can be described
as follows. For a tuple

A= (A7) with k € [2N] and 4, j € [n]
let My (M) be the matrix with entries )\S’j) for 4, j € [n]. Define the 2N x 2N block
matrix Ay € M, n(C) with the blocks

A= Mp(\) ifk=p—q+1
P4 0y,  otherwise.

Independent of the choice of A this describes an endomorphism of My and all
endomorphisms are obtained in this way. If we additionally require that the matrix
Mi(N\) € M,,(C) is invertible it is sufficient to describe the automorphisms of My.
Hence the group Auta, (My) is 2Nn2-dimensional.

Based on this description of the automorphism groups we define the embedding

YN : AutA1 (MN) — AutAI (MN-H)
by pn(Ay) := A5 where \ is obtained from \ as
A9 M k< 2N
0 otherwise.

This embedding is compatible with the actions of the automorphism groups on the
quiver Grassmannians.

PROPOSITION 5.28. Let A € Auta,(My) be an automorphism of the quiver
Grassmannian

GrﬁQnN (MN) = GIN(E[” )
Then the diagram

Gra(gl,) ———— Crn(gl,)

CIDNJ % lq’N

Grysa(al,) oA Grysa(al,)

comimutes.
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PROOF. From the section about the ind-variety structure of the affine Grass-
mannian we know that the points p in the approximations are described as

p = Span{wy, ..., w,N}
where
Wi = Vg, + Z /\jﬂg’Uj
J>ke g1
and I € Z0 5 (2nN) is a index set parametrising some fixed point. In this parametri-
sation the action of an element A of the automorphism group of the representation

My on the point p is defined as A.p := Span{Aws, ..., Aw,n}. The image of the
point p under the map

Dy - GrN(gA[n) — GI‘N-&-l(é\[n)
is computed as
Dn(p) = Span({sn’wt ite [nN]} U {”2nN+n+i S [”]}>
On the vectors
{Uan+i S [n]}

an element Ay € Auta, (My) acts with the block M7 (A) which is invertible. Hence
we obtain

Span{vgnN+n+i = [n]} = Span{A,\vgnN_m_H- A= [n]}
On a basis vector vn;+; € C*"V the automorphism Ay acts with the blocks M (\)
for ¢ € 2N — k + 1]. On the image $,Unk+; = Unk+j+n € C2v(N+1) the auto-
morphism ¢y (Ay) acts with the blocks Mp(\) for £ € [2N + 2 — k]. This means
that there is an additional action of the block Man_g+2(A). The image of this
additional action lives on the new basis vectors v; with j > 2nN +n. For the other

blocks the action on the shift of w; lives over the shift of the basis vectors it was
living over for the unshifted version of wj, i.e.

Awy = s_pndN(A)spwy.

It is not important what happens over the basis vectors v; with j > 2n/N+n because
these basis vectors are all included in the generating set of the span and changes
of these entries for the other generators do not affect the span of all generators.
Accordingly we obtain

PN (A.p) = pn(A). PN (p).
O

Now we want to study the case k = n where we have automorphisms of the
representation
Mg = Ay @ C*™"
which corresponds to the map
Sop : CNV 5 €20

Based on the description of the automorphisms of Ay we compute that the elements
of the group Auta, (M%) are parametrised as follows. Let u be the tuple

p= (p9)) with &k € [N] and i, j € [2n]
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and My (p) be the matrix with entries ,ul(j’j) for i, j € [2n]. Define the N x N block
matrix A, € Ma,n(C) with the blocks

A ._{ My(p) ifk=p—q+1
P4 Ogp,2n,  oOtherwise.

The matrix A, is an element of the automorphism group Auta, (M) if and only
if det 41,1 # 0 and this group is 4Nn?-dimensional. We define the embedding

90(11\/' : AutAl (MI%/) - AutAl (MXT+1)
by ©%(A,) := A, where [i is obtained from p as

N { pd i k< N
U 0 otherwise.

REMARK. This embedding is not compatible with the map

% - Gr}lv(g[n) — Gr?\]-‘—l(é\[n)

because for ®4, we have an index shift of the vectors spanning the points in the
Grassmannians by n but the blocks in the elements of the automorphism group
have size 2n.

Moreover it is not possible to define an embedding of the automorphism groups
such that the action is equivariant for the map ®%,. We would have to split the
blocks of size 2n into smaller blocks of size n to be compatible with the index shit
by n. This shift would require a flip of the n x n subblocks on the diagonal of
the 2n x 2n blocks in order to have the same blocks acting on a vector before and
after the embedding ®%,. But the upper right n x n subblock of M;(u) cannot be
embedded into an automorphism of Mg, in order to match its action on ME.
It would have to be located in a block above the diagonal and this is not possible
since these blocks are zero for elements of the automorphism group Auta, (M5, ;).

If we apply ®%,, o @} we have an index shift of 2n and this is compatible
with the embedding %, o 9% of the automorphism group. It is checked in the
same way as for the non-degenerate affine Grassmannian that the square in the
subsequent proposition commutes.

PROPOSITION 5.29. Let A € Auta, (M%) be an automorphism of the quiver
Grassmannian

Gry (Mg) = Gr% (al,,).

Then the diagram

~ A ~
Gry (al,,) Gry (al,,)
PRry1 0Py l 7 Jq)anLl o %
Gr(]lV+2 ( é\[n ) GrI‘31\/'-1-2 ( é\[n )

PN41 ° PN (4)

comimutes.
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5.7. Geometric Properties

In this section we examine the geometric properties of the partial degenerations
of the affine Grassmannian and their approximations which arise from the study
of the corresponding quiver Grassmannians.

The subsequent corollary is an immediate consequence of the results concerning
the quiver Grassmannians for the loop quiver as studied in the first section of this
chapter.

COROLLARY 5.30. Gr?v(g[n) is an projective variety of dimension Nn?. Tt is
irreducible, normal, Cohen-Macaulay and has rational singularities.

PROOF. The first part of the statement follows from Proposition by set-
ting x = y = n. Irreducibility and the geometric properties are obtained from
Proposition U

For the non-degenerate affine Grassmannian there is an analogous result.

COROLLARY 5.31. Gry(gl,) is an projective variety of dimension 2N [n/2|[n/2].
It is irreducible, normal, Cohen-Macaulay and has rational singularities.

PROOF. By Lemma [5.16) we know that the finite approximations of the affine
Grassmannian are given by

Gryy (Azn ® C").

For even n we can apply Lemma to compute the dimension of the approxima-
tions. We set

Xon = Yoy 1= Ay @ C/2
and obtain
dim Gri2Y (Aony ® C") =2N(n —n/2)n/2

which matches the claimed formula since n is even. The irreducible components are
parametrised by the set described in Lemma [3.23] which contains only one element
since the loop quiver has only one vertex. The geometric properties are again
obtained from Proposition [5.3}

For odd n we can apply Theorem since Aoy is a bounded injective repre-
sentation of the loop quiver. This allows us to study orbits in the variety of quiver
representations in order to find the irreducible components of the quiver Grassman-
nian providing the approximation. As in the proof of Proposition [3:21] we know
that increasing the length of the words parametrising an orbit also increases the
dimension of the orbit. Since we only have one letter, it is possible to glue all words
as long as the length of the glued word is not longer than 2N. Hence

U:=A,n@Cl2 g Ay

is a representative of the highest dimensional orbit in the bounded variety of quiver
representations and all other orbits have strictly smaller dimension. It remains to
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compute the dimension of the stratum of U. By Lemma [I.3] we obtain
dim Gry2¥ (M) = dim Homg (U, M) — dim Endg(U)
=2N|n/2|n+ Nn — (2N|n/2]|n/2] + 2N|n/2] + N)
=2N|n/2|(n— [n/2]) + Nn— (2N|n/2] + N)
=2N|[n/2|[n/2] + Nn— (N(n— 1)+ N)
=2N|[n/2][n/2].
O

REMARK. For the Feigin-degenerate affine Grassmannian and the non-degenerate
affine Grassmannian we have show in Section[5.5]that the closed embeddings of the
finite approximations preserve the cell structure and additionally the dimension of
the cells. Hence the ind-topology and the Zariski topology on Gr® (gA[n) coincide by
a result of I. Stampfli [71].

CONJECTURE 5.32. The approximation to the parameter N of the k-linear
degenerate affine Grassmannian is a projective variety of dimension

dim Grly (gt,,) = N (nk +2(n — - {”;kb V‘;kJ)

It is irreducible if k € {0,n} or n—k is even. If n—k is odd it has N +1 irreducible
components.

The proof of this statement requires a completely different approach since the
direct summands of the quiver representation used for the approximation do not
have the same length and hence can not be all bounded injective representations.
This means that looking at the variety of quiver representations does not help to
find the irreducible components of the quiver Grassmannian since Theorem
does not hold in this setting.

Hence there is no closure preserving bijection between orbits in the variety of
quiver representations and strata in the quiver Grassmannian. So far we have no
methods to compute tight upper bounds for the dimension of the strata in the
quiver Grassmannian directly without using the inclusion relations of the orbits in
the variety of quiver representations.

For all computations in the appendix, the above formulas give exactly the
dimension of the Grassmannian and the number of irreducible components. Based
on the methods introduced in this thesis we are only able to show that this formula
gives a lower bound for the dimension of the finite approximations.

PROPOSITION 5.33. The approximation to the parameter N of the k-linear
degenerate affine Grassmannian is a projective variety of dimension

dim Gl (gt,) = N (nk +2(n —  — {”;kJ) V‘;kJ)

PROOF. By Lemmal5.16|the finite approximations are isomorphic to the quiver
Grassmannians

Gy (M)
where
My = Aoy @ C" % @ Ay @ C2F.
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For the computation of the lower bound on the dimension of these quiver Grass-
mannians take the subrepresentation
Uy = Aoy ® CL51 @ Ay @ C7 215"
and compute
dim Gy (My,) > dim Homg (Uy, Mj,) — dim Endg (Uy).

The space of homomorphisms has dimension

dim Homg (Uy, Mj,) :2NLn;kJ(n—k) +N[”;kJ2k
+N(n—2{n;kD(n—k)+N(n—2{n;kD2k
=2 | e N (-2 M5 -

+2N(n - 2{"5%)1@
and the space of endomorphisms has dimension

N e L [ PR AR}

(-2 ) 5+ w25

2
=N ["5 (- [50)) + v (2 M5
Hence we obtain

dim Gr2™ (My,) > dim Homg (Uy, M) — dim Endg (Uy)
—an " e (2[5 Y
+2N(n—2{”ng)k
oV [P (- [P ]) - (21 ))
n—kjyyn—=k n—k
=oN ||| F e v (2P ) - m)
n—=k n—=ki\2
2N (n 2= Je - N (0 -2 2= )
:N(2[n;kJ2+n2—nk—2n{n;kJ+2k[n;kJ+2nk
R R R )
n—=k n—=k|2
(k (”_k){ 2 J_2[ 2 J)

(e 2(n == [257]) 571,

N
N

+2
+2
(]

REMARK. For k = 0 and &k = n we rediscover the formulas for the dimension
of the approximations as computed above. This suggests that the bound is also
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sharp for the approximations of the intermediate degenerations of the affine Grass-
mannian. Moreover the bound is sharp in all examples which were checked using
the computer program.

For the proof that equality holds we need different methods to compute the
strata of highest dimension. A first step in this direction is the generalisation of
the result about the cellular decomposition of the quiver Grassmannians to the
class of Grassmannians which is needed for the approximations of the intermediate
degenerations.

PROPOSITION 5.34. For every L € Gri% (M%)7, the subset C(L) € Gro% (M)
is an affine space and the quiver Grassmannian admits a cellular decomposition

Griyfy = I cw).

LeGrN (ME)T

For k = 0 and k = n this result follows from Proposition But for the
intermediate degenerations not all summands of M¥ are of the same length such
that the torus action on the quiver Grassmannian has to be defined in a different
way.

PROOF. We arrange the segments in the coefficient quiver of M% as in Sec-
tion The assumption d(«) := n + k induces a grading of the vertices in the
coefficient quiver which satisfies the assumption of Theorem [£.7] Hence by Propo-
sition the number successor closed subquivers on n/V vertices in the coefficient
quiver of M ]’f, equals the Euler Poincaré characteristic of these quiver Grassmanni-
ans.

Analogous to the proof of Theorem [£.10] we show that the attracting sets of
the torus fixed points are affine spaces and describe a cellular decomposition of the
quiver Grassmannian. (I

Using the shape of the coefficient quiver of M and the fact that the strata in
the quiver Grassmannians are parametrised by certain successor closed subquivers
therein we might help prove that the lower bound on the dimension of the quiver
Grassmannians as introduced above is also an upper bound. We need a construction
proving that there can not be successor closed subquivers with more than the
desired amount of holes below the starting points. This could be done by looking
at the inclusion relations of the cells. But these relations are more complicated
as in the case where all indecomposable summands have the same length and the
proof for the upper bound will not be part of this thesis.

5.8. Cellular Decomposition and Poincaré Series

In this section we study the Euler Poincaré characteristic of the approximations
and the Poincaré series of the partial degenerate affine Grassmannians. For the
Feigin-degenerate affine Grassmannian we have the following description of the
Euler Poincaré characteristic of the approximations.

LEMMA 5.35. The Euler Poincaré characteristic xn,n of the finite approxima-
tion Gry (gl,) is given by

Xn.N = Ti(fl)k (2:> <(” - k)(JQ\’nJr_ll) +n— 1)'

k=0
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PROOF. The finite approximations of the Feigin-degenerate affine Grassman-
nian are given by the quiver Grassmannians Gry,,(Ax ® C2*) for the loop quiver.
The Euler Poincaré characteristic of this quiver Grassmannian equals the number
of fixed points of the C*-action on this quiver Grassmannian.

The torus fixed points are in bijection with successor closed subquivers in the
coefficient quiver of Ay ® C?" with Nn many marked points. These subquivers are
parametrised by the length of the segments embedded into the 2n copies of Ay,
ie.

Xn,N = ‘Ci%)(Al,IN)‘ = Hp €eZ*™:0<p; <N, Z pi = Nn}‘
1€[2n]

where the description of the set of cells was obtained in the first section of this
chapter. Setting a; = p; and b; = N — p,4; for i € [n] we obtain the equality

Xn,N = H(a,b) ez XZn:OS(Ii7bi §N7 Zai: sz}‘

i€[n] i€[n]
The cardinality of this set is given in the article of M. Nathanson [61] p. 8]. ([

REMARK. For the intermediate degenerations of the affine Grassmannian it
is more complicated to find a formula for the Euler Poincaré characteristic of the
finite approximations since the length of the segments parametrising a cell is not
bounded by one parameter but two.

The maps introducing an ind-variety structure on the approximations by quiver
Grassmannians allow us to compute the limit of the Poincaré polynomials for the
approximations. First we want to compute this limit for the Feigin degeneration
and then we study it for the partial degenerations where the proof works analogous
to the method developed in the Feigin setting.

THEOREM 5.36. The limit of the Poincaré polynomials p, n(q) of the finite
approzimations Griy(gl,,) is given by

2n—1

Nh_rfloopn,N(Q) = pn(Q) = kl;[l (1 _ qk)‘l.

The prove of this theorem is based on the observation that the number of
k-dimensional cells stabilises for N big enough.

PROPOSITION 5.37. Let b,(CN) be the number of k-dimensional cells in the finite
approximation Griy (gl,). Then

G b < ™™ forall N > 1 and
i) b = o™ for all N > N where Ny := [k/n].

PrOOF. We start with the first part. In the previous section we have seen
that the map &5 between the finite approximations preserves the dimensions of
the cells. In Proposition we have shown that the image of a k-dimensional
cell in Gr‘}v(gln) is a k-dimensional cell in Gr% +1(é\[n). Thus the number of k-
dimensional cells in the bigger approximation can not be smaller than the number
of k-dimensional cells in the smaller approximation, i.e.

bECN+1) > b](cN)
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for every N > 1 and every k € Zxo.

To prove the second part, we have to modify the description of the cells. It
is also possible to describe the length of the segments in the coefficient quiver
relatively to the shortest segment. This parametrisation is independent of the
approximation wherein we consider the cell.

For a fixed dimension k, the biggest difference between the shortest and longest
segment in a cell is achieved if all k holes in the coefficient quiver are below the start-
ing point of one long segment and above the starting points of all other segments.
If this k-dimensional cell is contained in an approximation to the parameter N, all
other possible k-dimensional cells are contained in this approximation. Hence b;gN)
is already maximal for this approximation and Part (ii) of the proposition follows.

It remains to determine the minimal number N, such that the cell of this
type is contained in the approximation to the parameter Nj. Equivalently we
can compute the maximal k such that the special k-dimensional cell as introduced
above is contained in the finite approximation Gr?v(gA[n)

We set the longest segment to N and have to distribute to remaining length
of N(n — 1) to the remaining 2n — 1 segments such that all starting points are as
low as possible. If

N(n—-1)
2n —1
is an integer we set the length of all remaining segments to this number. For the
computation of an upper bound to k£ we can set the starting point of the long
segment as high as possible. The number of holes in the coefficient quiver which
are below this starting point computes as

N(n—-1)
2n—1
By construction there are no holes below the ohter starting points such that this

is also the dimension of the corresponding cell.
In the setting that the fraction above is no integer we define

(zn_1)(N_ ):N(Zn—l)—N(n—l):Nn.

0= {%J and g:=N(n—1)—(2n—1){ <2n— 1.

We set the length of the g lower segments to /41 and the 2n —1— ¢ segments above
them get the length ¢. The highest segment again has length N. This describes a
cell in the approximation to the parameter N because

Cn—1—gl+ql+1)=Cn— 1) —qgl+qgl+q=(2n—1)l+q
=C2n—-1){+Nn-1)—2n—-1){=N(n-1).
By counting the holes below the starting points of the segments, the dimension of
the corresponding cell C' computes as
dmC=02n-1)(N-({+1))+2n—-1—¢

=2n—-1)(N—-(l+1)+2n—1—(N(n—1)— (2n—1)¢)
=Cn—1)N-2n—-10+2n—1){—2n—-1)+(2n—1) - N(n—1)
=(2n—1)N - N(n—1) = Nn.

Here the number in the first row counts the holes below the starting points of the

long segment. There are no holes below the other starting points by construction
of this cell.



102 5. THE AFFINE GRASSMANNIAN AND THE LOOP QUIVER

Accordingly all k-dimensional cells are contained in the approximation to the
parameter N if and only if £ < nN. This proves that the number of k-dimensional
cells in the approximation to the parameter N is constant for

N > N := [k/n].
O

This enables us to compute the number of k-dimensional cells in the degenerate
affine Grassmannian by counting the k-dimensional cells of its finite approximation
to the parameter Nj. For this approach it is essential that the embeddings of the
quiver Grassmannians which provide the maps for the ind-variety structure of the
degenerate affine Grassmannian preserve the structure and the dimension of the
cells in the approximations. Accordingly there is a one to one correspondence be-
tween k-dimensional cells of the degenerate affine Grassmannian and k-dimensional
cells in the approximation to the parameter N > Nj.

ProOOF OF THEOREM [5.36l Every Poincaré polynomial p,, n(q) of a finite ap-
proximation can be written as

Nn?
N
pan(@) =Y b
k=0
where b,(CN) is the number of k-dimensional cells in the approximation Gr (gl,,).

By Proposition we know that there exists an integer Nj such that the
number b,(CN) does not change for any N > Nj. We define by, := b,(gNk) and obtain

that the Poincaré series of the affine Grassmannian is given by

pn(q> = Z bqu-

k>0

It remains to show that every by is equal to the number of partitions of k
into at most 2n — 1 pieces. For this purpose we construct maps between cells of
dimension k and partitions of k into at most 2n — 1 pieces. Then we check that
this correspondence is bijective.

As shown above the cells are parametrised by the length of the 2n subsegments
in the coefficient quiver of My. Their dimension is given by the number of holes
below the starting points in the coefficient quiver. For the j-th segment this number
is given by the function h; which was determined in Proposition

We can associate a partition of k to every cell of dimension k with parts given
by the number of holes below every starting point. Going from the highest to the
lowest starting point the size of the parts is descending. This partition is obtain
by computing the numbers of holes h; for all segments and ordering them from big
to small.

At least the part of one of the 2n subsegments has to be zero. If there is a
segment of length zero, there is nothing to show. If a cell corresponds to a tuple
of non-zero subsegments in all 2n segments of Ax ® C2", there can not be any free
point below the starting point of the shortest segment. This follows from the shape
of the coefficient quiver of Ay ® C?". Let i be the index of this segment and let p;
denote the length of the segment. For all ¢ € [2n] we know that p; > p; since the
j-th segment was assumed to be the shortest.
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Accordingly the function h;(p) which counts the holes below the starting point
of the j-segment computes as

h;(p) = max {0, (2n — 1)p; —j + 1}

NSRS A——

i>] i<j
=@n-Dp—j+1-( Dp+ Y1) ) =0
>3] i<j

because

ij + Z(Pj —1)=02n—jp;+G-Dp;—1)
=@n-1)p;—(G—Dp;+ (G -1 —1)
=@2n—-1)p; —j+1

Hence we can associate a partition of k into at most 2n — 1 parts to every cell.
Moreover this computation shows that h; = 0 for all shortest segments and not
only for the one with the lowest starting point.

Given two distinct cells in the same approximation the hole sequences have to
vary at some point because the number of holes below the starting points deter-
mine the relative position of the starting points. If we assume that the segments
correspond to cells in the same approximation the overall length of the segments
is fixed and the relative positions of the starting points are sufficient to determine
the whole cell. Thus we have an injective map from cells to partitions. For a given
partition we now want to reconstruct its cell. This is based on the relative positions
of the starting points as determined by the hole sequence.

Let p = (p1,...,ps) with p; > pa > -+ > p,s be a partition of k in to s < 2n—1
pieces. From this data we construct a cell descending from the highest point in the
coeflicient quiver. Below this point we leave p; — ps holes before the starting point
of the next longest segment is inserted in the picture.

If py — po > 2n — 1 there is a marked point in between corresponding to the
segment we just started coming trough the sequence of holes. Below the second
marked point we leave p; —p3 holes and now have to keep record of the two segments
we started which could possibly interrupt the sequence of holes.

In the same way we continue up to the starting point of the segment with p,
holes below it. After the last holes we mark the number of points missing to get
a cell in the Grassmannian with Nn marked points. Every step in this process is
well defined and there can not be two partitions which lead to the same cell under
this process.

This establishes the bijection since we have two injective maps between cells
and partitions which are inverse to each other. The generating function for parti-
tions of k into at most 2n — 1 pieces is known to be

2n—1

[Ta-dH"

k=1
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REMARK. The parametrisation of the cells by certain partitions should allow
to describe the Poincaré polynomials of the finite approximations explicitly. Unfor-
tunately we have not found any polynomial condition to decide whether a partition
belongs to the approximation for the parameter N or not. So far we only have a
condition which is based on the algorithm in the proof above. This method is
discussed in the next section where we also apply the algorithm in some examples.

THEOREM 5.38. The Euler Poincaré series p (q) of the partial degenerate affine
Grassmannian

Gr*(gl,)
s given by
n+k—1

pile):= [ a—=a)"

r=1

PRrROOF. Similar as above we obtain a stabilising condition of the coefficients in
the Poincaré polynomials of the approximations because the map q)’f\, preserves the
dimension of cells whose segments are not longer than N. We can use the functions
h; with m = n 4+ k to compute the dimension of these cells. For every dimension
r there exists an N such that all r-dimensional cells in the approximation to the
parameter N are expressible using segments of length at most N.

In this setting the computation of b, and the inverse map from partitions
back to cells is analogous to the special case as described above. All steps in the
proof work similar and we can identify the cells in the partial degenerations with
partitions of the cell dimension into n + k — 1 parts.

The singular homology commutes with direct limits [53] p. 399]. The Betti
numbers of the finite dimensional approximations are computed following [33, §B.3
Lemma 6] and [70, Chapter 5, §5]. O

For the affine Grassmannian we recover the same formula for the Poincaré
series as with the classical computation based on the length of the elements in the
affine Weyl group [7].

REMARK. The quiver Grassmannian
Graihy (Aan ® C*")
provides the finite approximations

Gry ( 5[271 ) and Gry ( é\[n)

such that both approximations have the same Poincaré polynomial. But the iden-
tifications of the quiver Grassmannian with the approximations are different such
that one limit is the affine Grassmannian and the other is the Feigin-degenerate
affine Grassmannian.

5.9. Partitions and Cells in the Quiver Grassmannians

In this section we develop a method to decide whether a partition corresponds
to a cell in the approximation to the parameter N or not. Let Pa,_1(k) be the set
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of all partitions of k£ into at most 2n — 1 pieces. The map ) is defined as

Nn?
¥ CO (AL In) = | Panoi(k)
k=0

P —A(p)

where A(p) is the partition which is obtained by ordering the numbers h;(p) for
J € [2n]. The goal of this section is to describe the image

Py, 1 (k) == ¥ (CLX) N Panoa (k)

explicitly. With these sets the Poincaré polynomial of the approximation computes

as
Nn?

P () =D [P, 1 (F)|q".
k=0
The maps between cells and partitions generalise to the class of quiver Grassman-
nians we introduced in the beginning of this chapter. Hence we can compute the
Poincaré polynomial of them as well.

Starting with a partition A € P, _1(k) we start to compute the corresponding
cell following the algorithm described in the proof of Theorem After we have
drawn the first black dot below the last hole, we count the number of black dots
above the lowest hole and denote this number by Aj.

This is the only way to compute this number that we have found so far. It is
desirable to find a direct computation for this number which is independent of the
algorithm to compute cells from partitions.

THEOREM 5.39. The Poincaré polynomial pgy n(q) of the quiver Grassman-
nian

Griy (Ax & C7)

s given by
Nzy
k=0
where

z,Y

PN (k) = {)\ € Pyry1(k): A < YN, A} < q:N}.

PRrROOF. For a cell p in Cg(c"f\;ry) the complement p* is defined by setting
p; =N = Patys1-j

for all j € [z + y]. Hence the complement p* lies in C?(jﬁ_y). If we apply the map ¥
to the cell p*, the first part in the partition A\(p*) is given by the A} as constructed
above. The map ¢ in this setting is defined analogous to the special case x = y.

A cell p in Ciﬁy) consists of x/N marked points and y/N unmarked points in
the coefficient quiver of Ay ® C*¥. Thus under each starting point of a segment
there can be at most y N unmarked points such that we obtain \; < yN. For
the complementary cell p* in Céﬁy) we obtain A\] < N in the same manner.
Accordingly we have a necessary condition to describe the image, i.e.

(CH) NP1 (k) € PY, (K).
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Given the information that for a partition A it is enough to take at most * N
many marked points to cover the k£ many holes below the highest starting point,
we can add the remaining marked points below the lowest hole and the remaining
unmarked points above the highest starting point. What we obtain is a cell with
exactly « N marked points and y N unmarked points. This cell is contained in the
set Cg\?_y). Hence the condition we imposed is sufficient, i.e.

(CS) N Pary-1 (k) = PY, (k).
O

EXAMPLE 5.40. In the set P3(5) we have the partition A := (3,1,1). Now we
describe the steps in the algorithm to compute the corresponding cell. Here we
draw the intermediate steps horizontal in order to reduce the space we need for the
pictures. We start with one marked box and 3 — 1 holes, i.e.:

@ O O

After 4 = 2n dots we draw a horizontal line to indicate that we are at the next
length level of the coefficient quiver and that we have to take track of the points
which have been marked already. These have to be repeated now with a period
of 2n. The next box is marked again. Then we draw the first separator and keep
track of the first repetition. Then we draw the last starting point:

®e O 0O 6 — @®@ O O e| —3 e O O e|e

Then we draw the last starting point and add the final hole:
@ O O e/ @ > © O O @©|® @ O
The next dot would have to be black again but we do not have to add it. The
current diagram has 4 marked and 3 unmarked points. By Theorem we know
that it can be turned into a cell for N = 2. We move the separator one to the left
and add a white dot on the left.
@ O Ole @ @ O| —3 |O @ O O|l® @ @ O]
The resulting diagram corresponds to a 5-dimensional cell in the quiver Grassman-
nian
Gry? (A2 ® C*)
since it has 4 marked and 4 unmarked points and 5 = 3 + 1 + 1 holes below the
starting points of the segments.

The partition A = (3,2,1) is contained in the set P3(6). The steps in the
algorithm to compute the corresponding cell are as follows. We start with one
black dot followed by 3 — 2 white dots. Then we have a black dot again which is
followed by 2 — 1 white dots:

e — e 0 +— e 0O e +—> @ O e O
We arrived at 4 dots so we have to draw the first separator, keep track of repetitions
and add the last starting point:
® O @ 0| 3 @O @ O|l® 3 @ O @ Ole e
Then there is the next repetition before we can add the last hole:
@ O e O|le 0o @ 3, © O @@ O|®e © @ O
In this diagram we have 5 marked and 3 unmarked points. By Theorem [5.39] we

know that it is not possible to turn this diagram into a cell for the parameter
N = 2. To make it a cell for the parameter N = 3 we have to add one black dot
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on the right and three white dots on the left. Finally we move the separators in
the right positions:
@ O @ O|le @ @ Ole

{

O O O|le O @ O|le @ @ O] @

l

lO 0O O @€|0 @ O @|®@ ® O o]
This diagram corresponds to a 6-dimensional cell in the quiver Grassmannian
GrI‘é43 (Ag ® (C4)
because there are 6 marked and 6 unmarked points and 6 = 3 + 2 + 1 holes below
the starting points of the segments.






CHAPTER 6

The Degenerate Affine Flag Variety

In this chapter we define affine flag varieties and describe the link between
affine flag varieties and quiver Grassmannians. For more details about the general
construction of affine flags see Chapter XIII in the book by S. Kumar [53].

DEFINITION 6.1. Let G be the Kac-Moody group corresponding to the affine
Kac-Moody Lie algebra g. For a parahoric subgroup P of G with I C P where [
is the standard Iwahori subgroup of G the affine flag variety is defined as

]:lp(ﬁ) = @/P

If the parahoric subgroup is equal to the standard Iwahori subgroup, we sim-
ply write F l(ﬁ) and refer to this flag variety as (standard) flag variety. For the

affine Lie algebras gl, and ;[n it is possbile to identify their flag varieties with
the set of full periodic lattice chains and the set of special lattice chains respec-
tive. This is shown for example in the survey by U. Gortz [37] and the articles by
A. Beauville and Y. Laszlo [3] and U. Gértz [36]. V. Kac and D. Peterson described
representations of these groups using Sato Grassmannians [45]. This leads to the
subsequent parametrisation of the affine flag variety and is related to the lattice
chain description.
For ¢ € Z let V; be the vectorspace

Ve := span(v(g, Vo—1,V0—-2, .- )

which is a subspace of the infinite dimensional C-vectorspace V with basis vectors
v; for i € Z. The Sato Grassmannian for m € Z is defined as

SGr,, := {UC V ¢ Thereexistsa £ <m s.t. V, CU and dimU/Vy; =m — /¢ }

REMARK. For an n-dimensional vector space W over C with basis w1, ...,w,
we can identify the space W ® C[t,t~1] with V by

Un(h-1)45 = wj @,

This gives an embedding a[n C gl and allows to describe the affine flag variety
of type gl,, inside the full infinite flag variety of type As. For more details on this
construction see [30] and [45].

Here we give an equivalent description for the affine flag variety which is in-
dependent of this identification of the basis. It is shown in Section [5.2] that both
parametrisations are equivalent for the affine Grassmannian. The equivalence for
the affine flag variety is shown in the same way.

109
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PRrOPOSITION 6.2. The affine flag variety Fl (é\[n) as subset in the product
of Sato Grassmannians is parametrised as

Fi(gl,) = { (U)_, € HSGrk : UOCU1C...CUn1CanO}.

It is shown by E. Feigin in [29] that the degeneration of the classical flag variety
he introduced in [28] admits a description via vector space chains where the spaces
are related by projections instead of inclusions. This construction is used to identify
the classical flag variety and its degenerations with quiver Grassmannians for an
equioriented quiver of type A by G. Cerulli Irelli, E. Feigin and M. Reineke in
[20]. The observation that the Feigin degeneration of the flag variety admits a
description where the inclusion relations of the vectorspaces are relaxed gives rise
to more general degenerations where arbitrary linear maps are allowed between
the vector spaces. These degenerations of the flag variety are called linear and are
studied in [19]. Here we want to follow the same approach and degenerate the affine
flag variety by replacing the inclusion relations for the chains of vector spaces with
projections. In later sections of this chapter we discuss a more general approach
to degenerate this flag variety. We show that some of the methods to study the
degenerate flag variety of this section still apply in the more general setting.

DEFINITION 6.3. The degenerate affine flag variety Fi® (é\[n) is defined as

]‘-la(é\[n) = { Uk E H SGry, : pri+1Ux C Ugt1, praUp—1 C SnUO}

Here pr; is the projection of v; to zero which corresponds to the projection of
w; ® 1 to zero by the identification of the basis we make above. This degeneration
can also be called the Feigin-degenerate affine flag variety since its definition is
motivated by the definition for the linearly oriented type A quiver which can be used
to define quiver Grassmannians which are isomorphic to the Feigin degeneration of
the classical flag varieties [28], 29].

6.1. Finite Approximation by Quiver Grassmannians

For a positive integer w we define the finite approximation of the degenerate
affine flag variety as

Fiz(al) = { (V) € FI*(gL,)  Vown € Up € Vion }-

Analogous we define Fl,, (aln) for the non-degenerate affine flag variety.

THEOREM 6.4. Let w € N be given, take the nilpotent quiver representations
X, =Y, = Gaiezn U;(wn) and let e, denote the dimension vector of X, i.e.
e, :=dim X,. Then
Fla (gl,) = Grin (X, ® Y.,).

REMARK. This identification allows us to use all the theory and the results
developed for quiver Grassmannians in order to study the Feigin-degenerate affine
flag variety. The rest of this Chapter will deal with the proof of this theorem and
the consequences from applying the theory developed for quiver Grassmannians
and varieties of quiver representations in Chapter [3]and Chapter [
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For the proof of the theorem we need a different labelling of the basis elements
for the vector spaces over the vertices of the representation X, @ Y,, than the one
we introduce in Section [£:4] This leads to a different arrangement of the segments
in the coefficient quiver which captures the structure of the maps between the
elements of the Sato Grassmannians.

ProproSITION 6.5. The quiver representation X, @ Y, is isomorphic to the
quiver representation

M, = (Mai '=510 prw")z’ezn‘

PROOF. The vertices of A,, are in bijection with the set Z, and we choose
the representatives 0,1,...,n — 1. For the representation X, ®Y,, the vectorspace
over each vertex ¢ € Z,, has dimension 2wn. For the arrangement of the segments
in the coefficient quiver corresponding to the summands U;(wn) of X, @Y, as in
Section we obtain the maps sy : C?*" — C?*" along the arrows of A,, since
there are starting two segments of length wn over each vertex.

Now we rearrange the segments. Over each vertex let one segment start in the
first basis vector and map to the second basis vector over the next vertex. For a
segment starting over the vertex ¢ € Z,, in the k-th step of the segment the arrow
in the coefficient quiver goes from the k-th basis element over the vertex i + k — 1
to the k + 1-th basis element over the vertex ¢ 4+ k. The segment ends in the wn-th
basis vector over the vertex ¢« + n = ¢ — 1. The second segment over each vertex
starts in the basis vector wn 4+ 1. For the vertex i € Z,, in the k-th step of this
segment the arrow in the coefficient quiver goes from the wn + k-th basis element
over the vertex ¢+ k —1 to the wn+k+ 1-th basis element over the vertex i +k&. The
segment ends in the 2wn-th basis vector over the vertex ¢ + n = ¢ — 1. The maps
between the copies of C2“™ over the vertices corresponding to this arrangement of
the segments are given by s; o pr,. O

EXAMPLE 6.6. For n = 4 and w = 1 the coefficient quiver of M, = X, ®Y,, is
of the form

Y

foﬂ O OO O On O

S1 0PIy

Za

1020504050607080 0807060504050201

W

4

lefYofefYor oL le \ro/
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The dashed arrows in the picture indicate where the segments grow if we increase
the value of w.

Now we want to change the indices of the basis vectors over the vertices k €
A, in order to match the indices of the basis vectors for the spaces in the Sato
Grassmannians SGri. We keep the structure of the arrows between the vertices
in the coefficient quiver as introduced above and just change the labelling of the
points in the coefficient quiver. For the vertex k € A,, we label the first point in the
coefficient quiver over k by wn+k the second point gets the label wn+k—1 and the
last one will have the label —wn + k4 1 since there are 2wn points over each vertex
of A,,. With this labelling the maps along the arrows of A, for k € {0,1,...,n—1}
are given by pry,,. For k = n we obtain the map s_, o pr,,. This is computed
from the index shift of the points over each vertex in the coefficient quiver.

EXAMPLE 6.7. Before we turn attention to the proof of the theorem we consider
the coefficient quiver of M, = X, @Y, for n = 4 and w = 1 where we used the
new labelling of the points in the coefficient quiver.

Again the dashed arrows in the picture indicate where the segments grow if we
increase the value of w.
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Proor oF THEOREM [6.4]l In the coefficient quiver of M, = X, @Y, we
arrange the segments corresponding to projective and injective summands as in
the example above. Hence the maps between the vector spaces over the vertices
coincide with the maps between the spaces in the degenerate affine flag variety.

To finish the proof we have to identify the spaces in the finite approximations
of the Sato Grassmannians which correspond to points in the degenerate affine
flag variety with the vector spaces corresponding to the elements of the quiver
Grassmannian. In Proposition we have identified the approximation SGry, ¢
of the Sato Grassmannian SGr,, with the classical Grassmannian Gry,¢(2¢). For
the Sato Grassmannian SGrg and ¢ = wn we obtain the isomorphism SGrq .y, =
Gryn(2wn). This identifies the vector space over the first vertex of the quiver A,
for a representation in the quiver Grassmannian with the first space in the tuple of
vector spaces parametrising a point in the approximation of the degenerate affine
flag variety.

The cyclic relations of the vector spaces describing a point (U;)ecz, in the
degenerate affine flag variety induce the following restrictions for the approximation
to the parameter w

anw+i cU; C Vnw+i for U; € SGr;.

Accordingly the corresponding approximations of the Sato Grassmannians SGr;
are also isomorphic to the classical Grassmannian Gry,,(2wn). The points in the
approximation

Flg(al,)
are described by tuples consisting of vector spaces U; € SGr; which are subject

to the above bounding condition and are compatible with the maps pr;,; and
5_p opr,. Hence they are in bijection with points in the quiver Grassmannian

Gre (X, @ Ya)

because the points in the quiver Grassmannian are described as tuples of vec-
torspaces V; € Gr,,(2wn) for i € Z,, which are compatible with the maps sy opr,,,,.
The isomorphism of the approximations of the Sato Grassmannians and the classi-
cal Grassmannian induce the correspondence of these maps with the maps between
the Sato Grassmannians as used for the definition of the degenerate affine flag va-
riety. Here the explicit coordinate description of this isomorphism is obtained as
in the examples above. (I

In the rest of the chapter we apply the results about quiver Grassmannians to
the approximations of the affine flag variety and its degenerations.

COROLLARY 6.8. FI¢ (gAI") is a projective variety of dimension w - n?.

PROOF. Let k:= )., w; where z; is the multiplicity of U;(wn) as summand
of X and m := k+) ., y; where y; is the multiplicity of U; ., 1(wn) as summand
of Y. From Lemma [3.29] we obtain

dim Gr2" (X, ® Y.,) = wk(m — k).

In this special case we have k = m — k = n and thus dim F1¢, (g[n) =w-n? Ttisa
projective variety because all quiver Grassmannians for nilpotent representations
of A,, are projective varieties. O
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6.2. Irreducible Components and Grand Motzkin Paths

In this section we use the formula for the irreducible components of the quiver
Grassmannians as developed in Lemma, to describe the irreducible components

of the approximations of the degenerate affine flag variety.

A grand Motzkin path of length n is a path on the grid Z? from (0,0) to
(n,0) where the allowed steps are (1,0), (1,1), (1,—1). Is possible to reconstruct a

path from the n-tuple consisting of the second entries of the steps it takes.

EXAMPLE 6.9. For n = 4 there are 19 grand Motzkin paths

which are in bijection with the tuples

(0,0,0,0),

(1,-1,0,0), (0,1,—-1,0), (0,0,1,—1), (=1,1,0,0), (0,—1,1,0), (0,0,—1,1),
(1,0,—-1,0), (1,0,0,-1), (0,1,0,—1), (—=1,0,1,0), (—1,0,0,1), (0,—1,0,1),
(1,1,—1,-1), (1,—1,1,-1), (=1,1,-1,1), (=1, —1,1,1),
(1,-1,-1,1), (=1,1,1,—1).

The sum over the entries in the tuples has to equal zero to satisfy that the path

comes back to the first axis.

Normal Motzkin paths are not allowed to go below the line between (0,0) and
(n,0) (first axis). In this example they can be found on the left side of the list
above except from the last row. The paths in the last row can not be derived from
the normal Motzkin paths by reflecting the path at the first axis. The first case

where these mixed paths appear is n = 4.

LEMMA 6.10. The irreducible components of FI¢, (é\[n) are in bijection with the

set of grand Motzkin paths of length n.
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PROOF. By Lemma[3:23we know that the irreducible components of the quiver
Grassmannian in this setting are parametrised by

{p €{0,1,2y": > pi= n}
i€Zy,
We obtain a bijection with grand Motzkin paths by sending a tuple p describing
an irreducible component to the tuple (p; — 1);ez,, -

This tuple describes a grand Motzkin path since the sum over all entries is
equal to zero and the entries take values —1,0 and 1. Starting with the tuple
parametrising a grand Motzkin path we add one to every entry and obtain a tuple
corresponding to an irreducible component because all entries are 0,1 or 2 and the
sum of the entries is equal to n. (Il

Thus the number of irreducible components is independent of w whereas the
number of strata is growing with w.

ExaMPLE 6.11. The grand Motzkin paths from the previous example corre-
spond to the following list

(1,1,1,1),
(2,0,1,1), (1,2,0,1), (1,1,2,0), (0,2,1,1), (1,0,2,1), (1,1,0,2),
(2,1,1,0), (2,1,0,1), (1,2,1,0), (0,1,2,1), (1,0,1,2), (0,1,1,2),
(27 2707 O)’ (2707 270)’ (072707 2)’ (0707 27 2)’

(2,0,0,2), (0,2,2,0).
with tuples of multiplicities for the indecomposable representations U;(wn) describ-

ing the irreducible components. Here (1,1,1,1) corresponds to the component of
X,

6.3. Cellular Decomposition

The finite dimensional approximations of the Feigin-degenerate affine flag va-
riety admit a cellular decomposition as described in Theorem in the chapter
about the torus action on the quiver Grassmannians. In this section we examine
how this decomposition changes by increasing the value of w. The representation
M, = X, &Y, contains exactly two copies of every indecomposable representa-
tion U;(wn) and thus there are 2" possibilities to embed X, into M,,. Hence the
stratum of X, decomposes into 2" cells.

This is also the highest number of cells any stratum could have since it is only
possible to have two distinct sub-segments embedded into the two segments of the
coefficient quiver corresponding to the two copies of U;(wn). If in a stratum the
segments are the same for some i, the number of cells in this stratum is strictly
smaller. Given any stratum in the finite approximation it is possible to determine
all of its cells and their dimension.

PROPOSITION 6.12. The base in the stratification of the finite approximation
for w € N is given by

Be, = @ Ui |lw-n/2]) @ U(i; [w-n/2]).
€Ly

PROOF. Here we need the labelling of the basis elements for the vector spaces
over the vertices of the quiver A,, corresponding to the representation X, ® Y, as
introduced in Chapter [
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For every choice of w, there are two segments in the coefficient quiver of X, ®Y w
ending at each vertex i € Z,. The i-th entry of the dimension vector e, := dim X,
is given by wn. Thus taking the e; inner points over the vertex ¢ € Z,, corresponds
to taking |w/2] points in every segment of the coefficient quiver and one additional
point in the inner segment corresponding to some summand U (wn) if w is not even.
These j’s are obtained from the i’s by some shift of indices.

Since e is homogeneous and we do it for every vertex i € Z,, the exact value of
the shift does not matter. We only obtain that one of the segments of B ending
at vertex i is longer by one if w is odd and they are the same if w is even.

The length of the short segments corresponding to a summand of Be, is given
by |wn/2|. For the injective labelling of the indecomposable representations this
corresponds to a summand

U(is lw-n/2]) = Ui |wny2)+1(lw - n/2])

and we obtain them for every i € Z,. Thus the long segments correspond to
summands

U(i; [w- n/2])

for every i € Z,. O

REMARK. For N = w - n with w even the stratum of Be, has exactly one cell
and it is zero-dimensional. For odd w the stratum decomposes into 2" cells and the
stratum is n-dimensional. Hence we can distinguish between odd and even limits
of the finite dimensional approximations.

Now we want to examine how the Euler Poincaré characteristic changes with
increasing w.

PROPOSITION 6.13. Let ., be the Euler Poincaré characteristic of Fi2 (gl, ).
It is bounded as

(2[&)/2])” < xu < (wn+1)2n.

ProoF. The Euler Poincaré characteristic of FI¢ (gA[n) is equal to the Euler

Poincaré characteristic of the quiver Grassmannian GreAu” (X, ®Y,). The cells in
this quiver Grassmannian are in bijection with certain successor closed subquivers
in the coefficient quiver of X, ® Y,,. These subquivers are parametrised by tuples
indexed by the indecomposable direct summands in X, @Y, and the corresponding
entry equals the length of the segment embedded into the segment corresponding
to this summand.

Thus we obtain tuples p of non-negative integers in Z?" because X,, ® Y,, has
two copies of every U(i;wn) for ¢ € Z, as summand. Let p; be the length of a
segment embedded into a copy of U(i;wn). It has to satisfy 0 < p; < wn. We set
dim U (4;0) := 0 and define the function

fi :{0,1,...,wn} — Z"
i s dim U (4; p;)

which sends p; to the dimension vector of the indecomposable representation cor-
responding to the segment it describes.
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Using these functions we can parametrise the cells of the quiver Grassmannian
by the set

2y, = {P €Z* : 0<p; <wnforall j€ [2n] and Z fi(pi) + filpnyi) = e}.
1E€ELn

Forgetting the constraint by the sum of the dimension vectors we obtain
|Zo| < (wn + 1)%.

To compute a lower bound on the Euler characteristics, we give an explicit
description of some cells in the Grassmannian Grﬁw" (X, ®Y,) and count them. For
two integers p and ¢ with 0 < p < ¢ < w and p + ¢ = w define the representations

U(isgn) and  Ugi;pn)

which both embed into U(i;wn) by definition.

Their direct sum U (i; gn) @ U (i; pn) has the same dimension vector as U (i;wn).
The parameter p can be computed as p = w — ¢ and the pairs (p, q) satisfying the
conditions above are obtained from the ¢’s satisfying

lw/2] +1<¢< w.

Hence there are [w/2] many of them. In that way we can choose one parameter ¢;
for every i € Z,, and define the representation

V(q) := @ U(i;qin) © U(i; (w — gi)n)
€L

which is by construction an element of the quiver Grassmannian GreAw (X, @Y).

There are [w/2]™ strata corresponding to the representations V(q) and each
of them decomposes into 2" cells since p; # g; for every i € Z, and this gives us
2™ distinct possibilities to embed the segments of V(q) into the segments in the
coefficient quiver of X, ®Y,,. O

This shows that with increasing w the Euler characteristic grows at least with
w™ whereas the dimension of the approximation is growing only linearly. In Sec-
tion [6.10] we give a formula for the Poincaré polynomials of the approximations
which is based on the parametrisation of the cells by successor closed subquivers.

REMARK. For n € [5] we can compute the Euler characteristic x; and the
number of strata in the quiver Grassmannian Gré” (M;) using the computer pro-
gram from Appendix For bigger w a normal computer can only handle the
data for even smaller n. In the following table we list these numbers together with
the number of irreducible components which are parametrised as in Lemma [6.10

n 1 2 3 4 5
|Cn(d)] |1 3 7 19 51
|[Strataq| | 1 6 41 585 | 12603
X1 21 15 226 6137 | 265266
X2 3| 65| 3511 | 359313
X3 41175 | 20620

These first values of y; indicate that the Euler characteristics for w = 1 is growing
faster even than (2n)™ with increasing n.
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6.4. Affine Dellac Configurations

For the Feigin degeneration of the classical flag variety of type A,,, the Poincaré
polynomial can be computed using Dellac configurations which are counted by the
median Genocchi numbers. This description was develloped by E. Feigin in [29].
The torus fixed points of the symplectic degenerated flag variety are identified with
symplectic Dellac configurations by X. Fang and G. Fourier in [26]. In this section
we introduce affine Dellac configurations which turn out to be in bijection with the
cells of the Feigin-degenerate affine flag variety. This identification is based on the
parametrisation of the cells via sucessor closed subquivers.

6.4.1. Classical Dellac Configurations. First we recall the definition of
the classical Dellac configuration and show the idea behind the identification with
the cells of the degenerate flag variety Fi%(sl,). This will help us to find the right
analogue to classical Dellac configurations in the affine setting.

DEFINITION 6.14. In a rectangle of 2n x n boxes a Dellac configuration D
consists of 2n marked boxes such that:

(1) each row contains exactly one marked box,

(2) each column contains exactly two marked boxes,

(3) the index (r,c) € [2n] x [n] of every marked box satisfies
n+l—c<r<2n+1-c

The set of all Dellac configurations for a fixed parameter n will be denoted by
DC), and its cardinality is given by the normalised median Genocchi number h,,.

EXAMPLE 6.15. For n = 3 we list all Dellac configurations below.

The condition (3) in the definition of Dellac configurations ensures that the
marked boxes are not allowed to be on the left of the upper diagonal of marked
boxes in last Dellac configuration of the example above and also not on the right of
the lower diagonal of marked boxes in the same configuration. These triangles are
forbidden areas for markings in all rectangles of 2n x n boxes underlying a Dellac
configuration.

Let @ be a linearly oriented quiver of type A,, i.e.

——0——0 ... o——0
1 2 3 n—1 n

and define A := CQ as its path algebra. The degenerate flag variety Fi%(sl,11) is
isomorphic to the quiver Grassmannian Grgim 4(A @ A*) [20, Proposition 2.7].

Now we want to look at the relation of cells and configurations for the degener-
ate flag variety F1%(sl5). In this setting, the coefficient quiver of the representation
A @ A* is of the from
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By Proposition we obtain that the cells of the degenerate flag variety are in
bijection with successor closed subquivers of this coefficient quiver which have j
marked points in the j-th column. From such a subquiver we obtain a Dellac
configuration by marking the boxes corresponding to the starting points of the
segments of the subquiver and marking the only possible boxes in the first and
the last row. If a segment contains no marked point we have to mark the box
corresponding to the point to the right of the end point of this segment.

The other way around we can start with a Dellac configuration and transfer
the marked points to the coefficient quiver of A ® A*. Then we mark all necessary
points to make this a successor closed subquiver. Hence the cells of Fi%(sl,41) are
in bijection with the Dellac configurations in DC,, 41 as proven in [29].

EXAMPLE 6.16. For the special case of n = 4, we show this correspondence for
one successor closed subquiver in the coefficient quiver of the representation A® A*
of the equioriented type A quiver on four vertices.

[ ]
[ ] { [ ]
o0—e o—e [ ]
O0—0—0 O0—0—0 [ ]
H%(_).%O%O%O(_).
O0——0—0 O—e—0—0 [ ]
Oo—0—e O—0—e [ ]
o—>0 Oo—0 [ ]
O ©) [ ]
[

REMARK. Condition (3) in the definition of Dellac configurations is important
for the dimension vector of the corresponding quiver representation. It ensures
that the entries of the dimension vector of the quiver representation are increasing
by one along each arrow of the quiver and that the first entry is also one. For a full
flag variety and thus its degeneration, this is exactly the dimension of the vector
spaces in the flag.

Moreover by Condition (2) we obtain that over each vertex of the quiver there
are starting two segments of the coefficient quiver corresponding to a cell. The
subsequent proposition suggests that for the degenerate affine flag variety there
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should be a structure parametrising the cells which is similar to the classical Dellac
configurations.

PROPOSITION 6.17. In a subquiver of the coefficient quiver of M, which corre-
sponds to a cell in the degenerate affine flag variety there are exactly two segments
starting over each vertex.

PROOF. In Section we have seen that orbits of quiver representations are
parametrised by collections of words where each word corresponds to a indecom-
posable representation of the cycle. The segments in the coefficient quiver of M,
can also be parametrised by these words. Hence cells also correspond to collections
of words. Here the order of the words matters to distinguish between different cells
corresponding to one orbit. The orbit structure of the variety of quiver represen-
tations is described by cutting and gluing words. Thus all cells can be obtained
form the unique zero-dimensional cell by the same procedure of cutting and gluing
words. Since we only move around sub-words, this procedure can not change the
number of words starting over a vertex. If we move a sub-word ending at the vertex
1, the remaining word starts at vertex i+ 1. Even if the resulting word is empty we
keep it with the notation w(i + 1;0) and still count its starting point. By Proposi-
tion we know that in the coefficient quiver of the unique zero-dimensional cell
there are exactly two segments starting over each vertex. The cutting and gluing
preserves this property for all other cells if we count the starting points as discussed
above. (]

6.4.2. Periodic Dellac Configurations. In the rest of this section we in-
troduce the affine Dellac configurations to suit the cell structure of the degenerate
affine flag variety. We start with the approximation

Fig(gl,) = Gran (M)

where

Ml = @ UZ(TL) X CZ.
i€%n

The coefficient quiver of M7 contains 2n segments and each of them has length
n. Thus we need at least 2n x n boxes to describe the position of the starting
points of subsegments. Passing form an oriented string to the oriented cycle we
need some cyclic structure to describe the cells. Hence we identify the long sides
of the rectangle and obtain configurations on a cylinder. Moreover we introduce a
second kind of marking using white dots to denote segments which do not belong
to the subquiver.

From Section we know that the cells of the quiver Grassmannian above
are in bijection with the set

O (A L) = {1i= (61, £:2) € @ [lo x o+ (dimU(), = n}

1€%Ln

where e = (n);ez,, d = (2);ez, and N = n since w = 1.

We draw a separator in the rectangle of 2n x n boxes to mark the end of
the segments in the coefficient quiver. Hence this separator is a staircase moving
diagonally around the cylinder. In the planar picture for n = 5 this looks like
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REMARK. Here we cut the cylinder such that the staircase moves from the lower
left corner to the upper right corner and splits into two parts. It is possible to cut
it at any other point. We have chosen this picture to empathise the similarities
between cyclic and classical Dellac configurations.

Namely, the top-dimensional cell of the degenerate flag variety F1°(sl,) and
one top-dimensional cell of the approximation of the degenerate affine flag variety
F l‘f(é\[n) have the same picture with this planar presentation.

Now we describe how to assign a configuration to a cell. For k =1 and ¢; ;, # 0
we go to the i-th row, move ¢; ;, steps to the left from the seperator and put a black
dot inside the box. If /; , = 0 we move one step from the seperator to the right
and fill the box with a white dot. For k = 2 we go to ¢ + n-th row and do the same
as for k = 1.

EXAMPLE 6.18. For n = 5 and w = 1 the representation
U= Uin)
i€Zn,
is contained in the quiver Grassmannian
GI‘eAln (Ml) .
Its stratum corresponds to the tuple (n,0);cz, and the procedure described above
assigns the configuration

o

This is the image of the top-dimensional cell we mentioned in the remark about
the planar presentation.

To decide whether a given configuration encodes a cell of the quiver Grassman-
nian, we need a tool to check if the corresponding quiver representation has the
right dimension vector.



122 6. THE DEGENERATE AFFINE FLAG VARIETY

DEFINITION 6.19. Let D be a configuration in a rectangle of 2n x n boxes. For
each black dot we write a one into its box and all boxes on the right until we reach
the diagonal separator. The weight of a column is the sum of its entries and the
column vector with the column weights as entries is called weight vector.

We compute the weight vector for a cell in the ongoing example of this subsec-
tion. Take the tuple

((3, 2),(3,2), (3,2), (3,2), (3, 2))

which corresponds to the subsequent configuration

[ J 1 111
[ J 1 111

[ J

-

—
S0 = .

w
ot
ot
ot

with computation of the weight vector (5,5,5,5,5).

DEFINITION 6.20. A cyclic Dellac configuration D consists of 2n black and
white dots in a rectangle of 2n x n boxes such that:

(1) each row contains exactly one dot,

(2) each column contains exactly two dots,

(3)  the weight of each column is n.

By DC,, we denote the set of all cyclic Dellac configurations. These configu-
rations provide a combinatoric description of the cells in the quiver Grassmannian

which is isomorphic to the smallest non-trivial approximation of the degenerate
affine flag variety.

LEMMA 6.21. The set of cyclic Dellac configurations DC, is in bijection with
the set

O (D) = {1i= (61, £12) € @Plnlo x [nlo s (AimU), = n}.
i€Ln,

In particular, the set DC,, parametrises the cells of the quiver Grassmannian

Ap

Grel (Ml)
PrOOF. Given a tuple 1 € Céd), its entry ¢; ; parametrises the representation
U (4; ;1) which corresponds to the word
w(tslig) =t —Lipg+1 i—bip+2 ... =2 i—1 1
and the entries in its dimension vector are given by
. . g1 itjew(liy)
(dim U(l’g“k))j o { 0 otherwise

From the procedure to compute the weight of a configuration we obtain this di-
mension vector as the vector in the ¢ — th row of the configuration. Accordingly
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the dimension vector dim U (1) and the wight vector of the corresponding configu-

ration are the same. This proves that all configurations in the image of Céd) satisfy
property (3) in the definition of affine Dellac configurations.

The rows of the configuration are in one to one correspondence with segments
in the coefficient quiver of M, and in each segment there is at most one subsegment
describing a successor closed subquiver. Hence there is a black dot in the i-th row
if and only if there is a subsegment in the i-th segment of the coefficient quiver of
M,,. By definition of the map we put a white dot in the i-th row if there is no
subsegment in the i-th segment of the coefficient quiver. So Property (1) is satisfied
since there is exactly one dot in every row of a configuration in the image of Céd).

The starting points of the segments of a successor closed subquiver in the
coefficient quiver of M, are in one to one correspondence with the marked boxes
of a configuration. Hence Property (2) is satisfied by Proposition

For w = 1 there are no distinct tuples with the same positions of the starting
points of the subsegments in the coefficient quiver. Since the configurations capture
the position of the starting points of the segments, it is clear that the map from
Céd) to the configurations is injective. Moreover, the configurations in the image
are cyclic Dellac configurations since they satisfy Property (1), (2) and (3).

It remains two show that every cyclic Dellac configuration arises as image of
a cell. Given a configuration D, we can recover the tuple 1 which is mapped to D
following the steps in the computation of the weight. We fill the boxes with 1’s as
in the definition of the weight. Define ¢; ; as the sum over the i-th row and ¢; » as
the sum over the ¢ 4+ n-th row.

The representation described by this tuple has the right dimension vector since
the configuration D satisfies Property (3). It embeds into M; because the tuple
describes a successor closed subquiver in the coefficient quiver of M;. Hence the

preimage of each cyclic Dellac configuration is a tuple in the set Céd). (]

For w > 2 it is not sufficient to distinguish between black and white dots.
Instead we take numbers k between zero and w to label the boxes. We generalise
the notion of weights by writing k’s in the boxes where we wrote 1’s following the
original definition. In the other boxes we write max{k—1,0}. For w = 1 this yields
the same weight vector as the original definition.

DEFINITION 6.22. An affine Dellac configuration D to the parameter w € N
consists of 2n numbers form zero to w in a rectangle of 2n x n boxes such that:

(1) each row contains exactly one number,
(2) each column contains exactly two numbers,

(3) the weight of each column is wn.

The subsequent proposition is a direct consequence of the parametrisation of
the cells by the length of the subsegments in the coefficient quiver.

PROPOSITION 6.23. The weight vector of an affine Dellac configuration is equal
to the dimension vector of a representative for the corresponding cell in the quiver
Grassmannian.

PRrROOF. Starting with a tuple parametrising a cell of the approximation we
write [¢; ;] in the corresponding box of the affine Dellac configuration. In the
computation of the weight vector we fill the other boxes in this row which are
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on the right of the starting box and on the left of the separator with the same
number. The other boxes of the line are filled with the number |¢;]. If we
view the numbers in this row as a vector this equals the dimension vector of the
indecomposable representation U(i;¢; ). This is exactly the summand of U(l)
which is parametrised by ¢; ;.. Hence the sum of all row vectors computed from the
¢; i’s in this way equals the dimension vector of the representation U(1). (|

Recall that the approximation of the degenerate affine flag variety
Flg(al,)
is in bijection with the quiver Grassmannian
Grsn (X, @Yy,)

where

X, =Y, = @ Ui(wn)
i€Z,

and e, :=dim X, = (wn);ez, -

ExAMPLE 6.24. The tuple ((13,32),(2,33), (28,12), (22, 18), (8,7)) describes a
cell in

Flg(gls)
and the weight vector of the corresponding configuration computes as
3 2(3[(3[3)2
1 of1j1]0/|o0
6 66556
5 504(4(|4]|5
2 1111222
. —>66776—>(3535353535)
7 7TI7T|7)6]|6
3 31312(2]|2
4 413|344
2 11122

THEOREM 6.25. The set 5571 (w) containing affine Dellac configurations to the
parameter w € N is in bijection with the cells of the approximation

Fia (gl,)
of the degenerate affine flag variety.

PROOF. If w = 1 this follows from Lemma since the approximation is
provided by the quiver Grassmannian in the lemma. For w > 2 let D be a Dellac
configuration in the set f)?)n (w). By the steps in the computation of the weight
vector it is also possible to recover the parameters ¢; ; by computing the row
sums instead of the column sums. By Proposition we know that the resulting
quiver representation U (1) has the right dimension vector. For each i € Z,, there
are exactly two boundaries behind the boxes in the i-th column. Hence the tuple 1
can parametrise at most two direct summands of U(l) ending over the i-th vertex
of the cycle such that there exists a segment-wise embedding of U(l) into the
representation M,,.
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Given a tuple | in the set

{1 = (li, 6i2) € @ [wnlo x [wn)o : dimU(1) = ew}

1€

we know that the corresponding configuration satisfies Propety (1) in the definition
of affine Dellac configurations by construction. In Proposition[6.23|we have checked
that Property (3) is satisfied. By Proposition we know that every successor
closed subquiver corresponding to a cell in the degenerate affine flag variety has
two starting points of segments over each ¢ € Z,,. The labelled boxes capture the
position of the starting points such that Property (2) is satisfied as well.

Two tuples with the same affine Dellac configuration as image have to be equal
since the configuration allows to recover the value of each entry in the tuple as
described above. O

There is a relation between cyclic and affine Dellac configurations. Clearly it
is possible to construct a cyclic Dellac configuration from an affine one but it is
also possible to extend cyclic configurations in order to be affine.

REMARK. For any w > 1 we can obtain the set of affine Dellac configurations
DC,, (w) from the set of cyclic Dellac configurations DC,. Given a cyclic Dellac
configuration D we replace the black dots by 1’s and the white dots by 0’s. In every
column we are allowed to add a number between zero and w to the entry if the
entry is zero. Otherwise we are allowed to add a number between zero and w — 1.
The resulting configuration is contained in EZ*n (w) if the sum of the numbers we
add equals (w — 1)n.

PROOF. The entries of the wight vector of the configuration D are equal to n.
Adding k to the entry in the i-th line adds k to every entry of the weight vector
and this is independent of the row index 4. If the sum of numbers we add equals
(w —1)n the entries in the weight vector of the new configuration are equal to wn.
Accordingly the configuration is contained in the set Ebn (w). ]

COROLLARY 6.26. The cardinalities of the sets of affine and cyclic Dellac con-
figurations satisfy the relation

(w=1n+2n-1

#DCOn(w) < < o — 1

) #DC,,

PROOF. The coefficient on the right hand side counts the possibilities to split
the number (w — 1)n into at most 2n parts where two splittings are distinguished
if their parts have a different order. Every splitting of (w — 1)n in the sense of the
remark above is covered by this. [

The procedure to obtain affine Dellac configurations from cyclic Dellac config-
urations is not unique. It is possible to obtain the same affine Dellac configuration
from different cyclic Dellac configurations.

EXAMPLE 6.27. For n =5 and w = 7 we construct an affine configuration in
56’5(7) from two different cyclic configurations in DC's. Starting with a cyclic
Dellac configuration we have to add numbers with a total ammount of 30 to the
entries of the cyclic Dellac configuration.
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) 1 2 3

2 =30

The following steps describe one other possible construction of the same configu-
ration.

] 1 4 5

o 1 2 3

¥ =30

Any other configuration with a different arrangement of black and white dots on the
diagonal would also provide a suitable starting point to construct the same affine
Dellac configuration. If an affine Dellac configuration can be constructed from a
cyclic Dellac configuration which has no white dots, this is the only possibility to
construct this configuration.

6.4.3. The Length of a Configuration. Property (3) in the definition of
affine Dellac configurations is necessary to get the right dimension vector for the
corresponding quiver representation. Nevertheless it is desirable to replace this
condition by something which is easier to check.

For classical Dellac configurations this condition is simply a restriction on the
areas where the dots are allowed. Unfortunately, the introduction of weights re-
quires that we at least have to control the sum of all weights given to the boxes.
The new tool to distinguish configurations is called length and will be introduced
below.

_ Let D € DC,, be a cyclic Dellac configuration. In every row of the configuration
D we count the steps which a black dot moved from the separator to its actual
position. This number will be denoted by p; for j € Zy, because it encodes the
information about the position of the dot in the j-th row. For white dots we set
p;j = 0. This is compatible with the definition for black dots since the white dots
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can not have moved away from their starting position. For black dots we have
p; > 1 and if a black dot has returned to the position of a white dot we have

pjzn.

DEFINITION 6.28. The length of the configuration D € DC,, is defined as

len Z Dj-

EZQn

We say that the configuration D satisfies Property (3)' if len(D) = n2.
PROPOSITION 6.29. Any cyclic Dellac configuration D € DC,, satisfies Prop-
erty (3)".

PROOF. In the computation of the weight vector the number of 1’s we write
into the j-th row equalb the number p;. The sum of the entries in the weight vector
of D equals n? since D satisfies Property (3). For the weight vector we compute
column sums and the length vector

len(D) := (p;)jcza.

contains the row sums. Hence the sum over the entries in both vectors has to be

the same, i.e.
E pj = len
J€ZLan

O

The proof of the other direction requires a bit more work. First we describe
a different approach to define affine Dellac configurations which is based on Prop-
erty (3)’. For that we need the subsequent notion of configurations.

DEFINITION 6.30. In a rectangle of 2n x n boxes a periodic Dellac config-
uration D consists of 2n marked boxes such that:

(1)  each row contains exactly one marked box,
(2) each column contains exactly two marked boxes.

Every Dellac configuration is a periodic Dellac configuration. If we split the
cylinder of boxes at a different point, we obtain a periodic Dellac configuration
again. The set of all periodic Dellac configurations in 2n x n boxes is denoted by
DC,,.

REMARK. We can obtain affine Dellac configurations from periodic Dellac con-
figurations by replacing the dots by numbers from zero to w such that Property (3)
is satisfied.

Here the entry zero is only allowed on the marked diagonal. But this restriction
is implied by Property (3). This process to obtain affine Dellac configurations is
similar to the one describe above for cyclic Dellac configurations.

The main difference is that now the underlying periodic Dellac configuration of
every affine Dellac configuration is unique. But the weight vector of the underlying
periodic Dellac configuration is not known. Its entries can vary between 2 and 2n.
These extremal entries of the weight vector are obtained with configurations of the
form
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and

Accordingly it is not clear which total amount of numbers we have to insert into
a periodic Dellac configuration in order to make it affine for the parameter w.
From the left configuration above we know that at least inserting a total amount
of wn 4 2n — 2 is sufficient since the configuration

w

has the weight vector
wt(D) = ((w—1)n+2+ (n— 2))2,62"’ = (wn)iezn.

For arbitrary n this configuration contains n entries which are equal to w, n — 2
entries equal to 2 and 2 times the entry one. As above we obtain an upper bound
on the cardinality of the set of affine Dellac configurations, i.e.

(w+1)n+2n
2n

450, () < ( )#Don.

For an affine Dellac configuration D e I/)E'n(w) we compute its length as
follows. Let k; be the entry in the j-th row of the configuration. We determine
the the position of this entry as defined above for the cyclic configurations and
denote it by p; := p(k;). Remember that the position of a white dot is zero. Hence

the same convention leads to p(0) = 0. The winding number r; of the j-th row is
defined as

T; 1= max {kj — 1,0}
and counts the full rounds around cycle which can be cut out of the corresponding
segment in the coefficient quiver without sending it to zero. For a cyclic Dellac

configuration these numbers are all equal to zero since w = 1 and hence every
segment goes around the cycle at most once. Accordingly

1en(lA)) =n Z ri+ Z Pj

J€ZLan J€Z2n
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generalises the notion of length to affine Dellac configurations. The generalisation
of Property (3)’ is given by

len(D) =n Z T+ Z pj = wn?.
J€Z2n J€Lan

The subsequent observation is a first step for the other direction in the proof of the
equivalence of Property (3) and Property (3)’.

PROPOSITION 6.31. Let D € Ean(w) be an affine Dellac configuration such
that k; > 1 for all j € Zs,,. The positions p; for j € Zsa, describe a periodic Dellac
configuration D,, € DC,, with weight vector

— 1
t(D) = (- ).
wm = (1)
J€L2n
PROOF. The entries of an affine Dellac configuration satisfy Property (1),
Property (2) and Property (3). We replace every entry by a 1 or equivalently a

black dot. The resulting configuration still satisfies Property (1) and Property (2).
Hence it is periodic. The weight of this configuration is given by

wt(Dp) = > pj.
j€Z2n

For the configuration ﬁ, it is a homogeneous transformation of the weight vector
to decrease an entry of the configuration by some integer. Namely, decreasing any
entry k; > 1 of the configuration by a number

quj:k:j—l

decreases every entry of the weight vector by ¢q. Accordingly the weight vector of
Dy is homogeneous and its entries are given by

wt (ﬁp) .

In particular this number is an integer. O

The following proposition is required for the generalisation of the proof that
Property (3) implies Property (3).

PROPOSITION 6.32. Let D € l/)bn (w) be an affine Dellac configuration. Then
Wt(ﬁ) = len(ﬁ).
PROOF. The sum of the entries in the j-th row of the diagram in the compu-
tation of the weight vector equals
£; := nmax {kj — 1,0} + ;-

By construction, this is the length of the segment in the coefficient quiver which is
parametrised by the j-th row of the configuration. Summation over j € Zs,, yields

Z (nmax {k; —1,0} +p;) =n Z max {k; — 1,0} + Z pj = len(f)).
J€ZLan JE€Lan J€Lan

To compute the weight of this configuration we first compute the weight vector, i.e
the column sums over the diagram and then we sum over the entries of this vector.
Hence the weight and the length of the configuration D are both obtained as the
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sum over all entries in the diagram which arises in the computation of the weight
vector. ]

LEMMA 6.33. A periodic Dellac configuration D(k) with entries weighted by
k= (k) jez,, € D Lo
j€Z2n
satisfies Property (3) if and only if it satisfies Property (3)'.

Proor. The Dellac configuration where we write k; instead of a dot is denoted
by D(k). Assume that this configuration satisfies Property (3), i.e.

wt(D(k)) = (wn)iezn.

We obtain the weight
wt(D(k)) = Z wn = wn?.
=
By Proposition this is equal to len (E(k)) such that Property (3) is satisfied.
Conversely assume that D(k) satisfies Property (3)', i.e.
len(D(k)) = wn?.

First we consider the case that k; > 1 for all j € Zy,. Then by Proposition
the underlying configuration D has the weight vector

— 1
Wt(D) = ( - Z Dj )iGZ .

In this setting, we can view the transformation from D to D(k) as adding ki —1
to the entry in the j-th row of the configuration D. This operation increases every
entry of the weight vector by k; — 1 such that we obtain

J€ZLan J€ZLan
_ ( Z (max{k] 1,0}) + — Z Dj ) ’
JE€Zan JE€Zan €

Accordingly the configuration D(k) satisfies Property (3).

Now assume that we have k; = 0 for some j € Zsa,. For the underlying
configuration D we have p; = p;(D) = n but for the configuration D(k) we get
p(k;) = 0. The weight vector of the underlying configuration is given by

_ 1 _
wt(D)=(~ Y w(D)) _ -
. 1€%Ly,
J€ZL2n

For the summands we obtain the equality

ri(D) +min{0,k; — 1} = pik;).
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Replacing a black dot in the configuration D by the number k; increases the entries

of the weight vector by k; — 1 if k; > 1 and it decreases the entries by 1 if k; = 0.
Thus the weight vector of D(k) computes as

wt(D0) = (3 (b -1+ 3 (D))

= = i€Ln
1 .

(X t-0+1 X (o) —nominfok,—13) )

JE€ELan JE€ZL2n
. 1

_ ( 'Z ((k; = 1) = min{0,k; = 1}) + = 42 p(k;) )iezn

JE€Lan JE€Zan
1

= ( Z (max{k; —1,0}) + - Z p(k;) )iGZn = (wn)iezn.

J€ZLan J€ZLan
Here the last equality follows since D(k) satisfies Property (3)’. O

This proves the subsequent characterisation of affine Dellac configurations.

THEOREM 6.34. An affine Dellac configuration D to the parameter w € N
consists of 2n numbers form zero to w in a rectangle of 2n x n boxes such that:

(i) each row contains exactly one number,
(i) each column contains exactly two numbers,
(iii)  the length of D is given by wn?.

With this alternative characterisation it is easier to construct affine Dellac
configurations than with the original definition. Here we only need a periodic
Dellac configuration as basis. Then we can introduce any tuple of weights to the
dots which satisfies Condition (7i¢) of the above theorem.

Originally we had to check Property (3) in the definition of cyclic Dellac con-
figurations and then could add tuples summing up to (w — 1)n. So we reduced the
number of conditions by one.

Moreover we got rid of the graphical step where we had to write the dimension
vectors in the rows of the configuration. This also makes it easier to decide whether
a given configuration can be an affine Dellac configuration since we do not have to
draw this diagram any more.

The procedure of this decision will be as follows. First check Property (1) and
Property (2). If they are satisfied compute the sum

Z max{k; — 1,0}
J€ZLan
which has to be between wn — 2 and (w — 2)n. Finally add
1
n Z p(k;)
J€ZL2n

to this number. The result has to equal wn if the configuration is an affine Dellac
configuration to the parameter w.
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6.5. Geometric Properties

In this section we apply the theory of quiver Grassmannians for the equioriented
cycle as introduced in the previous chapters of this thesis to the approximations of
the degenerate affine flag variety. This allows to derive properties of their geometry
from the study of the corresponding quiver Grassmannians.

THEOREM 6.35. Forw € N, the approximation FI¢ (gA[n) of the Feigin-degenerate
affine flag variety satisfies:

(1) It is a projective variety of dimension wn?.

(2) It admits a cellular decomposition.

(8)  There is a bijection between the cells and affine Dellac configurations to
the parameter w.

The irreducible components of the finite dimensional approximation of the
Feigin-degenerate affine flag variety satisfy:

(4)  They are equidimensional.

(5)  They have rational singularities and are normal, Cohen-Macaulay.

(6)  There is a bijection between the irreducible components and
grand Motzkin paths of length n.

ProOOF. In Theorem we have established an isomorphism between the fi-
nite dimensional approximations of the flag variety and quiver Grassmannians for
the equioriented cycle. In Corollary [6.8] we have computed the dimension of these
quiver Grassmannians which are projective varieties. We have proven in Theo-
rem that the cells of the approximations are parametrised by affine Delllac
configurations to the parameter w. The irreducible components where examined
in Lemma [6.10 From the shape of the quiver representations X, and Y, as in-
troduced in Theorem [6.4] it follows that we can apply Lemma [3.24] proving the
rationality of the singularities to the irreducible components of the quiver Grass-
mannian providing the approximation. (I

6.6. The Non-Degenerate Affine Flag Variety

In this section we examine the structure of the non-degenerate affine flag vari-
ety. Its finite approximations can be identified with quiver Grassmannians for the
equioriented cycle similarly to the case of the affine flag variety.

THEOREM 6.36. Let w € N be given, take the nilpotent quiver representa-
tion My, = @,z Ui(2wn) and define the dimension vector e, := 1/2 - dim M,,.
The corresponding quiver Grassmannian is isomorphic to the approximation of the
affine flag variety, i.e. R

Flo(gl,) =2 Grar (M)
The proof of this theorem works in the same way as for the degenerate affine

flag variety. First we have to interpret the coefficient quiver of M, suiting the maps
between the Sato Grassmannians.

PROPOSITION 6.37. The quiver representation M, is isomorphic to the quiver
representation
MS = (Mal = Sl)ieZn

where s; is the index shift by one.
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PROOF. The vertices of A,, are in bijection with the set Z, and we choose
the representatives 0,1,...,n — 1. For the representation M, the vectorspace over
each vertex i € Z,, has dimension 2wn. For the arrangement of the segments in the
coefficient quiver corresponding to the summands U;(2wn) of M, as in Section
we obtain the maps s; : C2¥™ — C?*™ along the arrows of A,, since there is starting
exactly one segment of length 2wn over each vertex. It ends in the basis vector
indexed by 2wn over the vertex i + 2wn — 1 = i — 1 and along each step of the
segment the index of the corresponding basis vectors increases by one. (I

We change the indices of the basis vectors over the vertices i € Z,, in order to
match the indices of the basis vectors for the spaces in the Sato Grassmannians
SGr;. This is done in the same way as for X, ® Y, in the degenerate setting since
the vector spaces over the vertices of A,, have dimension 2wn in both cases. The
coefficient quiver of the representation MC with the new labelling is show below.

ExXAMPLE 6.38. Using the new labelling the coefficient quiver of M, for n =4
and w =1 is given by

Again the dashed arrows in the picture indicate where the segments grow if we
increase the value of w.
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REMARK. Here all summands of M, are injective representations of the length
2wn for the set of relations Iy,,,. Hence we can apply Theorem [2.3]in order to study
the irreducible components of the approximations.

LEMMA 6.39. Forw € N, the irreducible components of the finite approzimation
Fly, (g[n) are of dimension

2w Ln/QJ [n/?] ,
normal, Cohen-Macaulay, have rational singularities and their number is given by

n!
[n/2]Y[n/2]"

PROOF. From Theorem [3.5 by G. Kempken we know that the orbit closures
in the variety of quiver representations have rational singularities. In both cases
all summands can be viewed as bounded injective representations such that we can
apply Theorem [2.3] to transport the rational singularities from the variety of quiver
representations to the quiver Grassmannian. The other two properties are a direct
consequence of Theorem [3.4) by G. Kempf. It remains to compute the dimension
and number of irreducible components from the orbit structure of the variety of
quiver representations. In this computation we have to distinguish between n even
and n odd.

For n even one can apply Lemma [3:22] in order to compute the dimension of
the approximations. With

ri=1, xy/94; =0 forie€Zy,
and
Unjo4i-1 =1, yi-1 =0 fori € Zy

the dimension of the approximation computes as
. ~ W o
dim Fl,, (g[n) =5n

By definition we have y; +2;41 = 1 for all ¢ € Z,,. Hence we obtain by Lemma [3.23]
that the irreducible components of the approximation are parametrised by the set

Crny2(1) := {p €Z%y:pi < 1forallie€Zy, Z D = n/2}
1E€ELm,

which is in bijection with the set of n/2-element subsets of the set [n]. Accordingly
the number of irreducible components equals (n’/LQ) which matches the claimed
number for even n.

For n odd we can not apply the results from Section[3:3]but nevertheless we can
use the methods from Chapter [3J] to examine the quiver Grassmannians providing
the approximations of the non-degenerate affine flag variety. Following the steps
in the proof of Proposition [3.21] we arrive at the subsequent representatives for the

highest dimensional orbits in the variety of quiver representations
U :=U;,(wn) ® @ Ui (2wn).
iel
where [ is a subset of Z,, with |n/2] many pairwise distinct elements. These repre-
sentatives also parametrise the irreducible components of the quiver Grassmannian
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and the dimension of the strata computes as
dim Sy = dim Homa , (U, Mw) — dim Homax,, (U, U)
= 2w|n/2)n +wn — (2w|n/2|[n/2] + 2w|n/2] + w)
=2w[n/2](n —|n/2]) + wn — (2w|n/2] + w)
=2w[n/2][n/2] + wn — (w(n — 1) + w)
]

= 2w[n/2|[n/2].
(1)

possibilities to choose the set I C Z,,. For each choice of I we have [n/2] possible
choices for the index i since I has [n/2| many elements. Hence the number of
irreducible components is given by

[n/2]< " > [n/2]n! [n/2]n! nl

1n/2]) ~ [n/2]in—[n/2])! ~ [n/2) /210~ [n/2]1[n/2]"

There are

6.7. Linear Degenerations of Affine Flag Varieties

In this section we want to define linear degenerations of the affine flag variety
following the approach of G. Cerulli Irelli, X. Fang, E. Feigin, G. Fourier and
M. Reineke as introduced in [19]. This will generalise the degeneration of the
affine flag variety which is introduced in the beginning of this chapter.

In [19] a flag variety of type A,, is degenerated by relaxing the inclusion of the
subspace U; C U, 41 to the inclusion of the image via some linear maps f;U; C U;41.
They show that the resulting linear degenerate flag variety only depends on the
co-ranks of the maps f; and not the maps itself.

6.7.1. Setting. Let V be an infinite dimensional vector space over the field
C with basis vectors v; for j € Z. The set Hom(V, V') contains all linear maps from
V to V. We consider tuples of linear maps

f=(fi)iez, € [[ Hom(V,V) =: End*"(V).
1€ L,
On the space End”"™ (V) of tuples of linear maps we have an action of the group
G = [liez, GL(V) via base change
G x End*" (V) — End*" (V)
(9.f) — g9.f
where
g.f = (g1fog(§1, gaf1g1 s 790fnflg»;i1>~

The orbit Oiso := G.(s1,. .., 1) consisting of tuples where every map is an isomor-
phism is open in End*™ (V). This is shown as follows.
Define the finite dimensional subspace

1 I——
V( ) = bpan(vbve—h sy U—t42, U—f-i—l)-

This induces a finite dimensional version of the above setup where the map s;
is nilpotent and the corresponding orbit is open by Proposition It is open
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for every finite approximation V() and the natural embedding V(©) « V+1)
preserves the local structure such that the ind-topology and the Zariski topology
coincide.

Let U := (Ui)iezn
in the Sato Grassmannian SGry, i.e.

U= (Ui),ep, € [ SGro=:sGr*™.
1€ Ln,

be a tuple of subspaces in V' such that each U; is contained

On the product of Sato Grassmannians the group G acts via translation
G x SGr*™ — SGr*™
(9,U) — g.U

where
9.U := (9000, 91Un, - - ., gn—1Un—1).

DEFINITION 6.40. A tuple of maps f € End*" (V') and a tuple of vector spaces
U € SGr*"™ are compatible if

fi(U) C Usyy  for all i€ Z,,.
The variety of compatible pairs is defined as

EG*™(V) := {(f7 U) € End*"(V) x SGr*" : f and U are compatible}.

REMARK. The notion of compatibility generalises the definitions of the affine
flag variety and the degenerate flag variety. For the tuple f where every map f;
is equal to the index shift s_;, the tuples U which are compatible with the index
shifts are exactly the points in the affine flag variety as shown in Theorem [6.36]
In the case where every f; equals the shifted projection s_; o pr; the compatible
tuples U are in bijection with the points of the degenerate affine flag variety as
shown in Theorem [6.4] For both identifications it is essential that the affine flag
variety is isomorphic to the set

Fi(gl,) = { (Ur) e, € S : 53Us C Uy for all i € Z, }
which follows directly from the definition of the Sato Grassmannians SGr;.

Let 7 be the projection
7 : EG*"(V) — End™"(V)
and p the projection
p: EG*"(V) — SGr™".
The remark above suggests the subsequent generalisation of the definitions of the
affine flag variety and its degeneration as given in the beginning of this chapter.

DEFINITION 6.41. For f € End*" (V) the f-linear degenerate affine flag

variety is defined as
Fit (é\[n) =1 L(f).
We call the map
7 :EG*"(V) — End™"™(V)

universal linear degeneration of the affine flag variety Fl (g[n) The subset
of End™"(V) over which 7 is flat is denoted by Upat and Ugag iy is the subset of
End*" (V) over which 7 is flat with irreducible fibres.
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The irreducible components of the degenerate affine flag variety, as studied in
the previous sections of this chapter, are in bijection with grand Motzkin paths.
Thus it is not included in the flat irreducible locus Ugas irr. For all examples of
the partial degenerate affine flag varieties as computed in Appendix we do not
obtain any case where the finite approximations of the affine flag variety and some
of its partial degenerations are equidimensional.

An endomorphism f € End*"(V) is called nilpotent if there exists an £ € N
such that the restrictions of f; to V) are nilpotent in the sense of Chapter
The set of nilpotent endomorphism is denoted by End}(V). The G-orbits of
the nilpotent endomorphisms can be studied with the methods from the thesis by
G. Kempken and the corresponding degenerations of the affine flag variety admit
finite approximations by quiver Grassmannians for the equioriented cycle.

6.7.2. Loci via Co-Rank Tuples. From now on we restrict us to End/} (V).
In this section we want to examine the fibres of the map 7 and classify the different
types of linear degenerations which arise as fibres of .

For any finite quiver @ an isomorphism of Q-representations ¥ : M — N yields
the isomorphism

GrS(M) = GrS(N).

This holds because for any subrepresentation (U, ¢) of M we obtain that the rep-
resentation (U(U), ¥ o ¢ o U~1) is a subrepresentation of N.

In the same way we can show that the fibres of two endomorphisms which live in
the same G-orbit are isomorphic. Again we restrict to the finite dimensional setting
for some ¢ € N where the isomorphism of the fibres is obtained similar as for the
quiver Grassmannians in the above proposition. The isomorphisms are compatible
with the embeddings V) < V+1) such that they lift to the ind-varieties.

Let f € End//(V) be a tuple of linear maps and let N € N be given such that
f is nilpotent where we view the f; as maps between the finite approximations
VN) . We assign a tuple c of integers to f, where

c:=(¢in)icznkezy and ¢ = corank(fiyx © fiqn—10---0 fiz10 fi).

Here every index is viewed as a number in Z,, and we call ¢ a co-rank tuple.

By the definition of the action of G on End/}(V) it is clear, that g.f and f
have the same co-rank tuple for any ¢ € G. Thus the co-rank tuples are constant
on G-orbits in End)/}(V'). It follows from Proposition that all nilpotent endo-
morphisms with the same co-rank tuple are obtained in this way. Let f and f’ be
tuples in End (V') which live in the same G-orbit. The element g € G such that
g.f = f' establishes an isomorphism of the fibres 7= 1(f) and 7=1(f’). Accordingly
it is sufficient to study the fibre for one representative of the orbits.

The co-rank tuple of f = (s_1,...,s_1) in the approximation to the parameter
N is denoted by c® and its entries are C?,k = k + 1 since the co-rank of s_; is one
and the co-rank of s_; o s_; is two. Accordingly the co-rank of the maps f; is
independent of the approximation and it is independent of the starting vertex 1.
For the endomorphism f = pr = (s_; o pry,...,S_1 o pr;) we denote its co-rank
tuple by c! and the entries of this tuple are given by c}k = 2(k + 1) because the
co-rank of s_; opr; is two. Again the co-rank is independent of the approximation
parameter N.
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Moreover this co-rank tuple satisfies the property

k
(6.7.1) Cik = ZC'H-Z,O
1=0

which is also satisfied for c®. We define a partial order on the co-rank tuples, where
' <cie=cy >y forallieZ,.

From now on we only want to consider co-rank tuples ¢ with ¢! < ¢ < ¢® which

also satisfy Property

These tuples correspond to the G-orbits of the maps f € End (V) where
each f; is either the shifted projection s_; o pr; or the index shift s_;. They are
completely determined by their entries ¢; o for i € Z,,. Hence it is sufficient to view
co-rank tuples in Z™ if the full tuple for any approximation to the parameter N
satisfies Property Based on this observation want to simplify the notation

for the co-rank tuples. For a co-rank tuple c as above we now take the tuple

(cio — Diez,
and by abuse of notation also denote it by c¢. The new co-rank tuple ¢! =
(1,...,1) € Z™ corresponds to the degeneration we studied in the previous sec-
tions of this chapter. And the new tuple ¢ = (0,...,0) € Z" is corresponding to
the non-degenerate affine flag variety.

Let FI° (g/;\[n) be the linear degenerate affine flag variety corresponding to the
co-rank tuple c. The degenerate flag varieties for tuples with ¢! < ¢ < ¢° can
be viewed as intermediate degenerations between the non-degenerate affine flag
Fl (gA[n) and the Feigin-degenerate affine flag variety FI¢ (gA[n) This terminology
is motivated by the structure of their approximations as given in the subsequent
lemma.

LEMMA 6.42. For w € N and c € {0,1}% the finite approzimation is given as
Fig (gl,) = Grar (M),
where e, := dim P, Ui(wn) = (wn)icz, and for every i € Z, the representa-
tion ME contains the summand U;(wn) @ C? if ¢; = 1 or U;(2wn) if ¢; = 0.

PROPOSITION 6.43. The quiver representation M is isomorphic to the quiver
representation
(Mai == s10pry, )
i€

n

PRrOOF. For the representation M, the vectorspace over each vertex i € Z,, has
dimension 2wn. In the coefficient quiver of MS there are 1 + ¢; segments starting
over the vertex i € Z,,.

The first segment is starting in the fist point over the vertex ¢ and in the k-th
step its arrow goes from the k-th point over the vertex ¢ + k — 1 to the k 4+ 1-th
point over the vertex ¢ + k. If ¢; = 1 this segment has length wn and there has
to be a second segment starting over the same vertex. If ¢; = 0 this segment has
length 2wn and there is no second segment starting over the vertex i € Z,,.

Now assume that ¢; = 1. The first segment ends in the wn-th point over the
vertex ¢ — 1 and it is not possible that there exists an arrow pointing to the wn + 1-
th point over the vertex i. We choose this point as starting point for the second
segment starting over the vertex 1.
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In the k-th step the arrow of this segment goes from the wn + k-th point over
the vertex ¢ + k — 1 to the wn + k 4 1-th point over the vertex ¢ + k and it ends
in the 2wn-th point over the vertex ¢ +n —1 =14 — 1. With this realisation of the
coeflicient quiver of MS we have the maps

R Ci
My, := sy oprg,
for the arrow «; from vertex i to vertex 7 + 1. O

We change the indices of the basis vectors over the vertices ¢ € Z,, in order to
match the indices of the basis vectors for the spaces in the Sato Grassmannians
SGr;. This is done in the same way as for X, @ Y, in the full degenerate setting
since the vector spaces over the vertices of A, have the dimension 2wn independent
of the parameter c.

EXAMPLE 6.44. Using the new labelling the coefficient quiver of MS for n =4,
w=1and c=(1,0,0,1) is given by

Again the dashed arrows in the picture indicate where the segments grow if we
increase the value of w.
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Proor oF LEMMA [6.42] In this setting, it is possible to use the same maps
as defined between the finite approximation of the c'-degenerate affine flag variety
and the corresponding quiver Grassmannian in Theorem For the basis of the
vector spaces over the vertices of the quiver we take the same labelling and add
arrows from vzm to vlm_l) (resp. vf::l) to vg)l)) in the coefficient quiver if ¢; = 0
(resp. cp—1 =0). O

REMARK. In the chapter about quiver Grassmannians for the equioriented
cycle we discovered that it was crucial for certain properties of the quiver Grass-
mannian that the length of the projective and injective representations of A,, is
a multiple of n. For the co-rank tuples ¢ we restricted to, we still get approxi-
mations of the corresponding linear degenerate affine flag varieties FI°¢ (gA[n) where
the length of all summands of M¢ is a multiple of n. This enables us to use the
methods developed in Chapter [3| to study their approximations.

The approximation of the linear degenerate affine flag varieties FI°¢ (gA[n) by
quiver Grassmannians for the equioriented cycle would work for all co-rank tuples
¢ coming from map tuples f € End*™(V) where each f; is an arbitrary finite
composition of projections. But the resulting quiver Grassmanians can not be
studied using the methods which are introduced in the previous chapters of this
thesis.

6.8. Ind-Variety Structure

In this section we introduce closed embeddings between the approximations of
the partial degenerations of the affine flag variety which are compatible with the
ind-variety structure of the partial degenerate affine flag varieties.

6.8.1. Ind-Variety Structure of the Feigin Degeneration. Before we
examine the maps for the ind-variety structure in the generality of the partial
degenerations we construct them for the Feigin degeneration where the explicit
description of the maps is less complicated. We realise the approximation for a
given w € N as a closed subset inside of the quiver Grassmannian for w + 1. For
this purpose we need an other description of the cell which makes it easier to
describe how the parametrisation of the cells changes along the embedding.

PROPOSITION 6.45. The cells of the approximation FI1Z (a[n) are parametrised
by the set

Ci(n) = {(I(l))iez € H G;:]) 259l N [2wn] € 10+ for all i e Zn}.
i€z,

PROOF. The map so denotes the index shift by 2. Following Section and
applying the identification of the approximations with quiver Grassmannians we
obtain that the cells are parametrised by the set

{1 = (li1,4i2) € @[wn]o X [wn]o: dimU(1) = (wn)iezn}.
i€Zn
Each number /; j, parametrises a segment of a successor closed subquiver.

From the structure of the coefficient quiver of X, @& Y, we know that the
indices of the vertices on a segment increase by 2 along the arrows of the quiver.
The end points of the segments have the index 2wn if the segment corresponds to a
summand of X, or 2wn — 1 if the segment corresponds to a summand of Y,,. With
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this information we can construct index sets corresponding to the labelling of the
vertices on the segments from the length of the segments. This yields the claimed
parametrisation of the cells. (I

LEMMA 6.46. For all w € N there exists a closed embedding

D% : Grem (Xo, ®Yy) = Gre (Xuy1 @ Yoi1)

€w+1

preserving the dimension of the cells.

PROOF. The quiver Grassmannians GreAw" (X, @Y,,) admit a cellular decompo-
sition into attracting sets of torus fixed points. Following the proof of Theorem [£.10]
the points in the cells are spanned by vectors

{0, i)}

of the form

J>ks g g1
with coefficients M;Z)e € Cfori € Z,. Here I) C [2wn] for i € Z,, are the index sets
describing the corresponding torus fixed point as determined in Proposition [6.45

Similarly as done for the approximations of the affine Grassmannian in Sec-
tion the points in the quiver Grassmannian which is isomorphic to the approx-
imation of the affine flag variety can be described by a tuple of matrices

M(l) S M2wn,wn((c)
(¢

for ¢ € Z,, collecting the coefficients ugll of the basis vectors v; ) which parametrise

the vectors wgi) spanning this point.
We define the map

\I/g : Man,wn(C) — M2(w+1)n,(w+1)n((c)

where
. mfflmq if n <p<2wn+nandq € [wn]
\IJZ(M(Z))WZ = 1 if g>wnand p—2wn=q—wn
0 otherwise.

These matrices have a block structure of the following shape
) On,L_un On,n
\I]Z (M(l)) = M© Own,n
On,wn ldn
where 0, , is a p x ¢ matrix with all entries equal to zero and id,, is the n x n

identity matrix.
On the level of cells this corresponds to the map

¥ Co(n) = Coia(n)
where
wg(ﬂi)) = 5,1 U {Zum +n+1,2wn+n+2,...,2wn+ Qn} C [2(w+ 1)n)].
Hence the image of a fixed point is indeed a fixed point in the bigger approximation

and the dimension is preserved since we do not add holes below the starting points
of the segments.
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The image of a point is a point in the attracting set of the image of the fixed
point it is attracted from. This is checked in the same way as done for the points
in the approximations of the degenerate affine Grassmannian O

COROLLARY 6.47. On the Feigin-degenerate affine flag variety FI1° (an) the
ind-topology and the Zariski topology coincide.

PROOF. It is clear that any point in the degenerate affine flag variety lives in
some finite approximation. This approximation is isomorphic to a quiver Grass-
mannian. Combined with Lemma the approximations by quiver Grassman-
nians induce an ind-variety structure on the affine flag variety. The topologies
coincide since the cell structure is preserved by the embeddings [71], Proposition
7). O

6.8.2. Ind-Variety Structure of the Non-Degenerate Affine Flag Va-
riety. In this section we generalise the definition of the map between the approx-
imations of the degenerate affine flag variety to the non-degenerate setting.

PROPOSITION 6.48. The cells of the approximation Fl,, (3[,,) are parametrised
by the set

Cu(n) = {(I(i))iez = H ([2wn]> : 511 N [2wn] € 10+ for all i € Zn}
n wn
i€Ly,

PROOF. Analogous to the approximations of the degenerate affine flag variety
we obtain that the cells are parametrised by the set

(1= 00 @t amoth = ), )
1€%n

where each number ¢; parametrises a segment of a successor closed subquiver.
By the structure of the coefficient quiver of

M = @ Ui (2wn)
=

we know that the indices of the vertices on a segment increase by one along the
arrows of the quiver. The end points of the segments have the index 2wn. As in the
degenerate case this information is sufficient to construct a bijection between the
cells parametrised by numbers ¢; and the tuples of indices as defined above. O

LEMMA 6.49. For all w € N there exists a closed embedding

D, : Gror (ME) — Gi5r (MD,))

€u+1
preserving the dimension of the cells.
The proof of this statement is analogous to the proof of the generalisation of

the map between the approximations of the degenerate affine Grassmannian to the
map between the approximations of the non-degenerate affine Grassmannian.

COROLLARY 6.50. On the non-degenerate affine flag variety FI (g?[n) the ind-
topology and the Zariski topology coincide.
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6.8.3. Ind-Variety Structure of the Partial Degenerations. For the
partial degenerations there are segments of two different lengths in the coefficient
quiver of the representation M. Thus it is not possible to parametrise the cells
in a similar way as done for the approximations of the Feigin-degenerate and non-
degenerate affine flag variety. The relation between the index sets 19 and 7¢+1)
now depends on the value of c¢;.

PROPOSITION 6.51. The cells of the approximation FI$ (gl,,) are parametrised
by the set

CS(n) = {(I(l))iez € H <[ ;:]) :s1pre, 19 N [2wn] € T0FD for all 4 € Zn}
i€y,

PROOF. This set parametrises the successor closed subquivers with wn marked
points over each vertex of the cycle in the coefficient quiver of the quiver represen-
tation

n[c _ 7\[ O Ci
w_( o '_Sloprwn)_
V€L

which is isomorphic to the quiver representation providing the approximations of
the partial degenerations. ([

This choice of the index sets is not suitable to define the cell directly as the
attracting set of the point which is spanned by the basis vectors with indices in the
sets (). In order to obtain a cellular decomposition into attracting sets of torus
fixed points we have to rearrange the segments such that there are no points below
the end points of segments which are not the end point of some other segment.

This rearrangement corresponds to some permutations o e Sown. For the
approximations of the non-degenerate affine flag the permutations are given by the
identity whereas for the approximations of the Feigin degenerations we have to use
the permutation

o : [2wn] — [2wn]
.H{Qi—l if i <wn
2(i —wn) otherwise.
If we are in these special cases and apply this permutations to the set CS(n) we

obtain the description of the cells by C%(n) and C2(n) as introduced before.
We define the index sets J) := o) 1) for

(I)ez, € C5(n)
which describe the torus fixed points
p= (span{vj 1j € J(i)}>

This are the torus fixed points which allow us to define the cells in the approxima-
tion as their attracting sets.

Based on this description of the cells we can express the points in the approxi-
mations as done above explicitly for the Feigin degeneration. Using this parametri-
sation we can define maps between the approximations of the partial degenerations
as done for the partial degenerations of the affine Grassmannian. Similar as in
Chapter [5| we prove the subsequent properties of these maps.

1€ Lm

iGZn'
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LEMMA 6.52. For all w € N there exists a closed embedding
o - Grﬁ: (M) — Glrﬁw"+1 (MS,,).

It preserves the dimension of the cells with all segments shorter than wn.

6.9. Partial Degenerations of Affine Dellac Configurations

In this section we introduce subsets of affine Dellac configurations which de-
scribe the cells in the approximations of the partial degenerate affine flag varieties.
For the approximations of the intermediate degenerations of the affine flag variety
it is not possible to apply Theorem in order to examine the cell structure
because not all summands of the used quiver representation have the same length.

For every nilpotent representation U € repg(A,) there exists a parameter
N € N such that U € repc(A,,In). Hence it is conjugated to a direct sum of
indecomposable nilpotent representations, i.e.

N
U=U(d):= @ PUuli0ech
1€2Ln £=1
where d; o € Z>o for all i € Z,, and ¢ € [N]. The number of indecomposable
summands of U(d) ending over the vertex i € Z,, is given by

N
dz‘ = Z di’g.
(=1

The condition d(«) := d;_, for all a € Z,, induces a grading of the vertices in the
coefficient quiver of U(d) which satisfies the assumptions of Theorem

Moreover it is possible to prove the subsequent generalisation of Theorem
with the methods developed in Chapter [

THEOREM 6.53. Let M = U(d) and e < dim M. For every L € Gri(M)7,
the subset C(L) C Gro (M) is an affine space and the quiver Grassmannian admits
a cellular decomposition

Gron(M)= [ cw).

LeGrSn (M)T

This result can be applied to the quiver Grassmannians approximating the
partial degenerations of the affine flag variety. For every i € Z,, the representation
M contains the summand

U(i;wn) @ C? if ¢; =1 or U (i; 2wn) if ¢; = 0.
Recall that for w € N the finite approximation is given as
FIg (o) = Gy (M),
where e, = (wn)ez, -

By Proposition [£.9] the cells in the approximations are in bijection with suc-
cessor closed subquivers in the coefficient quiver of MS with wn marked points over
each vertex. Accordingly these successor closed subquivers are parametrised by the
set

ci+1

Ce7c(An,IN) = { = (lig) € @ @ [(2 - ci)wn]o : dimU(1) = e}

1€ZLy k=1
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where
c;+1

v = €D D Ui tir)-

€Ly k=1

DEFINITION 6.54. An affine Dellac configuration D € EE’n(w) is called c-
degenerate to the parameter ¢ € {0,1}" if k; > 0 for j € [n] implies that
kjt+n = w and pj, = n whenever ¢; = 0. The set of all c-degenerate affine Dellac

configurations is denoted by DC ¢ (w).
These configurations parametrise the cells in the finite approximation FI¢ (3 [n) .
THEOREM 6.55. There is an isomorphism
DCE(w) = Coe(Ans In).

PROOF. For the special case with ¢; = 0 for all j € [n] we obtain the Feigin
degeneration. In this setting the isomorphism was established in Theorem [6.25]

In the general setting we distinguish two cases for the segments in the coefficient
quiver of MS coming from c¢; = 0 or ¢; = 1. For ¢; = 1 there are two summands
U(j;wn) in MS. From the length of the subrepresentations ¢;1 and ¢; 2 in these
summands we can compute the entries k; and kj;, as well as their positions p;
and p;1, in the configuration by

¢ =min{k; — 1,0} -n+p; and ¥¢;2=min{k;1, — 1,0} -n+pjin.

For ¢; = 0 there is only one summand U (j; 2wn) in MS. If £; 1 < wn we set k; =0,
p; = 0 and compute k;4p, and p;i, by

fj,l = min{kj+n - 1,0} n +pj+n
Otherwise we set kj4n, = w, pj+n = n and compute k; and p; by

l;j1 —wn =min{k; — 1,0} - n + p;.
By the proof of the isomorphism

DC(w) = {1 = (i1, (Li2) € EDInlo x [n]o - dimU(1) = e}
1€Ln

it is clear that via this map a tuple 1 € Cec(Ay,In) describes an affine Dellac
configuration to the parameter w. It follows from the construction of the map that
this configuration also satisfies the assumption of c-degenerations.

Starting with a c-degenerate configuration the same assignments as above gives
us a tuple 1 describing a cell in the set Ce c(Ap,In). O

This correspondence has some immediate consequences for the Euler Poincaré
characteristic of the approximations FI¢ (Q{n) Let c® be the tuple where every
entry equals zero. This corresponds to the non-degenerate affine flag variety. The
tuple ¢! where every entry equals one describes the Feigin degeneration of the affine
flag variety. On the tuples we define the partial order

' <cie=d >¢forallieZ,.

COROLLARY 6.56. For two tuples ¢’ and ¢ with ¢! < ¢’ < ¢ < ¢, the Euler
Poincaré characteristics of two approximations satisfy

X FI(al,) < xFIg (al,)
where equality holds if and only if the tuples are equal.
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PROOF. The set DC ¢ (w) arises from DC ¢(w) by adding additional assump-
tions. If both tuples are equal there are no additional assumptions and both sets
are equal. There exist configurations in the set DC Z/ (w) which do not satisfy the
additional assumptions. Hence the inequality is strict if and only if the inequality
of the tuples is strict. ([

This implies that for a parameter w € N the Euler Poincaré characteristic of the
approximation of the non-degenerate affine flag variety is strictly smaller than the
Euler Poincaré characteristic of the approximation of the Feigin-degenerate affine
flag variety. Moreover the examples in Appendix[C.1|suggest that the characteristic
only depends on the number of projections and not their positions.

CONJECTURE 6.57. The Euler Poincaré characteristic of two approximations
satisfies

XFIE(al,) > xFie (al,)

ZCiEch.

1€Ly 1€ Lm

if and only if

Equality holds if and only if both sums are equal.

The proof of this statement should somehow use the symmetries in the shape
of the partial degenerate affine Dellac configurations. But the comparison of Euler
characteristics is not one of the main goals of this thesis such that we do not want
to go into further details here.

6.10. Poincaré Polynomials of the Approximations

In this section we develop a description of the Poincaré polynomials of the ap-
proximations FI¢, (aln) which is based on the partial degenerations of affine Dellac
configurations. It utilises the identification of cells with successor closed subquiv-
ers and Dellac configuration. The formula to compute the dimension of a cell
generalises the formula for the loop quiver which is defined in Section [5.1.5

6.10.1. Poincaré Polynomials for the Approximations of the Feigin
Degeneration. First we examine the case of the Feigin-degenerate affine flag va-
riety. Let Dy € DC, (w) an affine Dellac configuration. Depending on j € Zs,, and
the position of k; in the configuration Dy we define the index set

[.77.7 +pj)n = [.]a] +pj)mod n = {Z S Z2n : 0 < ('L _.7) <pj mod n}

For j € Z,, define the functions

ty (D) = 200+ ne) + [ 2] 2] (2252 1)

w lln w+1
- Z min{k;,r;} — Z min{r;, r;}
i€[5,54+Di)n 1€Z2n\[7,J+Pj)n

—|{ie[j,j+pj)n20<ki§]€j, pi >pj— (i—7) modn}|
— i €Zan \[j,d +pi)n : 0 < ki <7y, pi >p;+ (j— i) mod n}|.

Using these functions on the affine Dellac configurations we can compute the di-
mension of the corresponding cells in the quiver Grassmannians.
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PROPOSITION 6.58. Let ﬁk € Ez’n(w) an affine Dellac configuration. The
dimension of the corresponding cell in the quiver Grassmannian

GreAj( B Ui(wn) ® C? )

1€ZLp
is given by

h(Dk) = Y h;(Dy).

j€Z2n

PROOF. The dimension of a cell in this quiver Grassmannian equals the number
of holes below the starting points of the segments in the successor closed subquiver
corresponding to the cell. These segments are encoded in the k;’s and their posi-
tions in the configuration ﬁk. It remains to show that for j € Zy, the function h;
counts the number of holes below the starting point of the segment corresponding
to k‘j.

The number

2p, + )~ [2]|2]
Dj J o ln
is the height of the starting point of the segment which corresponds to k;. Here
pj +nr; is the length of the segment and in each step we go up by two since there
end two segments over each vertex ¢ € Zso,. The other term counts if we are in the
upper or lower segment ending over the vertex j.

The index set [j,j + p;)» contains the indices for segments which have a point
below the starting point of the j-th segment and the distance of these points to
the starting points of the corresponding segments is bigger than nr;. Hence these
segments have nk; points below the starting point of the j-th segment.

All other segments have nr; points below the starting point of the j-th segment
and their indices are collected in the set Za, \ [, + pj)n. Now we have to count
the number of points in the subsegments which are described by k; for i € Zs,, and
live below the starting point of the j-th segment.

For this purpose we distinguish the two cases introduced above. If i € [j,5 +
pj)n there are at least min{k;, r;} points of the i-th subsegment below the starting
point of the j-th segment. For 0 < k; < k; it depends on the position of k; if the
segment covers more than r; holes. This is the case if

pi > pj — (1—j) mod n
and we have to remove one more hole. This case is captured by
— Z min{kj, Ti}
i€[5,5+Pi)n
— |{Z S [],j +pj)n 0<k; < k‘j, Pi ij — (Z —j) mod n}|

L=

corrects the number of holes if we are in the lower segment and the upper segment
is longer than the lower segment. In this case we removed one hole to much by the
above formula.

If i ¢ [§,j + pj)n there are at least min{r;,r;} points of the i-th subsegment
below the starting point of the j-th segment. In this case the position of k; is

The number
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important if 0 < k; < r; and we have to remove an additional hole if
Di ij—F(j—i) mod n.
This is handled by the formula

_ Z min{rj,n-}
i€Z2n\[j7j+p.7)ﬂr
—{i € Zon \ [J;5 + pj)n : 0 < ki <7y, pi > pj + (j — i) mod n}.
O

REMARK. This generalises the formula for the affine Grassmannian as intro-
duced in the previous chapter. Here the formula becomes more complicated because
the numbers k; and k; are not sufficient to count the repetitions of the i-th seg-
ment below the j-th segment. For the affine Grassmannian these numbers were
sufficient because the loop quiver has only one vertex. Nevertheless the structure
of both formulas is the same. First we determine the height of the starting point
of a segment. Then we count the repetitions of all segments which correspond to
this cell and are below this starting point. The difference gives the number of holes
below this segment. Summation over all segments determines the dimension of the
corresponding cell.

Combining this formula with the result about the cellular decomposition of the
approximation of the Feigin-degenerate affine flag variety we obtain the subsequent
formula for their Poincaré polynomials.

THEOREM 6.59. For w € N, the Poincaré polynomial of FI, (é\[n) is given by

P (31,) (@) = Y oq

DeDC, (w)

h(D)

6.10.2. Poincaré Polynomials for the Approximations of the Affine
Flag Variety. Let Dy € 1/3520 (w) an affine Dellac configuration which corre-
sponds to a cell in the approximation of the non-degenerate affine flag variety.
Define the index set

[, 4+ pj)lr = {iEZn:OS (i — j) < p; mod n}

From the entries of the configuration we compute

kj:=k;j+kjyn, 75:=max{0,k; —1} and p;:= [%-‘pj + (1 - [%—Dpﬁm

for j € Z,,. Here p; equals p; if k; > 0 and otherwise it is equal to p;i,. Using
these numbers we define the functions

h9(Dx) := pj + pjen + ) + 174
- Z min{k;,7;} — Z min{7;, 7}
i€lig+pi)en €L \[j,G+55) "
— i€ lj,j+p)% :0<k <kj pi>p;—(i—j) mod n}|
— i € Zu\ 5,5+ D)% 10 < ki <7, i > Pj + (j — i) mod n}|

for all j € Z,, and R R
hO(Dy) = Y hY(Dx).
J€Ln
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THEOREM 6.60. For w € N, the Poincaré polynomial of Fl, (E/l\[n) is given by
- - h®(D)
Pr@)@= 2
DeDC < (w)

PROOF. In the coefficient quiver corresponding to the approximation FI,, (gA[n)
there are n segments of length 2wn where exactly one segment ends over each vertex
of the quiver. Hence the height of the starting point of the j-th segment equals
the length of this segment. By the correspondence of cells and configurations the
length of this segment is computed as

pj + N7 = Pj+ Pign + 0TGN Gn.

All relevant informations about the n segments are encoded in the numbers p; and
l;:j for j € Z,, such that the repetitions of the segments below the starting point
of the j-th segment can be computed from these numbers as in the setting of the
Feigin degeneration. The only difference is that there is only one segment for each
j € Z,, such that we can remove the other cases from the formula for the Feigin
degeneration. (Il

6.10.3. Poincaré Polynomials for the Approximations of the Partial
Degenerations. Let ¢ be a corank tuple and Dy € DC ¢ (w) a partial degenerate
affine Dellac configuration. Depending on the tuple ¢ we define the index set

I. = {iGZQH:i<nori2nandci_n+1:1}.
From the entries of the configuration we compute the numbers

];;- L { ]Cj + kj+n if Ci+1 = 0 S { Pji+n if Cj+1 = 0 and pj = 0
k; otherwise v Pie D otherwise.

and
T 1= max{O, I%j — 1}, 5; 1= min{wn,ﬁj + m’j}7 t; = max{O,ﬁj +nr; — wn}.
For j € I, we use the index set
.5 + i) =13 d +pi)n N L

to define the functions

hS(Dy) = pj +n7j + i Cireo1 + [%ﬂ FJ ([MW B 1)

n w+1
é:thrl +
— Z mln{k],ﬁ} — Z mln{f],fz}
i€[j,0+pj)ne i€I\[J,5+P5 )

—Hi€ljj+p)k:0<ki<kj, pi >p; — (i —j) mod n}|
—|{i eI\ [j.j+ Pk :0<k; <7y, i >p; + (j — i) mod n}

and their sum

he (D) = 3 he (D).

JE€Ln
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THEOREM 6.61. For w € N and ¢ € Z" with ¢! < ¢ < c°, the Poincaré
polynomial of FI¢ (g[n) is given by

Prs (@)@ = 2«

DeDC ¢ (w)

he (D)

PROOF. The subsegments in the coefficient quiver for the approximation

FI(al,)
which parametrise the cell of the approximation can be indexed by the set I. and
they are determined by the numbers l}j and p; for j € L.

For the first wn steps in each step a segment moves up by the number of
segments ending in the target vertex of the step. If i is the index of this vertex,
the number of segments is given by 1 + ¢;. For the steps beyond wn the segment
moves up if and only if a segment of length 2wn ends in the vertex. The number of
these segments ending over the vertex i is given by 1 — ¢;. Accordingly the height
of the starting point of the j-th segment is computed as

55 tj Sj 2]
Do)+ (I=cjpemr) = s+t + Y ce1— Y G
(=1 =1 =1 =1

5

=pi+nf+ > i

L=t +1
HI&
wlln
to distinguish between the lower and upper segment ending over the vertex j if
both of them exist.

Here it is important that ¢; > 0 implies that s; = wn and the maximal value
for t; is wn because the maximal length for the segments is 2wn. The computation
of the repetitions of the other segments below the starting point of the j-th segment
is analogous to the computation for the Feigin degeneration and non-degenerate
affine flag variety. O

where we have to subtract

In examples we can compute the Poincaré polynomials based on this parametri-
sation of the cells by configurations and with the dimension function defined on the
configurations. Alternatively we can draw the successor closed subquivers based
on the parametrisation by the length of the subsegments and count the holes below
the starting points of the segments. Based on the second approach we computed
the Poincaré polynomials of some approximations using SageMath [72]. The re-
sults of these computations are presented in Appendix and in Appendix
we provide the code of the program.

6.11. The Action of the Automorphism Groups in the Limit

In this section we examine the structure of the automorphism group Auta , (MS)
and its action on the quiver Grassmannian

G (M)
for the case ¢ € {c’ c'}. Based on this information we construct an embedding
¢, of the automorphism groups which is compatible with the map ®¢.
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For this construction we have to compute the elements of
Homa, (Ui(wn),U;(wn))

for i,j € Z,. The representation U;(wn) corresponds to the tuple (M, )qez, of
maps
M, :C¥ - C¥
where M, = id,, if t, # i and M, = s; if t, = 4. In the same way let (N, )acz, be
the tuple of maps corresponding to the indecomposable representation U;(wn).
A morphism from U, (wn) to U;(wn) is a tuple of maps

pp : CY >
for k € Z,, such that ¢, o M, = Ny o, forall a € Z,,. If to ¢ {i, 7} this yields
1, = s, which is equivalent to ¢ = ¢i—1 for k ¢ {i,j}. Accordingly these maps
satisfy ¢, = @; for k € {i,i+1,...,j—1} C Zj,. For t, = i we obtain ¢; 1 = p;08;
such that ¢ = ¢; 0 s1 holds for k € {j,j+1,...,i— 1} C Z,. The final relation is

Yj = P; 081 =810Y; =8510@;j-1

which is obtained for t, = j. Hence we can compute all maps ¢y, for k € Z,, after
we have found a map ¢; commuting with the index shift s;. This is the same
commutativity relation as for endomorphisms of the representation Ay of the loop
quiver with w = N. Following the same computation as in Section [5.6] of the
chapter about the affine Grassmannian we obtain the subsequent parametrisation
of the homomorphisms.

For a tuple (Ag)refw) With entries A\, € C we define the entries of the lower
triangular matrix A(\) € M, (C) by

au'—{)\k itk=i—j+1
“7 1L 0 otherwise.

This matrix describes an element of
Homa , (Ui(wn), Uj(o.m))

for i,j € Z, by defining ¢; as the left multiplication with this matrix. All homo-
morphisms between U, (wn) and U, (wn) have a unique description of this form.

In the same way as in Section[5.6] we obtain the parametrisation of the elements
of the automorphism group Auta, (M,,) where

M, = @ Ui(2wn).
i€Zn
For a tuple
A= ()\S’j)) with k € [2w] and 4, j € [n]
let Mi(A) € M,(C) be the matrix with entries )\,(j’j) for i,j € [n]. Define the
2w X 2w block matrix Ay € Ma,,(C) with the blocks

Mp(\) ifk=p—qg+1
Apg = { .
’ 0, otherwise.
Independent of the choice of A this describes an endomorphism of M,, where the
maps @; over the vertices i € Z, are obtained form the matrix Ay as described
above for the homomorphisms between two indecomposable representations of the
same length. Moreover all endomorphisms of M, admit a parametrisation of this
form. If we additionally require that the matrix M;(\) € M, (C) is invertible it is
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sufficient to describe the automorphisms of M,,. Hence the group Auta, (M.,,) is
2wn?-dimensional.

With this parametrisation for the elements of the automorphism group of M,
we define the embedding

Y Auta, (M) — Auta, (My41)
by 0w (Ax) := A5 € My(yq1)n(C) where ) is obtained from A as
S\I(cz',j) — { )\EJ’J) if k< ?w
0 otherwise.

This embedding is compatible with the action of the automorphism group on the
approximations of the affine flag variety.

LEMMA 6.62. Let A € Auta, (M) be an automorphism of the quiver Grass-
mannian

Gror (M) = Fl,(gl,,).
Then the diagram

~ A N
Flo(gl,) ————— Fl,(al,)
%l 4 lcm
]"lw+1(gA[n) W -/—'.lw-‘rl(é\[n)

commutes.

PROOF. The prove is based on the same arguments as for the approximations
of the affine Grassmannian. The points in the quiver Grassmannians providing the
approximations are now described as tuples of vector spaces which are spanned
by certain vectors w,(;) for i € Z,, and k € [wn]. The automorphisms act via left
multiplication on these vectors. Now we have to compute for each vertex i € Z,,
that the action on the span is equivariant for the embedding of the span in the
bigger approximation. Each of these computations is analogous to the computation

for the action on the approximations of the affine Grassmannian. ([l

The elements of the automorphism group Auta, (M%) where
M = @ Us(wn) ® C?
1€,
are parametrised by tuples
W= (/A,(;’j)) with k € [w] and 4, € [2n]

such that the determinant of the matrix M;(u) € Ma,(C) is non-zero. This is
obtained as combination of the arguments in Section [5.6] and the parametrisation
for the automorphisms of M,. Hence the dimension of the group Auta, (M2) is
computed as 4wn?.

We define the embedding

o s Auta, (MJ) = Auta, (MS, )

w
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by 02 (Au) == Ap € My41),(C) where /i is obtained from p as
ﬂ(i,j) .: { ,u,(:’j) if k<w
koo 0 otherwise.

REMARK. This embedding is not compatible with the action of the automor-
phisms on the approximations of the degenerate affine flag variety and there exists
no embedding compatible with this action. This is shown with the same arguments
as for the degeneration of the affine Grassmannian.

Nevertheless we can prove the subsequent equivariance of the action with two
consecutive embeddings of approximations using the methods developed in Sec-
tion [5.6] and apply it to the approximations of the degenerate affine flag variety as
described above for the non-degenerate setting.

LEMMA 6.63. Let A € Auta, (M) be an automorphism of the quiver Grass-
mannian N
Gram (Mg) = Fig(al,).-
Then the diagram

~ A ~
Fle(al,) Fle(al,)
o2, 0 Y l Y Fzﬂ o P
Tl o(al,) FIg o (al,)

commutes.






CHAPTER 7

Equivariant Cohomology and the Moment Graph

The GKM or moment graph associated to an algebraic variety captures infor-
mation about the structure of fixed points and one-dimensional orbits of the action
of an algebraic torus on the variety. It is useful to describe geometric properties of
the variety as for example cohomology and intersection cohomology. The foudation
of this area was given by T. Braden, M. Goresky, R. Kottwitz and R. MacPherson
in [39, I]. In this chapter we follow the computation of the moment graph for
degenerate flag varieties by G. Cerulli Irelli, E. Feigin and M. Reineke in [21]. For
introductionary surveys about GKM theory and equivariant cohomology see for
example [54], [73].

Let X be a projective algebraic variety over C with an algebraic action of a
torus T' = (C*)? which has finitely many fixed points and one-dimensional orbits.
Moreover we assume that there exists an embedding C* — T such that the C*-
fixed points and the T-fixed points coincide and the C*-action induces a cellular
decomposition of X into T-invariant attracting sets of C*-fixed points. Classically
it is assumed that X admits a T-invariant Whitney stratification by affine spaces
[11] Section 1.1]. But for our application it is necessary to require the existence of
the cellular decomposition. At some point both notions have to be related in the
setting of the quiver Grassmannians which we want to consider.

DEFINITION 7.1. The vertex set of the moment graph I' := I'( X, T') is given
by the set of torus fixed points, i.e.

(X, T)y:=XT.

Let OL(X) be the set of one-dimensional T-orbits in X. Each orbit L € OL(X)
has two distinct limit points. On one hand the T-fixed point p of the cell C,, which
contains the orbit L and on the other hand one other T-fixed point ¢ in some cell
C in the closure of C}. The edges of I are given by the one-dimensional T-orbits,
ie.

D(X,T); := Op(X)

and they are oriented as sy, :=gq,tr :=p if Cy C CT,.

Moreover we define a labelling of the edges as follows: Let t be the Lie algebra
of the torus T'. All points in the one-dimensional T-orbit L have the same stabiliser
in T, its Lie algebra is a hyperplane in t and the annihilator of the hyperplane is
denoted by ay which will be the label of the edge L.

On the vertex set of the moment graph we define the partial order ¢ < p if
and only if C; C C,. This partial order and the induced Alexandrov topology is
important for the computation of the Braden-MacPherson sheaves (BMP-sheaves)
over moment graphs [55] Definition 3.6]. These sheaves can be used to compute
the T-equivariant intersection cohomology of X [11], Theorem 1.5]. In the rest of

155
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this chapter we introduce a combinatoric approach to construct the moment graph
and the labelling of its edges for the quiver Grassmannians which admit a cellular
decomposition into attracting sets of C*-fixed points.

7.1. The Euler-Poincaré Graph of a Quiver Grassmannian

Let M be a representation of a quiver @ such that the quiver Grassmannian
Gr@(M) has property (C). This means that there is a C*-action on Gr (M) in-
ducing a cellular decomposition into attracting sets of C*-fixed points. These cells
have a combinatoric description by successor closed subquivers of dimension type
e in the coefficient quiver of M, i.e.

SCQ(M) = {TE’F(M, B.): [ToNBi| = e;, for all i € Qo}.

If we order the segments of M according to the power with which A € C* acts on
the corresponding basis vectors, the dimension of a cell equals the number of holes
below the starting points of the segments of T' parametrising the cell.

For S,T € SC?(M) we say that T is obtained from S by a fundamental
mutation and write p(S) = T if we obtain the coefficient quiver T' from S by
moving up exactly one part of a segment where the order of segments is induced
by the C*-action. The inverse fundamental mutations are obtained as downwards
movements of subsegments.

REMARK. The distance of the movement in a mutation is not limited such
that it can happen that a fundamental mutation is the concatenation of two other
fundamental mutations.

ExXAMPLE 7.2. Let @ be an equioriented quiver of type Ay, i.e.

° o o °
1 2 3 4

and let M = X ®Y be a representation of ) where

4 4
X=@Pr and V=PI
i=1 j=1

and e := dim X. The coefficient quiver for the top-dimensional cell of the quiver
Grassmannian Gr& (M) is given on the left below and after two inverse fundamental
mutations we arrive at the right picture

® [ ] ®
*—0 *—0 o—e
*—0—0 O—0—0 O—O0—0
*—0—0—0 *—0—0—0 *—0—0—0
— —
O—O0—0—0 O0——0—0 O0—e—0—0
O0—0—™0 O0—0—0 O0—0—@
Oo—0 O0—0 O0—0
O O O

From this coefficient quiver we can obtain the subsequent quiver via one or two
inverse fundamental mutations
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o—e
©)

DEFINITION 7.3. The vertices of the Euler-Poincaré graph EPZ (M) for the
quiver Grassmannian Grg2 (M) are given by the C*-fixed points, i.e.

EPY (M), := SCE(M).

In the i-th row of the graph write the vertices corresponding to cells of dimension
k where i := dim Gr?(M) — k + 1 and label this row by k. For p,q € EPZ(M),
draw an arrow « € EP? (M) with s, = p and t,, = ¢ if there exists a fundamental
mutation of coefficient quivers such that p(p) = q.

The fundamental mutations increase the dimension of the cells such that in this
graph all edges are oriented from the bottom to the top. For a certain class of quiver
representations this graph captures the information about the inclusion relations
of the cells in the decomposition of the corresponding quiver Grassmannian. The
representation from the example above belongs to this class.

Based on this combinatoric data we want to describe the moment graph asso-
ciated to the corresponding quiver Grassmannian as described for the degenerate
flag variety by G. Cerulli Irelli, E. Feigin and M. Reineke in [21] and for complex
algebraic varieties by T. Braden and R. MacPherson in [11]. For this construction
it is necessary that the EP-graph associated to a quiver Grassmannian with a cel-
lular decomposition satisfies the subsequent condition. If T is obtained from S by
a fundamental mutation the corresponding cells satisty C'(S) C C(T).

This means that with a suitable label function this graph has the structure of
a moment graph on a lattice as defined by P. Fiebig in [31]. Here the order of
the vertices is induced by the order of the orbits as defined earlier in this chapter.
Having this interpretation of the EP-graph it would remain to find a bijection
between one-dimensional T-orbits and fundamental mutations. Then we can choose
as label function for the EP-graph the labels which arise from the T-action. It is not
clear yet in which generality these assumptions can be satisfied for the EP-graphs
associated to quiver Grassmannians.

If we restrict the arrows to basic mutations, i.e. fundamental mutations of
minimal distance, the Euler-Poincaré graph would have the structure of the Hasse-
diagram for the cells ordered by inclusion with the additional information about
the dimension of the cells.

The number of vertices in the Euler-Poincaré graph equals the Euler charac-
teristic of the quiver Grassmannian, i.e.

x(Gr&(an)) = [EPE (a0),|

and the coefficient of ¢* in the Poincaré polynomial of the quiver Grassmannian is
computed as the number of vertices in the row of EPZ (M) indexed by k.
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REMARK. In praxis the Euler-Poincaré graph can be computed by applying
fundamental mutations to the zero-dimensional cell of the quiver Grassmannian
Gr@(M).

The idea of this chapter is to define a T-action on these quiver Grassmannians
such that the corresponding moment graph and its label can be computed based
on the combinatorics of the coefficient quivers.

For the quiver Grassmannian with n = 3 from the example above the zero-

dimensional cell is parametrised by
O

o0—e
Oo0—0—e
Oo—e—e
o—e
[ ]

Applying basic mutations we can for example compute the following coefficient
quivers corresponding to one-dimensional cells.

O O [ ]
o0—e o0—e Oo—>0
O0—0—e o0—e—e O0—0—e
Oo—e—e O0—0—e O—e—e
*—0 o—e o—e
©) [ ] {

In this setting the effective pairs labelling the edges of the moment graph as in [21]
are given as the index of the segment where the fundamental mutation ends and
the index of the segment where the movement of the subsegment starts. Here we
orient the edges in the opposite direction as in [21].

7.2. Torus Actions on Quiver Grassmannians for the Loop

In this section we introduce the action of a torus 7 on quiver Grassmannians
for the loop quiver. It is defined to be compatible with the cellular decomposition
which is induced by the C*-action on these quiver Grassmannians. This means
that the C*-fixed points and the T-fixed points coincide and the cells are stable
under the action of T'. For the special case of the quiver Grassmannians providing
finite dimensional approximations of the affine Grassmannian this is linked to the
construction arising from the combinatorics of the words in the corresponding affine
Weyl group as studied by M. Lanini in [56].

As in the chapter about the affine Grassmannian we want to consider quiver
Grassmannians of the form

Gron (Ay @ ClETVINY,

Recall that the quiver representation Ay ® C™ is isomorphic to the representation
My = (), (5)).

The vector space C™ has a basis v; ¢ for i € [m] and ¢ € [N]. For

v = Z Z i 0V ¢

1€[m] L€[N]
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define s; := min{f € [N] : pu; ¢ # 0} for all i € [m]. We define the torus action

mN

T:=(C)"" xCc™ — N

N
(A v) — Z Aitm(si—1) Z i 0Vi 0.
1€[m] l=s;

In this way 1" acts with the same A; on all basis vectors corresponding to one of
the m subsegements describing a C*-fixed point in the quiver Grassmannian and
on each of the segments it acts with a different \;. Accordingly the C*-fixed points
and the cells of the quiver Grassmannians above are stable under this action.

We define the embedding Tj := ((C*)m X C* = T via

)‘i+m(si71) = ’7(5)7

for ((vi)ie[m>0) € To-

It follows from the explicit parametrisation of the cells in the quiver Grassman-
nians as attracting sets of C*-fixed points which is used for example in Section[5.5.1]
that there are only finitely many one-dimensional T-orbits in each cell and hence
in the the whole quiver Grassmannian. The orbits can not leave the cells because
the cells are T-stable. Moreover these one-dimensional orbits are in one to one cor-
respondence with the fundamental mutations of the subquivers in the coefficient
quiver of My, n. This is again a direct consequence of the parametrisation of the
cells as attracting sets.

The labels of the edges are given by annihilators of the hyperplanes in the
Lie algebra t which correspond to the one-dimensional T-orbits. These vectors are
obtained as follows. For the action of T take ¢; —€; where ¢ € [mN] is the index of
the vertex in the coefficient quiver where the moved subsegment starts before the
fundamental mutation of the coefficient quiver and j € [mN] is the index of the
vertex where it starts after the movement. For the action of Ty we have indices in
[m] with the additional information how many blocks of size m € [N] the starting
point has moved down. With the identification of the different basis of C™V we
can compute the label €; — €¢; + md from the label for the action of T'.

Everything as mentioned above is still conjectural but all computed examples
suggest that it should hold in this generality. But unfortunately I was not able
to work out all the details for the proofs before I had to submit this thesis. So I
decided to restrict to one example for the explicit computations.

EXAMPLE 7.4. For x =y = 1, N = 2, the quiver Grassmannian Gra(A; ® C*)
contains two-dimensional subrepresentations of the representation

M i= (T, (5))

which coefficient quiver is given by
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1

The successor closed subquivers parametrising the cells of the quiver Grassmannian

are of the form

These are the only possibilities for successor closed subquivers on two vertices
because the other three possible subquivers one two vertices are not successor
closed. The corresponding C*-fixed points are

po = Span(vs,vs), p1 = Span(va,vs), p2 = Span(vy,vs)

where the index of p; is equal to the dimension of the corresponding cells which is
computed by counting the holes below the starting points of the segments in the
coefficient quiver. From the description as attracting sets of the fixed points we
obtain the subsequent description of the cells

co = Span(vs, va) = po

c = {Span(vg + avg,v4) ta € C}

Ccy = {Span(vl + avg + bvg, vz + cw4) ta,b e (C}.

The torus T' = ((C*)4 acts on v = Z?Zl piv; € C* as

2
Av = Z )‘i+2(si71) Z Vi42(4—-1)

1€ [2] l=s;

where we used the identification v; ¢ = v (e—1) for the basis of cmy,
It is straight forward to check that the C*-fixed points and cells are Ty-fixed

A.po = Span(Azvs, Avs) = Span(vs, v4) = po = co,
A.p1 = Span(A2v2, Agvg) = Span(ve,v4) = py,
A.p2 = Span (A1, A1vs) = Span (v, vs) = pa,
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Nt = {Span Aoz + Asavg, Aovr) 0 € C}
- {Span(vg + g, vg) 1€ C} —
Aoy = {Span()\lvl + Agavy + Aobug, Mz + Asavy) s a € C* b € <c}
U {Span(Arr + Aabus, Ares) b e €}
— {Span(vy + avs + bvg,v3 + ava) 1 @,b € C} = cs.

Accordingly the cell ¢; is a one-dimensional T-orbit and the point in its closure
is po such that there is an edge from py to p; corresponding to this orbit and it
is oriented towards p;. The label of this edge is €3 — €5 since the effective action
of the torus is given by A3z/As. For the embedding Ty — T as defined above we
obtain the effective action of v1v9/~v2 which corresponds to the label € — €3 + 6.

In the zero-dimensional cell there can not be any one-dimensional T-orbits and
in the top-dimensional cell ¢y there are two one-dimensional T-orbits g, and g
corresponding to the cases b = 0 and a = 0. If both parameters are non-zero
the corresponding T-orbit is two-dimensional. There can not be any other one-
dimensional T-orbits in this quiver Grassmannian. Now we want to determine the
two corresponding edges in the moment graph.

Gy = {Span()\lvl + Asavg, Aqvg + )\Qav4) ta € (C}

= {Span(vl + cwg,vg + /\7@@4) ta € (C}
A1

Agy = {Span()\lvl + )\4bv4, Aws) b e C)
= {Span(vl + bv4,v3) RS C}.

In the closure of g, we have the point p; such that the corresponding edge is
directed from p; to po. The label is given by ez — ¢; because the effective action
is by A2/A1. For the embedding of T in T we have the same label in this setting.
The closure of g contains the point py such that we obtain an edge directed from
po to po and the label for the T-action is €4 — €;. For the action of T we obtain
the label €5 — €1 + 0.

With a := €3 — €; the moment graph for the action of the torus T on the
quiver Grassmannian Gra(As ® C?) is given as

a+9

_ ) 6%
Po ot p1 D2

The same graph with the same labels is computed using fundamental mutations
and the procedure to label the edges as described above this example.

Moreover this is the moment graph as computed for the interval [0, —a] of grar
for g = sly by M. Lanini in [56, Example 4.2]. Observe that in her picture of the
moment graph the zero-dimensional cell is in the middle, the cells on the left of it
have even dimension and the cells on the right have odd dimension and as for the
corresponding quiver Grassmannians there is exactly one cell of each dimension.
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In the appendix of this article she shows that in this setting the structure sheaf
and the BMP-sheaf are isomorphic. This implies that the T-equivariant intersec-
tion cohomology is equal to the ordinary T-equivariant cohomology and hence the
intersection cohomology equals the ordinary cohomology [11, Theorem 1.6 and
1.7].

In bigger examples one might want to avoid drawing coefficient quivers. Recall
that the cells in the quiver Grassmannian Gr,n (M, n) are parametrised by tuples
(ki)iepm) with k; € {0,1,...,N} and >°;" k; = xN. But this parametrisation
has the drawback that the notion of fundamental mutations and the corresponding
labelling and orientation of the edges becomes harder to control.

Nevertheless it is possible to give a complete description of the moment graph
in this setting. Let k and £ be two tuples parametrising cells in the quiver Grass-
mannian Gryn (M, n). From the correspondence of one-dimensional orbits and
fundamental mutations we obtain that they are connected by an edge if and only
if there exists an pair of distinct indices ¢,j € [m] such that k; # ¢;, k; # ¢; and
kr = ¢, for all r € [m] \ {4, 5}.

To determine the orientation and labelling of the edges let us assume that
i < j. Choose s € {i,j} such that ks < ¢,. This index has to exist if k¥ and ¢ are
connected by an edge. Let ¢ be the remaining index from {i, j}. Now we take ¢ € Z
such that k; = ¢; + ¢ and it follows from the dimension of the representations in
the quiver Grassmannian that k; = 5 — q. We have to distinguish three different
cases.

For ¢ = 0 we orient the edge towards the tuple with the bigger i-th entry and
label the edge by €; — ¢;. If ¢ < 0 we orient the edge towards the tuple k£ and the
edge is labelled by €5 — €; + qd. For ¢ > 0 we orient the edge towards the tuple ¢
and the label is given by €; — €, + ¢d. Analogous we can compute the labelling for
the action of T'.

It is straight forward to check that in the above example we obtain the same
labelling as computed from the Ty-action or equivalently from the fundamental
mutations of the coefficient quivers. The proof for the general setting is analogous
to the computations in this example. It turns out that in all computed examples
the moment graph and its labelling for the approximations of Gr( gA[n) has the same
shape as the moment graph for certain finite intervals of GP9" for g = ;[n which are
of the same form as in the example above.



APPENDIX A

Examples: Quiver Grassmannians for the
Equioriented Cycle

In this appendix we give some examples of quiver Grassmannians for the equior-
iented cycle which do not satisfy all the properties of the class of quiver Grassman-
nians studied for the main part of this thesis. These examples illustrate why the
restrictions on the studied class of quiver Grassmannians were made. Moreover
we give counterexamples for some geometric properties which are obtained for a
similar class of quiver Grassmannians for Dynkin quivers.

ExXAMPLE A.1. Let n =4 and
M :=U,(4) ® Uy(4) ® Us(4) ® Uy(4), My := @ Ui(1; )
1E€7Ly
and e := %(2,2,2,2) where U;(d; \) denotes the representation
idd/(cd\i‘dd
cd cd

Ja (’k(cd/idd

of the equioriented cycle A, where the map from the vertex i to the vertex i 4+ 1
is given by J4(A), i.e. the Jordanblock of size d with the eigenvalue A. Then for
A € C* we obtain

Cry(4) = Gr54(M,) and define  Gry(4) := Grs4 (M)

which we call the degenerate Grassmannian.

This constructions generalise to arbitrary n, k € N. The classical Grassmannian
has dimension k(n — k). From the formula for the dimension of quiver Grassman-
nians for the cycle A, as developed in Lemma we obtain that this equals the
dimension of the quiver Grassmannian Gr5" (M) for the quiver representation

M := P Ui(n)
i€%m

and the dimension vector e := ‘(k,... k). Following Lemma the number of
irreducible components of this quiver Grassmannian is given by (}).

For X\ = 0 we obtain My = M such that the quiver Grassmannians Gr2" (M)
are a family over C with special fibre Gr (n) and generic fibre isomorphic to Gry(n).
A degeneration is called flat if the morphism above is flat. For this it is necessary
that the fibre dimension is constant. This is satisfied in the setting of this example.
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For a certain class of representations of Dynkin quivers there exists a unique
(up to isomorphism) representation with the same dimension vector such that the
quiver Grassmannian corresponding to the first representation is a flat degenera-
tion of the quiver Grassmannian corresponding to the second representation [20]
Theorem 3.2].

The quiver Grassmannians studied in this thesis are based on representations
which live in a generalisation of the class of quiver representations studied in [20].
Hence it is natural to ask if there exists a similar statement about flat degener-
ations for representations of the cycle A,. In the Dynkin setting the statement
mentioned above can be applied to show that the degeneration of the classical flag
variety is flat. For the affine flag variety and the affine Grassmannian we would
have some similar statement if we could show it for the quiver Grassmannians ap-
proximating them. But as shown the Chapter [5 and Chapter [6] we do not get the
equidimensionality of the approximations. Accordingly it is not possible to prove
the flatness with methods from quiver theory and we would have to apply different
theory as done for example in [30] to prove the flatness for the degeneration of the
affine Grassmannian. But in this thesis we restrict us to methods from the study
of modules over finite dimensional algebras.

A.1. Strata outside the Closure of the Stratum of X

Let Xbe a projective and Y be a injective representation of a Dynkin quiver
Q. Then the closure of the stratum of X is the whole quiver Grassmannian
Graim x (X @Y) [20, Theorem 1.1]. For projective and injective representations of
the equioriented cycle it follows from Lemma [3.23] that the corresponding quiver
Grassmannians are irreducible if and only if X or Y is trivial. If we give up the
restriction that the summands of X and Y all have the same length there are a
few more cases. All in all irreducibility of quiver Grassmannians for the cycle is
much more rare than in the Dynkin setting. Moreover there are cases where the
dimension of the quiver Grassmannian is strictly bigger than the dimension of the
stratum of X.

For N # w - n the subsequent examples contradict the statement about the
dimension and the parametrisation of the irreducible components in the Grass-
mannians as proven for N = w - n in Lemma [3.23

EXAMPLE A.2. Let n = 4N = 5 and X := U3(5) @ Uy(5) be a bounded
projective representation of the equioriented cycle Ay. In this setting the part of
the Auslander Reiten Quiver with the nilpotent representations of maximal length
5 is given as

Ua(5) Us(5) Us(5) U1(5)
/ \ / \ SN SN SN S
Us(4) Us(4) Ui (4) Us(4) Us(4) Uz (4)
NN N SN SN N

Us(3) Us(3) Us(3) Ui(3) Ua(3) Us(3)
SN SN N SN SN S
Ui(2) Us(2) Us(2) Us(2) Ui(2) Ua(2)
NN NN N N

Ui(1) Ua(1) Us(1) Us(1) Ui(1) Ua(1)
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where points with the same label are identified such that we have meshes on a
cylinder. Here we do not want to go into the details how Auslander Reiten Quiv-
ers are defined in general and how they are obtained for the equioriented cycle.
The definition and some possible ways of construction are given in the book by
R. Schiffler [66, Chapter 1.5, Chapter 3] and the book by I. Assem, D. Simson and
A. Skowronski [2] Chapter IV]. The dimension vector of X computes as

e:=dimX = (1,1,2,1) + “(1,1,1,2) = %(2,2,3,3)

and dim GLe = 22422432432 =444494+9 = 26. The dimension of the space
of endomorphisms is given as

dimHoma, (X, X)=@2+1)+(1+2)=6

which can be computed using the word combinatorics as in Proposition[3.16] Define
U .= U2(4) D U2(4) D U3(2) Then

dimHoma, (U,U) = (14040)4+ (0+14+1)+ (0+1+41) =5.

For Y := Uy(5) @ Uy(5) we obtain U € Gri4(X @ Y) from the shape of the
indecomposable embeddings as described in Proposition [3:19]or from the structure
of the Auslander Reiten Quiver. The dimension of the strata compute as
dim Sy = dim Homa, (U, X) + dimHoma, (U,Y) — dim Homa, (U,U)
=((14+D)+A+)+A+1D))+(O0+0)+(1+1)+(1+1))-=5=5
dim Sx = dim Homa, (X, X) + dim Homa, (X, Y) — dim Homa, (X,X)
=(1+1)+(1+1) =4
The indecomposable summands of X and Y have all the same length. Hence we
can apply Theorem in order to compute the closures of the strata in the quiver
Grassmannian using the results by G. Kempken about the orbit closures in the
variety of quiver representations. We obtain that X is not included in the closure
of the stratum of U. Accordingly the Grassmannian is not irreducible and its
dimension strictly bigger than the dimension of the irreducible component of X.

For any Dynkin quiver @ the closure of the stratum of a projective representation
X would already be the whole Grassmannian

Gre(X @Y)

where Y is a injective representation of ) and e is the dimension vector of X [20]
Theorem 1.1].

ExAMPLE A.3. Let n =7, N = 4 and define

X = U3(4) S¥) U4(4) S U7(4),
Y = Uy(4) ® U(4) & Us(4) and

Then U € Gr57(X @ Y) where e := dim X since the coefficient quiver of U is a
subquiver in the coefficient quiver of X & Y and has the right dimension vector.
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Using word combinatorics or a computer algebra system we obtain
dim Sy = dimHoma, (U, X) + dimHoma, (U,Y) — dimHoma, (U, U)
=((1+0+0)+(0+0+0)+(1+1+0)+(0+1+1))
+((04+0+1)+(14+14+0)+(04+0+1)+ (1+1+0))
—(1+04+0+0)+(0+1+04+0)+(0+0+140)+(0+0+1+1))
=6+5-5=6
dim Sx = dim Homa,, (X,X) + dim Homa,, (X, Y) — dim Homa,, (X, X)
=((1+1+0)+(1+1+0)+(0+0+1)) =5.

Again we can check that X is not contained in the closure of the stratum of U.
Thus this Grassmannian is not irreducible and its dimension is strictly bigger than
the dimension of the stratum of X.

A.2. Irreducible Components of different Dimension

Even if the dimension of the Grassmannian is the same as the dimension of the
stratum of X the other irreducible components of the Grassmannian do not have
to be of the same dimension.

EXAMPLE A.4. Let n = 3, N = 2. Define X := Us(2) ® U2(2) ® U5(2), Y :=
Ui(2) @ Ur(2) @ Usz(2) and e := dim X = (1,2,3). In this setting we obtain the
Auslander Reiten Quiver

U1(2) Us(2) U2(2) U1(2) Us(2)

NN N SN N

Ur(1) Us(1) Uz (1) Ur(1) Us(1)

The isomorphism classes of subrepresentations of X & Y with dimension vector e
are described by the following representatives:

X =Us(2) @ Uz(2) ® Us(2) Vi =Ui(2
Uy :=Us(2) @ U3(2) © S & S3 Vo i=Us(2) DS ©S2 @ S3® 53
Uy :=Us(2) @ Ux(2) ® S & o Va3 :=U3(2) @ So @ Sy @ S3® S3
N :=U;(2) @ Ux(2) ® S35 S5 Se:=51®S52® S2® 53538 53
We can compute them using Proposition about the structure of the indecom-

posable embeddings or using a computer algebra system. For the equioriented cycle
we have the following equivalence

)P S ®S3 D S3d Ss

Sy Cg@OUCOiv

if the strata live in the quiver Grassmannian of a representation M where all
indecomposable summands have the same length. In general we only have the
implication U € Sy = Oy C Oy [41, Theorem 3.4.1]. The closures of orbits
in the variety of quiver representations were studied in the thesis of G. Kempken
[48]. We can use Theorem [3.13|to compute the dimension of the higher dimensional
strata from the dimension of the strata of Se and its dimension could be computed
using the corresponding subquivers of the coefficient quiver of X & Y. In the
following diagram we collect information about closures and the dimension of the
strata
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Representatives: dim S :

X 7
2N

Uy U, 6
v | / 5
&\w T 4
Vs 3
1 / 2
Se 0

where we draw U +— V if Oy C Oy. The corresponding quiver Grassmannian
therefore has two irreducible components of distinct dimension.

The above examples should illustrate that in the general setup a lot of different
problems could arise. That is the reason why we we restrict us to the case N = w-n
for the main part of this work.

A.3. Intersection of Irreducible Components

With the parametrisation of the irreducible components of the quiver Grass-
mannians obtained for N = w - n we can go one step further and examine the
structure of the intersection of two irreducible components. Namely we ask if the
section of two irreducible components is again irreducible and if the codimension
of the intersection is minimal within the components.

EXAMPLE A.5. Let n = N = 3. Define X := U;(3)®U;(3), Y := Us(3)® Uz (3)
and e := dim X. The isomorphism classes of subrepresentations of X @& Y with
dimension vector e are described by the following representatives:

U, .= Ul(?))@UQ(2)@S1 X = U1(3)@U1(3)
U = U2(3) & U2(2) ® Sy N = U1(3) (&3] U2(3)
Be :=Us(2) @ Ux(2) ® S1 & S Y :=Us(3) & Ua(3)

We obtain the subsequent diagram

Representatives: dim S :
4
T/ \T
2
\ /
0

The section Sy NSy is given by Sg_ with codimension four and Sy, is the section
Sx NSy which has codimension two.

This example shows that there can not be a general statement about the codi-
mension of the section of two irreducible components. But it suggests that the
answer to the first question might be positive.
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EXAMPLE A.6. Let n = N = 4. Define M := Uy (4) & Uz(4) ¢ Us(4) & Us(4)
and e := (2,2,2,2). The isomorphism classes of subrepresentations of M with
dimension vector e are described by the following representatives:

Ci:=U(4) ® Uy(4) Up:==U1(4) ® Us(3) @ Ua2(1)
Cy:=U(4) ® Us(4 Us := Us(4) ® Uy(3) ® Us(1)
C3:=Us(4) ®Us(4 Us :=Us(4) @ U1(3) ® Uy(1)
Cy:=U1(4)dUs4 Uy :=Us(4) @ Uz(3) @ U1 (1)
Cs :=Uy(4) ® Uy(4 Us :=U1(4) ® Ua(2) ® Us(2)
Co :=Us(4) ® Uy(4 Us := Us(4) ® Uy (2) ® Us(2)
Vi=U1(3)aU2(3) ® Ur :=Us(4) ® Uz(2) ® Uy(2)
Voi=U(3)dUs(3) @ Us :=Us(4) @ U1(2) ® Us(2)
) (1)
) (1)
) (1)
) (1)
) (2)
) (2)
) (2)
) (2)

) ( )
(4) (4) ( 3)
(4) (4) ( (3)
(4) (4) ( (3)
(4) (4) ( (2)
(4) (4) ( (2)
(3) (3) ® Ua(2 ( (2)
(3) (3) @ ( (2)
Vs = Us(3) ® Uy(3) Ug := Uy (4) © Us(3) ® Us(1
(3) (3) ( 3)
(3) (3) ( (3)
(3) (3) ( (3)
(4) (2) ( (2)
(4) (2) ( (2)
(4) (2) ( (2)
(4) (2) ( (2)
(

Uq(2
2

)
)
® Us(2)
Vi :=U1(3) @ Us(3) @ Us(2) Uro :==Usz(4) ® U1(3) & Uy(1
Vs :=U1(3) ® U3(3) ® Us(1) Ujn :=Us(4) e Us(3) ® Uy (1
Vo i= Us(3) ® Us(3) @ Uy (1)
)@
) &
)
)

(

(

(

( Uyg := Us(4) ® Us(3) @ Us(1
Vi :=U1(4) @ Us(2) @ Ua(1

(

(

(

(2

Us(1) Wi :=Ui(3) @ Us(2) ® Us(2) ® Us(1)
Ve :=Ua(4) @U1(2) @ Us(1) ®Uy(l) Wa:=Ua(3)d Us(2) ® Ur(2) @ Us(1)
Vo :=Us(4) @Ux(2) @ UL (1) @ Us(1) Wi :=Us(3) ® Ur(2) ® Us(2) @ Uys(1)
Vio:=Us(4) @ U3(2) ® Ui (1) @ Ua(1) Wy :=Us(3) ® Uz(2) ® Us(2) ® U1 (1)
Be :=U1(2) © U2(2) @ Us(2) @ Us(2)

All representations labelled with C' have four-dimensional strata, U’s correspond
to three-dimensional strata, V’s to two-dimensional, W’s to one-dimensional and
the stratum of By is zero-dimensional. In the following diagram we show represen-
tatives for the strata of codimension one included in the closures of the strata of
C5 and C5. For codimension two we display representatives only for some of the
strata included in the closures.

Representatives: dim S :
Cy Cs 4
U, Us Uy U><U 12 Uz Uy 3
Vs Ve 2

Accordingly there is no section in codimension one and in codimension two the
section has at least two components. This shows that the section of two irreducible
components in general is not irreducible.
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A.4. Orbits and Strata of different Codimension

For all examples above we stayed in the setting where all indecomposable sum-
mands of X and Y have the same length. Thus it is possible to apply Theorem
and we can examine the orbits in the variety of quiver representations in order to
understand the strata in the quiver Grassmannian. We finish this appendix with
an example where this correspondence fails.

EXAMPLE A.7. Let M := Ag ® A3 @ C? be a representation of the loop quiver
A;. The dimension of the vector space corresponding to M is 12 and we consider
the quiver Grassmannian Gré4 S(M). It contains the isomorphism classes of the
representations

Uy :=A3® Cz, Uy =A1 0 Ay, Uy:=As0 Ay, Us:= Ag.
Using Proposition the dimension of their strata computes as
dim HomAl(UmM) =2-3+2-2-3=18
dim Homa, (Up,Up) =2-2-3 =12
dim Sy, = dim Homa, (U, M) — dim Homa, (Uo,Up) =18 —12 =6

dim Homa, (U3, M) =4+42-3+2+2-2=16
dim Homa, (U1,U1) =442+2+4+2=10
dim Sy, = dim Homa, (U1, M) — dim Homa, (U1,U;) =16 —10 =6

dim Homa, (U2, M) =5+2-3+1+4+2-1=14
dim Homa, (Us,Us) =5+1+141=38
dim Sy, = dim Homa, (UQ,M) — dim Homax, (UQ,UQ) =14—-8=6

dim Homa, (Us, M) =6+2-3 =12
dim Homa, (Ug, U3) =6
dim Sy, = dim Homa, (U3, M) — dim Homa, (Ug, U3) =12—-6=6
whereas their orbit dimensions in the variety of quiver representations is given as
dim Oy, =30, dim Oy, =28, dim Oy, =26, dim Oy, =24
because dim GL, = 6 - 6 = 36. Moreover it follows from G. Kempkens results that
Oy, , C Oy, foralliel3].

This quiver Grassmannian provides a finite approximation of a partial degen-
erate affine Grassmannian and its Poincaré polynomial and Euler characteristic is
computed in Example [C.28 Conjecture [5.32] about the dimension and irreducible
components of the approximations of the partial degenerate affine Grassmannian

is based on the assumption that the strata as described above are always the strata
of biggest dimension.
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APPENDIX B

Computer Programs

In this appendix we present programs for the computation of the Euler charac-
teristic and the Poincaré polynomial of the approximations of the affine flag variety
and the affine Grassmannian as well as their partial degenerations. These programs
are based on the parametrisation of the cells by successor closed subquivers in the
coefficient quiver of the quiver representation whose quiver Grassmannian provides
the approximation. The dimension function for the cells is based on the observa-
tion that the dimension of a cell is given by the number of holes below the starting
points of the segments in the coeflicient quiver which parametrise the cell.

B.1. For Approximations of Partial-Degenerate Affine Flag Varieties

#

# Program to compute the Fuler characteristics and
Poincare polynomials for approximations of the affine
Flag variety and its partial degenerations

#

# Parameters
stk ok ok ok ok ok K ok ok K ok ok K ok ok K ok ok K ok ok K ok ok K ok ok K ok oK K ok oK K koK K ok oK R ok K Kk KR ok K ok ok ok

# n = index of gl_n

# w = parameter such that 2wn = length of longest allowed
indecomposable nilpotet representation of the
equioriented cycle

# p = vector containing entries 1 or 0 parametrising the
maps f 1 : U_i—> U i+l
# fi=4dd if pi=1and f ¢ =pr_i if p_ i =20

# the multiplicities of the projective and injective
representations is one for both and the dimension
vector of subrepresentations is given by e = (wn, ...,
wn)

Z = IntegerRing ()

# Basics

K3k >k >k ok ok 3k sk 3k 3k 3k 3k ok 3k sk sk sk sk sk sk sk sk sk sk sk Sk sk ko k k k sk sk sk sk sk K ok Rk ok ok sk sk ok ok ok ok ok ok okokok

171




21

26

31

36

41

46

51

56

61
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# seting up the dimension vectors of the indecomposable
representations for w = 1
# sufficient to compute the dimension wvectors of longer
indecomposable representations
# ID = identity_matriz(n)
def index_set(ID,i):
n = len(ID[0])
v = 0xID[0]
Di=7[v]
for j in xrange(n):
k = (i—-j4n—-1) % n
v += ID[k]
D i+4=[ v ]

return D i
# dimension vector of the indecomposable representation of

length k embedding into U_i(2wn)
def dim_vec(D_i,k):

vec = D_i[0]
n = len(vec)
r = k%n

for j in xrange(1,floor (k/n)+1):
vec += D _i[n]

vec += D_i[r]
return vec

# check wvector for positivity component wise
def geq_null(v):
positive = true
n = len(v)
for i in xrange(n):
if v[i] < 0:
positive = false
break

return positive

# check if wvector is zero wvector
def eq_null(v):

zero = true

n = len(v)

for i in xrange(n):
if not v[i] = 0:

zero = false
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break
return zero

# Main Computation
Sk 3k 3k 3k 3k 3k 3k skoskosk sk skeosk sk skosk sk sk sk sk sk sk sk sk skosk sk Sk Sk sk sk sk sk 3k sk >k sk skosk sk sk sk sk sk sk sk sk sk sk ok kokok

# computing all cells of the quiver Grassmannian
def cell_setup(p,w):

n = len(p)

ID = identity_ matrix(n)

null = 0«xID[0]

# the dim wvec of sub reps
e =[]
for k in xrange(n):

e += [wxn]

# the dim wvecs for w=lI
D =[]
for i in xrange(n):

D i = index_set(ID,1)
D+= [ D_i |

# wvector containing the maximal length for each segment

max__length = [ ]
# data parametrising candidates for cells
t_tup = [ [] , vector(e) ]
for i in xrange(n):
for k in xrange(2—p[i]):
max_length += [ (1+p[i])*w*n ]
t_tup [0] += [O]

# dimension vector of M
dim = 2xvector (e)

# number of segments
n_seg = len(max_length)

# computing the actual cells
cells = []
tupel_tmp = [ t_tup |
rest _dim = dim
counter = 0
for i in xrange(n):
for k in xrange(2—p[i]):
k max = list (max length) [counter]
rest_dim —= vector (list (dim_vec(D[i],k_max)))
for temp in tupel tmp:
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if temp[0][counter] = 0:
for 1 in xrange(k_ max):
# computing new candidate
r = ( vector(list (temp[1l])) —
vector (list (dim_vec(D[i],1+41))) )
116 if geq_null(r) = true:
if eq _null(r) = true:
# we have found a cell!
new_ cell = list (temp[0])

new_cell[counter] = (141)
121 cells += [ new_ cell ]
elif geq_ null(rest_dim — r) = true:

# this can still become a cell

new_tup = [ list (temp[0]) |,
vector (list (e)) ]

new_tup [0][counter] = (1+1)

126 new_tup[l] = vector(list(r))

tupel_tmp += [ new_tup ]

counter += 1

sys.stdout.write(’\r"’)

sys.stdout.write(’Setting up problem data: %d /
%’ % (counter ,n_seg))

131 sys.stdout. flush ()

sys.stdout.write(’\r”)
sys.stdout . write (’

\n’)

136 sys.stdout.write(’\r’)
sys.stdout . write (’ chi_eM) =%’ % (len(cells)) )
sys.stdout.write(’\n’)

return cells
141

# function to compute the dimension of a cell in the
Grassmannian from the corresponding subquiver in the
coefficient quiver of M

def cell dim (cell ,w,p):

dim = 0

146 n = len(p)

# data type for the cells
# express them as segments in the coefficient quiver
cell_mat = []
151 for j in xrange(2xwxn):
cell_mat += [ [] ]
for i in xrange(n):
cell_mat[j] += [1]
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156 # writing the segments in the matriz
counter = 0
starting_points = []
for i in xrange(n):
for k in xrange(2—pli]):
161 # the length of the current segment
length = cell [counter]
if length > 0:
# position of the endpoint
t = (i)%n
166 # ht of the endpoint of the segment
s = ( 2%wsn — k — 1 + (2-p[t]) )
for step in xrange(length):
# position at current step
t = (i—step)%n
171 # ht at current step
if not ( p[t] = 0 and step >= wxn ):
s —= (2-p[t])
# marking the point corresponding to the

segment
cell_mat[s][t] =0
176 # collecting information on the starting points
starting_ points += [ [s,t] ]

counter += 1

# counting the holes i.e. ones below the starting

points
181 for starting point in starting points:
start_ht = starting_point [0]
start__index = starting_point [1]

for below in xrange(start_ht ,2xwxn):

dim += cell _mat [below][start_index]
186
return dim, cell mat

# computing the Poincare polynomial of the quiver
Grassmannian from the cells

191 | def poincare_poly(p,w):

tups = []

coeffs = [ 0 ]

cells = cell_setup(p,w)

length 1 = len(cells)

196 counter = 0
for cell in cells:
index, cell_mat = cell_dim(cell ,w,p)
tups +=[ [cell , cell _mat, index] |

length = len(coeffs)




201
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211

216

221
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if (index + 1) > length:
for k in xrange(index + 1 — length):
coeffs += [ 0 ]
coeffs [index] 4+= 1
counter += 1
sys.stdout.write(’\r’)
sys.stdout.write (’Computing polynomial: %d / %d’> %
(counter ,length_1))
sys.stdout. flush ()

sys.stdout.write(’\r’)
sys.stdout.write(’

\n7)
sys.stdout.write(’ p_eM(t) =)
for i in xrange(len(coeffs)):
sys.stdout . write ("%dxt"%d’ %
(coeffs[len(coeffs)—i—1],len(coeffs)—i—1))
if i < (len(coeffs) — 1):
sys.stdout.write(’ + )

sys.stdout.write(’\n’)
sys.stdout.write(’\n"’)

return tups

B.2. For Approximations of Partial-Degenerate Affine Grassmannians

#

# Program to compute the FEuler characteristics and
Poincare polynomials for approximations of the affine
Grassmannian and its partial degenerations

#

# Parameters
Sk ok ok ok ok ok Kk ok K K KKk K KK K KK KK KK KK KK KKK KK R KK KK R R K Rk K ok

# n = index of gl_n

# N = parameter such that 2xN = length of longest allowed
indecomposable nilpotet representation of the loop

# p = vector containing entries 1 or 0 parametrising the
map [ : U 0—> U0

# the multiplicities of the repesentations depend on n and
the dimension vector of subrepresentations is given by

niN

Z = IntegerRing ()
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42

47

52

57
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# Main Computation
I I I I T o

# computing all cells of the quiver Grassmannian
def setup_cells(p,N):

n = len(p)

cells = [ ]

dim = 2xnx*xN

# wvector containing the maximal length for each segment
max_ length = [ ]
# data parametrising candidates for cells
t_tup = [ [] , [n«N] ]
for i in xrange(n):
for k in xrange(2—pli]):
max_ length += [ (14+p[i])=*N ]
t_tup [0] 4= [0]

# number of segments
n_seg = len(max_length)

# computing the actual cells
tupel_tmp = [ t_tup ]
rest_length = dim

for j in xrange(n_seg):

rest_length —= max_length|[j]
for temp in tupel tmp:
if temp[0][j] = O:

k_max = min(list (temp[1]) [0], list (max_length)[j])
for k in xrange(k max):
# computing new candidate
r = ( list(temp[1])[0] — k — 1)
if r >= 0:
if r = 0:
# we have found a cell!
new_cell = list (temp[0])
new_cell[j] = (k+1)
cells += [ new_ cell ]
elif r <= rest_length:
# this can still become a cell

new_tup = [ list (temp[0]) , list(temp[1l]) ]
new_tup[0][j] = (k+1)
new_tup[1][0] —= (k+1)

tupel_tmp += [ new_tup ]
sys.stdout.write(’\r"’)
sys.stdout.write(’Setting up problem data: %d / %d’
% (j+1,n_seg))
sys.stdout. flush ()
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sys.stdout.write(’\r’)
sys.stdout . write (’

\n’)

sys.stdout.write(’\r’)
sys.stdout.write (’ chi_e(M) = %d\n’ % (len(cells)) )
sys.stdout.write(’ \n’)

return cells , max_length

# function to compute the dimension of a cell in the
Grassmannian from the corresponding subquiver in the
coefficient quiver of M

def cell _dim(cell , max_length):

dim = 0
ht__tupel = []
n = len(cell)

# data type for the cells

# express them as segments in the coefficient quiver
and count the holes below the starting points of
the subsegments

for i in xrange(n):
ht_tupel += [0]

if not cell[i] = O:
for j in xrange(n):
if (j >1):
ht_tupel[i] += ( min(cell [i], max_length[j]) —
min(cell [i], cell[j]) )

elif (j<i):
ht_tupel[i] 4= ( min(cell [i]—1, max_length[j])
— min(cell [i]=1, cell[j]) )

for ht in ht_tupel:
dim += ht

return dim

# computing the Poincare polynomial of the quiver
Grassmannian from the cells
def poincare_poly(p,N):
tups = []
coeffs = [ 0 ]
dim_Grass = 0
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cells , max_length = setup_cells(p,N)

102 length 1 = len(cells)
counter = 0
for cell in cells:
index = cell_dim(cell , max_length)
tups +=[ [cell , index]| ]
107 length = len(coeffs)

if (index + 1) > length:
for k in xrange(index + 1 — length):
coeffs += [ 0 ]
coeffs [index] 4= 1
112 counter += 1
sys.stdout.write(’\r’)
sys.stdout.write (’Computing polynomial: %d / %d’ %
(counter ,length_1))
sys.stdout. flush ()

117 sys.stdout.write(’\r’)
sys.stdout . write (’
\n")
sys.stdout.write(’ p_eM(t) =)

for i in xrange(len(coeffs)):
sys.stdout . write ("%dxt"%d " %
(coeffs[len(coeffs)—i—1],len(coeffs)—i—1))
122 if i < (len(coeffs) — 1):
sys.stdout.write(’ + 7)

sys.stdout.write(’\n’)
sys.stdout.write(’\n’)
127
return tups







APPENDIX C

Euler Characteristics and Poincaré Polynomials

In this appendix we collect Euler characteristics and Poincaré polynomials of
some approximations of partial degenerate affine flag varieties and affine Grassman-
nians. Everything is computed using the programs as presented in Appendix
Because of the limits in computational power and memory of the used machine it
was not possible to handle the computations for bigger values of n or V. The most
time and memory consuming part of the computation was the setup of the data
for the cells. Optimising this part of the program could yield a much faster and
more efficient computation. But for our purpose the computed data was sufficient
such that we did not pursue this goal.

C.1. For Approximations of Partial-Degenerate Affine Flag Varieties

Cyclic permutations of the vector ¢ € Z™ do not change the Poincaré poly-
nomial because of the symmetry of the oriented cycle. Hence we only give the
Poincaré polynomial for one representative of the isomorphism class of partial de-
generations.

C.1.1. Poincaré Polynomials for n=1.

ExaMpPLE C.1. For w € N and n =1 the Euler characteristics and Poincaré
polynomials of the approximations F1% (g[n) are given by

Xog =w+1
w
a _ k
i@ =) q
k=0

ExaMPLE C.2. For w € N and n =1 the Euler characteristics and Poincaré
polynomials of the approximations Fl,, (g[n) are given by

Xw,1 = 1
pwi(q) =¢°
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C.1.2. Poincaré Polynomials for n=2.

ExaMPLE C.3. For w € [6] and n = 2 the Euler characteristics and Poincaré
polynomials of the approximations FI2 (g[n) are given by

X(1l,2 =15
P o(q) = 3¢* +4¢° + 5¢* + 2¢" + 1¢°
Xg,z =065

+25¢° 4+ 18¢° + 13¢* + 8¢° + 5¢* + 2¢* + 1¢°
X§2 = 369
P 2(q) = 3¢ +6¢"° + 15¢™ + 24¢"° + 37¢"* + 44¢"" + 49¢"° + 46¢° + 41¢° + 32¢"
+25¢° 4 18¢° + 13¢* + 8¢ + 5¢* + 2¢" + 1¢°
X502 = 671
p25(q) = 3¢%° + 6¢"° + 15¢"® + 24¢"7 + 39¢" + 52¢"° + 65¢'* + 70¢"°
+73¢'? + 68¢ + 6140 + 50¢° + 41¢% + 32q7
+25¢° 4+ 18¢° + 13¢* + 8¢° + 5¢* + 2¢* + 1¢°
X6,2 = 1105
pio(q) = 3¢** + 6¢% + 15¢* + 24¢" + 39¢*° + 54¢"°
+ 73¢™® 4 8647 + 97¢® 4 100¢"° + 101¢™* + 94¢™®
+85¢"% + 72¢" + 61¢" + 50¢” + 41¢° + 329"
+25¢° 4+ 18¢° + 13¢* + 8¢° + 5¢* + 2¢" + 1¢°
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ExXAMPLE C.4. For w € [6], n =2 and ¢ = (1,/(\)) the Euler characteristics and
Poincaré polynomials of the approximations FI¢ (g[n) are given by
Xf,z =38
pia(a) = 1¢° +4¢% + 2¢" + 1¢°
X322 = 21
P5.2(q) = 2¢° + T¢" + 5¢° + 4¢> + 2¢" + 1¢°

s

p52(0) = 3¢" +10¢° + 8¢° + 7¢* + 5¢° + 4¢* + 2¢" + 1¢°
X4,2 = 65
P5a(q) =4¢° +13¢° + 11¢" 4+ 10¢° + 8¢° + T¢* + 5¢° + 4¢° + 2¢" + 1¢°
X52 = 96
c

P5a2(q) = 5¢* + 16¢'° 4+ 14¢° + 13¢% + 11¢" + 10¢° + 8¢° + 7¢* + 5¢° + 4¢°> + 2¢* + 1¢°
X6,2 = 133

Pg2(q) = 6q"% +19¢" + 17¢"" + 16¢"° + 14¢° + 13¢° + 114"
+10¢° +8¢° + 7¢* +5¢> +4¢® +2¢* +1¢°

(o
2
X3,2 = 40
(9
Cc
Cc

ExaMPLE C.5. For w € [6] and n = 2 the Euler characteristics and Poincaré
polynomials of the approximations FI,, (g[n) are given by

X1,2 =95

p12(q) = 2¢° +2¢" + 1¢°
X2,2 =9

p2,2(q) = 24" +2¢° + 2> + 2¢' + 1¢°
X3,2 = 13

p32(0) = 26° +2¢° + 24" + 26> + 26> + 2" + 1¢°
Xa,2 = 17

Pa2(9) = 2¢° +2¢" +2¢° +2¢° + 2¢* + 2¢° + 2¢° + 2¢" + 1¢°
X5,2 =21

p5.2(q) = 24" +2¢° +2¢% + 2¢7 4+ 2¢° + 2¢° + 2¢* + 2¢° + 2¢% + 2¢* +1¢°
X6,2 = 25

pe2(q) = 29" +2¢"" + 2¢"° + 2¢° + 2¢° + 2¢”
+ 2q6 + 2q5 + 2q4 + 2q3 + 2q2 + 2q1 + 1qO
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C.1.3. Poincaré Polynomials for n=3.

ExaMPLE C.6. For w € [4] and n = 3 the Euler characteristic and Poincaré
polynomials of the approximations FI2 (g[n) are given by

+ 478¢1% + 468¢" + 423¢*° + 343¢° + 261¢® + 18047
+118¢5 + 69¢° + 39¢* 4+ 19¢° + 9¢* + 3¢* + 1¢°
X4 5 = 20620
P55(q) = T¢°" + 33¢°° + 114¢%° + 274¢°* + 540¢°® + 882¢°% + 1258¢>" + 15964 + 1851¢"°
+1993¢*® 4+ 2016¢'7 + 1932¢*¢ + 1762¢*° + 1536¢** + 1281¢**
+1027¢"2 + 789¢* + 585¢'° + 415¢° + 285¢° + 186¢”
+ 1184¢° 4 69¢° + 39¢* + 19¢° + 9¢* + 3¢* + 1¢°
X§3 = T6177
P4 s(q) = 7¢°° + 33¢°° + 114¢>* + 286¢% + 609¢°% + 1098¢>"
+ 1771¢%% + 2556¢%° + 3405¢%® + 4195¢%7 4 4884¢°¢ + 5382¢°
+5701¢%* 4+ 5796¢% + 5715¢%? + 5446¢>* + 5055¢%° + 4551¢"°
+ 4003¢*® + 3423¢"7 + 2865¢*¢ + 2332¢*° + 1860¢** + 1443¢*3
+1099¢*2 4 813¢* + 5914 + 415¢° + 285¢° + 186¢”
+ 1184¢° 4 69¢° + 39¢* + 19¢° + 9¢° + 3¢* + 1¢°
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ExampLE C.7. For w € [4], n = 3 and ¢ = (1,1,0) the Euler characteristics
and Poincaré polynomials of the approximations FI¢ (g[n) are given by

XT3 =99
3(q) = 1¢® +4¢" +17¢5 + 25¢° + 24¢* +16¢° +8¢* + 3¢* + 1¢°
X5,3 =875
3(q) = 2¢" +12¢" 4 49¢"? + 98¢™" + 139¢'° + 148¢° + 137¢% + 1064”
+ 775 +49¢° + 30¢* + 16¢> + 8¢* + 3¢* + 14°
X§.5 = 3565
p5.5(q) = 3¢°° +20¢" + 85¢"® + 186¢'" + 301¢'® + 386¢"'® + 439¢"* + 441¢"?
+408¢'? + 346" + 280¢"° + 215¢° + 159¢® + 112¢"
+ 775 + 49¢° + 30¢* + 16¢° + 8¢* + 3¢* + 1¢°
X553 = 10065
p55(q) = 4¢°° + 28¢°° + 121¢** + 278¢* + 477¢°% + 664> + 827¢°° + 932¢"°
+ 989¢'8 + 972¢'7 4 909¢*¢ + 804¢° + 693¢** + 575¢*>
+ 468¢'? + 368¢' + 286¢° + 215¢° + 159¢% + 112¢"
+ 775 + 49¢° + 30¢* + 16¢> + 8¢* + 3¢* + 14¢°

Py,
j23

ExaMPLE C.8. For w € [4], n = 3 and ¢ = (1,0,0) the Euler characteristics
and Poincaré polynomials of the approximations FI¢ (g[n) are given by

X(f,3 =48
pS2(q) = 1¢° + 9¢° + 14¢* + 13¢° + 7¢* + 3¢* + 1¢°
X§4 = 257

p5.5(q) = 1g™ + 11¢" + 29¢° + 47¢% + 504"
+ 43¢ + 31¢° + 21¢* +13¢ + 7¢* + 3¢* + 1¢°
X5,3 = 748
p5.3(q) = 1'% + 11¢"° 4 31¢™* + 63¢"
+91¢"% +107¢" + 104" + 91¢° + 73¢% + 574"
+43¢° + 31¢° + 21¢* + 13¢° + 7¢* + 3¢* +1¢°
X5 = 1641
5 5(q) = 1¢** + 11¢* + 31¢"°
+ 65¢"® + 107¢"" + 149¢'® + 175¢"° + 185¢™* + 1764"*
+157¢"% +133¢" 4+ 111¢*° + 91¢° + 73¢® + 57¢7
+43¢° + 31¢° + 21¢* + 13¢° + 7¢* + 3¢* + 1¢°



186 C. EULER CHARACTERISTICS AND POINCARE POLYNOMIALS

ExAMPLE C.9. For w € [6] and n = 3 the Euler characteristics and Poincaré
polynomials of the approximations FI,, (g[n) are given by

X1,3 = 25

p13(q) = 6¢* +9¢° + 6¢° + 3¢ + 1¢°
X2,3 = 85

p2.3(q) = 6¢° + 15¢" + 18¢° + 15¢° + 12¢* 4+ 9¢* + 64 + 3¢* + 1¢°
X33 = 181

p3.3(q) = 6¢'% + 15¢" + 24¢'° + 27¢° + 24¢% + 2147
+18¢5 4+ 15¢° + 12¢* + 9¢° + 6¢° + 3¢* + 1¢°
X4,3 = 313
pa,3(q) = 6¢'° + 15¢"° + 24¢"* + 33¢"°
+ 364" 4 33¢" + 30¢'° + 27¢° + 24¢% + 2147
+18¢° 4+ 15¢° + 12¢* + 9¢° + 6¢° + 3¢" + 1¢°
X5,3 = 481
ps5.3(q) = 6¢%° + 15¢" + 24¢"® + 33¢"7 + 42¢'6 + 45¢"° + 42¢™* + 39¢"3
+ 3642 4 33¢' + 30¢'° + 27¢° + 24¢® + 2147
+18¢° 4+ 15¢° + 12¢* + 9¢° + 6¢* + 3¢" + 1¢°
X6,3 = 685
p6,3(q) = 6q24 + 15q23 + 24(]22 + 33q21 + 4:2q20 + 51q19
+54q'® +51¢'7 + 48¢"° + 45¢'% + 42¢"* + 394"
+36¢"% + 33¢" +30¢"° + 27¢° + 24¢° + 2147
+18¢5% + 15¢° + 12¢* + 9¢° + 64> + 3¢* + 1¢°
C.1.4. Poincaré Polynomials for n=4.
ExaMPLE C.10. For w € [2] and n = 4 the Euler characteristics and Poincaré
polynomials of the approximations F1% (g[n) are given by
X{,4 = 6137
P 4(q) = 19¢"% + 88¢'® + 254¢"* + 492¢"?
+ 753¢"% + 920¢*! + 966¢*° + 864¢° + 689¢° + 4804"
+3044¢° + 168¢° + 85¢* + 36¢> + 14¢> + 4¢" + 1¢°
X4 = 359313
P3.4(q) = 19¢* + 148¢°!
+ 646¢°° + 1896¢%° + 4343¢8 + 81444¢%" + 13192¢° + 18880¢%°
+24529¢%* 4 292604¢%3 + 32548¢%% + 33952¢*" + 33541¢%° 4 314564"°
+ 28206¢"® 4 24192¢'7 + 1995746 + 15812¢*° + 12088¢** + 8888¢**
+ 6313¢"% + 4308¢*" + 2838¢*° + 1788¢” + 1085¢° + 624¢"
+ 34445 +176¢° + 85¢* + 36¢° + 14¢* + 4¢" + 1¢°
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ExampLE C.11. For w € [3],n =4 and ¢ = (1,1, 1,0) the Euler characteristics
and Poincaré polynomials of the approximations FI¢ (g[n) are given by

X1.4 = 2248
5 4(q) = 1" + 6¢™ +27¢" + 92¢"* + 206¢"" + 334¢'% + 401¢° + 393¢° + 314¢"
+221¢% +132¢° + T1¢* + 32¢° + 13¢* + 4¢* + 14°
X5,4 = 72361
p5.4(0) = 2¢*7 + 18¢°° + 102¢* + 1129¢* + 2407¢** + 4071¢*" + 5808¢*° + 7191¢"°
+7997¢'® + 8111¢'7 + 7655¢' + 6765¢*° + 5672¢** + 4511¢"3
+ 3432¢"? 4 2489¢*! 4+ 1736¢'° 4+ 1155¢° + 738¢° + 447¢"
+259¢° + 140¢° + T1¢* + 32¢® + 13¢* + 44" + 1¢°
X§.4 = 645352
p5.4(q) = 3¢* + 304 + 183¢°7
+ 775¢% + 2338¢3° + 5486¢>* + 10495¢> + 1729042 + 25210¢>!
+ 33413¢%° + 40822¢%° + 46694¢%® 4 5044347 + 51988¢%¢ + 51383¢%°
+ 49035¢%* + 4529643 + 40679¢%% + 35538¢>! + 30296¢%° + 25199¢°
+20505¢"® + 16310¢'7 + 12713¢® + 9690¢"'° + 72364¢'* + 5277¢"3
+ 3766¢'2 4+ 2617¢" + 1774¢° + 1163¢° + 738¢® + 4474"
+259¢° + 140¢° + 71¢* + 32¢® + 13¢* + 4¢* + 1¢°
ExaMPLE C.12. Forw € [3],n =4 and ¢ = (1,1, O,AO) the Euler characteristics
and Poincaré polynomials of the approximations FI¢ (g[n) are given by
Xf,4 =901
P54(q0) = 1¢"% + 4¢"* + 17¢"" + 55¢"% + 119¢° + 175¢° + 179¢"
+ 148¢° + 100¢° + 58¢* + 28¢° + 12¢* + 4¢* + 1¢°
X§5.4 = 16537
P5.4(q) = 1¢°® + 6¢** + 34¢>" + 136¢°° + 398¢"°
+ 866¢'® + 1419¢'7 + 1867¢'¢ + 2082¢"° + 2081¢™* + 1903¢*3
+1620¢*2 + 1289¢*! + 970¢'° + 692¢° + 471¢% + 304¢"
4 187¢°% 4 108¢° + 58¢* + 28¢® + 12¢° + 4¢* + 1¢°
X§.4 = 102805
p5.4(q) = 1¢** + 6¢°% + 36¢°"
+ 15640 + 512¢%° + 1307¢%® + 2657¢%7 + 44584¢°° + 6319¢%°
+ 7859¢%* + 8864¢% + 9345¢%% + 9338¢>! + 8926¢%° + 8191¢*°
+ 7252¢"® 4 6208¢'7 + 5162¢*¢ + 41764 + 3297¢'* + 254043
+1912¢'? 4 14044¢* + 10064 + 700¢° + 471¢® + 3044”
4 187¢°% 4 108¢° + 58¢* + 28¢® + 12¢° + 4¢* + 1¢°
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ExaMPLE C.13. Forw € [3],n =4 and ¢ = (1,0, 1,AO) the Euler characteristics
and Poincaré polynomials of the approximations FI¢ (g[n) are given by
X{,4 =901
PS5 4(q) = 10¢"" + 52¢'° + 124¢° + 181¢° + 182¢"
+ 149¢° + 100¢° + 58¢* + 28¢° + 12¢* + 4¢* + 1¢°
X5.4 = 16537
p5.4(q) = 10¢°" + 904" + 360¢"”
+ 866¢*% + 1448¢'7 4+ 1899¢'6 + 2106¢*° + 2097¢** + 191243
+1624¢'% +1290¢"" + 970¢"% + 692¢° + 471¢° + 3044
+187¢° 4+ 108¢° + 58¢* + 28¢> + 12¢° + 4q¢* + 1¢°
X§.4 = 102805
p5.4(q) = 10¢°" + 90¢°° + 400¢%° + 1184¢°® + 2592¢*" + 44804 + 6392¢°
+ 7937¢%* + 893043 + 9399¢%2 + 9380¢%! + 8956¢2° + 82104°
+ 7262¢"8 + 6212¢'7 + 5163¢'¢ + 41764 + 3297¢™* + 254043
+1912¢*2 + 1404¢** + 1006¢*° + 700¢° 4+ 471¢% + 3044"
+ 187¢5 + 108¢° + 58¢* + 28¢° + 12¢* + 4¢" + 1¢°
ExaMPLE C.14. For w € [3],n =4 and ¢ = (1,0, O,AO) the Euler characteristics
and Poincaré polynomials of the approximations FI¢ (g[n) are given by
X5 4 = 392
5 4(q) = 1¢"° +16¢° + 51¢° + 81¢" + 87¢° + 70¢° + 464" + 24¢° + 11¢° + 4¢" + 1¢°
X5, = 4245
p5.4(q) = 2¢"® +43¢'7 + 161¢"° + 321¢"° 4 465¢"* + 555¢™°
+579¢"% + 541¢" + 462¢"° + 365¢° + 271¢% + 1894”
+1264° 4+ 79¢° + 46¢* + 24¢> + 11¢* + 4¢* + 14°
X§.4 = 18664
p5.4(a) = 3¢*° + 70¢°® + 281¢** + 611¢% + 977¢°* + 1311¢*" + 1575¢%° + 1743¢"?
+ 1805¢'® 4+ 1765¢' 7 + 1644¢*° + 1466¢*° + 1257¢* + 104043
+ 836¢"% + 654¢" + 501¢*° + 374¢° + 271¢% + 1894”
+ 126¢5 + 79¢° + 46¢* + 24¢° + 11¢° + 4¢* + 14°
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ExaMPLE C.15. For w € [5] and n = 4 the Euler characteristics and Poincaré
polynomials of the approximations FI,, (g[n) are given by

X174 = 185
p1,4(q) = 6¢° 4 24¢" + 42¢° + 44¢° + 34¢* + 20¢° + 10¢% + 4¢* + 14°
X2,4 = 1233

p2.4(q) = 64" + 24¢"° + 54¢™ + 96¢"°
+138¢1% + 164" + 170¢*° + 156¢° + 130¢® + 1004”
+ 74¢° + 52¢° + 34¢* + 20¢> + 10¢% + 4¢* + 1¢°
X3,4 = 3913
p3.4(q) = 6¢°* + 24¢% + 54¢°% + 96¢*' + 150¢%° + 216¢"°
4 282¢"® + 33247 + 362¢'® + 372¢"° + 362¢'* + 332¢"3
+290¢12 + 2444 + 202¢*° + 164¢° + 130¢® + 10047
+ 7465 + 52¢° + 34¢" + 20¢® + 10¢® + 4¢* + 1¢°
X4,4 = 8993
pa.a(q) = 6¢°% + 243" + 54¢°° + 96¢*° + 150¢*® + 21647 + 294¢°° + 384¢*°
+ 474¢%* + 54843 + 602¢*% + 636¢°* + 650¢%° + 644¢*°
+618¢"® + 572¢"7 + 514¢*® + 452¢"° + 394¢'* + 340¢"3
+290¢'2 + 244¢™ + 202¢'° + 164¢° + 130¢® + 100¢”
+ 744¢°% + 52¢° + 34¢* + 20¢® + 10¢% + 4¢* + 1¢°
X5,4 = 17241
ps5.4(q) = 6¢*° + 24¢*° + 54¢*° + 96¢>"
+150¢3% + 21643 + 294¢3* + 384¢>3 + 4864 + 600¢>"
+ 714¢%° + 812¢° + 890¢%® + 948¢%" + 98645 + 1004¢%°
+1002¢** + 980¢% 4 938¢%2 + 876¢" + 802¢*° 4 7244¢"°
+ 650¢'8 + 58017 + 514¢*¢ + 452¢'° + 3944 + 340¢*®
+ 29042 + 2444 + 202¢"° + 164¢° + 130¢® + 1004”
+ 7465 + 52¢° + 34¢* + 20¢% + 10¢® + 4¢* + 1¢°
C.1.5. Poincaré Polynomials for n=>5.

ExXAMPLE C.16. For w = 1 and n = 5 the Euler characteristic and Poincaré
polynomial of the approximation FI2 (g[n) is given by

X{ 5 = 265266
P 5(q) = 51¢* + 355¢*! + 1390¢°* + 3780¢°% + 7985¢°" + 13841¢ + 204804
+26530¢'® + 30675¢7 + 32095¢'¢ 4 30716¢° + 27110¢** + 2219543
+16935¢'2 + 120704 + 8056¢'° 4 5030¢° + 2940¢° + 16004”
+ 810¢° + 376¢° + 160¢* + 60¢> 4 204> + 5¢* + 1¢°
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ExAMPLE C.17. Forw =1,n=>5and ¢ = (1,1, 1,1,0) the Euler characteristic
and Poincaré polynomial of the approximation FI¢ (g[n) is given by

X§ 5 = 82865
P5 5(q) = 1¢** + 8¢** + 464 + 186¢°" + 634¢*° + 1677¢"°
+3557¢*® + 6079¢*7 + 8667¢*¢ + 105484 + 11244¢™* + 10674¢"
+9166¢'% + 7184¢" + 5184¢*° + 3458¢° + 2140¢® + 1226¢”
+650¢° + 316¢° + 140¢* + 55¢° + 19¢* + 5¢* + 1¢°

ExaMPLE C.18. Forw =1,n =5and ¢ = (1,1,1,0,0) the Euler characteristic
and Poincaré polynomial of the approximation FI¢ (g[n) is given by

X5 5 = 28016
P§2(q) = 1¢% + 5¢*" + 20¢*° + 67¢"°
+196¢'® + 527¢'7 4 118046 + 2179¢'5 + 3241¢'* + 398543
+4158¢" + 3785¢*! + 3062¢*° + 2239¢” + 1493¢° + 912¢"
+510¢° + 261¢° + 121¢* + 50¢° + 18¢> + 5¢* + 1¢°

ExaMPLE C.19. For w € [6], n = 2 and ¢ = (1,1,0,1,0) the Euler character-
istics and Poincaré polynomials of the approximations FI¢ (g[n) are given by

X5 5 = 28016
5 5(q) = 3¢*° + 21¢" + 106¢"® + 408¢'" + 1097¢'® + 2189¢"® + 3326¢"* + 4089¢"*
+ 4240¢'? + 3833¢' + 3084¢10 + 2247¢° + 1495¢% + 912¢”
+ 510¢° + 261¢° 4 121¢* + 50¢° + 18¢° + 5¢* + 1¢°

ExXAMPLE C.20. For w € [6], n = 2 and ¢ = (1,0,1,0,0) the Euler character-
istics and Poincaré polynomials of the approximations FI¢ (g[n) are given by

X5 5 = 10221
5 5(q) = 4q'7 + 28¢° + 151¢"® + 498¢™* + 1014¢"
+1480¢"% + 1693¢*! + 1615¢*° + 1335¢” + 982¢° + 650¢”
+389¢° + 211¢° + 103¢* + 45¢> + 17¢ + 5¢* + 1¢°
X5.5 = 386777
pS5(q) = 10¢°" + 97¢%° + 675¢>° + 2721¢> + 71464 + 13845¢%° + 21687¢%
+29116¢%* + 34777¢* + 37958¢% 4 38564¢* + 36969¢%° + 3374640
+29521¢"8 + 248424¢'7 + 20169¢'% + 15827¢'° + 12028¢* + 8859¢">
+6329¢*2 + 4381¢*! + 2937¢*° + 1901¢° + 1185¢° + 706¢”
+399¢° 4 211¢° + 103¢* + 45¢> + 17¢* + 5¢* + 1¢°
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ExaMPLE C.21. For w € [2], n =5 and ¢ = (1,1, 0,0, Oz\the Euler character-
istics and Poincaré polynomials of the approximations FI¢ (g[n) are given by
X§ 5 = 10221
5 5(q) = 1¢"7 + 5¢"® + 23¢'™ + 78¢"% + 219¢"° + 533¢"* + 991¢"*
+1425¢*% + 1643¢*! + 1585¢° + 1321¢° + 977¢% + 649¢”
+389¢% 4 211¢° + 103¢* + 45¢> + 17¢* + 5¢* + 1¢°
X5.5 = 386777
p5.5(q) = 2¢*° + 16¢°* + 93¢°!
+ 384¢%° 4 1279¢%° + 3505¢8 + 7782¢%" + 14099¢2° + 21536¢%°
+ 28695¢%* + 34263¢% + 37478¢% 4 38179¢%* + 36689¢%° + 33556¢"°
+29401¢'® + 24773¢'7 + 201344 4 15812¢° + 12023¢** + 8858¢**
+6329¢*% + 4381¢*! + 2937¢*° + 1901¢° + 1185¢® + 706¢”
+399¢° + 211¢° + 103¢* + 45¢> + 17¢> + 5¢* + 1¢°
ExAMPLE C.22. For w € [2], n =5 and ¢ = (1,0,0,0, Oz\the Euler character-
istics and Poincaré polynomials of the approximations FI¢, (gln) are given by
X1, = 4020
p%5(0) = 1¢"° + 25¢™" + 129¢"
4 328¢'2 + 550" + 685¢° + 687¢° + 584¢° + 433¢"
+ 2844° 4 1664¢° + 86¢* + 40¢> + 164 + 5¢* + 1¢°
X5.5 = 88361
p5.5(q) = 1¢*° + 27¢°" + 204¢°° + 790¢°°
+1967¢** + 3654¢% + 5520¢%2 + 7181¢*! + 8369¢%° + 8962¢*°
+ 8971¢"® 4 8479¢'7 4 7622¢'¢ + 6545¢'° + 5391¢'* + 4269¢"3
+3258¢*2 + 2399¢*! + 1706¢*° + 1171¢° + 775¢% + 49147
+295¢5 + 1664¢° + 86¢* + 40¢> + 16¢* + 5¢' + 1¢°
ExaMmpPLE C.23. For w € [2] and n :A5 the Euler characteristics and Poincaré
polynomials of the approximations Fi,,(gl,) are given by
X15 = 1701
p1.5(q) = 30¢* +120¢"" + 2304 + 300¢° + 310¢® + 265¢"
+195¢° + 125¢° + 70¢* 4 35¢° + 15¢% + 5¢* + 14°
X2.5 = 22421
p2.5(q) = 30¢** + 180 + 490¢%% + 900¢*' + 1330¢%° + 17204"°
+2030¢"® + 222047 + 22704 4 2185¢® + 1995¢™* + 173543
+ 144042 4 1145¢" 4 875¢'° + 645¢° + 460¢® + 315¢"
+205¢° + 125¢° + 70¢* 4 35¢° + 15¢% + 5¢* + 14¢°
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C.1.6. Poincaré Polynomials for n=6.

ExaMPLE C.24. For w = 1 and n==6 the Euler characteristic and Poincaré
polynomial of the approximation Fl, (g[n) is given by

X1,6 = 19045
p1.6(q) = 20¢"® + 1807 4 630¢'° + 13404¢"® + 2085¢™* 4 2610¢**
+ 2780¢'? 4 2610¢*! + 2205¢'° + 1694¢° + 1194¢% + 7744¢"
+461¢5 + 252¢° 4 126¢" + 56¢° + 21¢* + 6¢* + 1¢°
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C.2. For Approximations of Partial-Degenerate Affine Grassmannians

The computations of the Poincaré polynomials for the finite approximations
of the partial degenerations of the affine Grassmannian show that in this setting
the Poincaré polynomials only depend on the number of projections, i.e. the codi-
mension of the map f : V — V and not the relative positions of the projections.
Hence we only give the Poincaré polynomial of one representative for these iso-
morphism classes of degenerations in the following list of examples. Polynomials
where computed using the formula for the Poincaré polynomials of the loop quiver
as introduced in Chapter [5| and implemented as in Appendix

C.2.1. Poincaré Polynomials for n=1.

ExAaMPLE C.25. For N € N and n = 1 the Euler characteristics and Poincaré
polynomials of the approximations Gr%, (g[n) are given by

Xnv1=N+1
N
Pl =) d"
k=0
ExampLE C.26. For N € N and n = 1 the Euler characteristics and Poincaré
polynomials of the approximations Gry (g[n) are given by
xni1 =1
pnalg) =4¢°
C.2.2. Poincaré Polynomials for n=2.

ExaMPLE C.27. For N € [5] and n = 2 the Euler characteristics and Poincaré
polynomials of the approximations Grfy (g[n) are given by

X(II,Z =6
pio(q) = 1¢* +1¢° + 2¢* + 1¢* + 1¢°
Xg,z =19
P52(0) = 1¢° + 14" +3¢° + 3¢° + 4¢" + 3¢° + 2¢° + 1¢" + 1¢°
a _
X32 = 44

P32(q) = 1¢"% + 1¢" + 3¢"° + 4¢° + 6¢° + 64
4 7(]6 +5q5 +4q4 +3C]3 +2q2 + 1q1 T 1q0
Xiz =85
Pia(q) = 1¢"° + 1¢" + 3¢™* + 44"
+7¢"% +8¢" +10¢" + 10¢” + 10¢° + 84"
+7¢° + 5¢° + 4¢* + 3¢® + 2¢* + 1¢* + 1¢°
X;Q = 146
p2o(q) = 1¢%° + 1¢" + 3¢"® + 4¢'7 + 7¢"° + 9¢*° + 12¢** + 13¢"°
+15¢'% + 14¢™ +14¢*° + 12¢° + 10¢® + 8¢
+7¢% +5¢° +4¢* + 3¢° + 2¢> + 1¢* + 1¢°
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ExampLE C.28. For N € [5], n = 2 and k = 1 the Euler characteristics and
Poincaré polynomials of the approximations Gr’fv (g[n) are given by

le,2 =4
pho(a) =247+ 1¢" + 1¢°
Xé,z =9
P55(q) = 3¢* +2¢° + 2¢° + 1¢" + 1¢°
X§,2 =16
P52(q) = 4% + 3¢° + 3¢* + 2¢° + 2¢° + 1¢" + 1¢°
Xi,z =25
Pialq) =5¢° +4¢" +4¢° + 3¢° + 3¢* + 2¢° + 2¢° + 1¢" + 1¢°
X§,2 =36

PE2(0) = 6¢"° +5¢° +5¢° + 4" + 4¢° + 3¢° + 3¢" + 2¢° + 2¢> + 1¢" + 1¢°

ExaMPLE C.29. For N € [5] and n = 2 the Euler characteristics and Poincaré
polynomials of the approximations Gry (g[n) are given by

X1,2 =3
p12(q) = 1¢* + 1¢* + 1¢°
X2,2 =95
p22(q) = 1¢* + 1¢> + 1¢° + 1¢" + 1¢°
X32 =717
p32(q) = 1¢° +1¢° + 1¢* + 1¢* + 1¢* + 1¢* + 1¢°
X4,2 =9
pa2(q) = 1¢° +1¢" +1¢° + 1¢° + 1¢* + 1¢* + 1¢* + 1¢* + 1¢°
X5,2 = 11

p52(q) = 1¢"0 +1¢° + 1¢° + 1¢" + 1¢° + 1¢° + 1¢* + 1¢° + 1¢° + 1¢" + 1¢°
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C.2.3. Poincaré Polynomials for n=3.

ExaMPLE C.30. For N € [5] and n = 3 the Euler characteristics and Poincaré
polynomials of the approximations Grf; (g[n) are given by

X(f,3 =20
pi5(q) = 1¢° +1¢° +2¢" + 3¢° + 3¢° + 3¢* + 3¢> + 2¢* + 1¢" + 1¢°
X5 = 141

p35(q) = 1¢"® + 1¢'" + 3¢ + 5¢"° + 8¢** + 10¢"?
+ 14¢"% 4 14¢™ 4 16¢"° 4 15¢° + 14¢5 + 1147
+10¢° + 7¢° + 5¢* + 3¢® + 2¢> + 1¢* + 1¢°
Xg.,s =58
P33(0) = 1¢° + 1¢%° + 3¢°° + 6¢°* + 10¢* + 15¢> + 23¢°" + 29¢°° + 364"
+42¢" +46¢'7 + 48¢'% + 48¢"° + 464" + 43¢"°
+39¢"% +33¢"" +28¢"% + 23¢” + 18¢° + 13¢"
+10¢° 4+ 7¢° + 5¢* + 3¢® +2¢* + 1¢" + 1¢°
X§s=1751
pis(q) = 1¢°° + 1¢% + 3¢** + 6¢* + 11¢** + 17¢*
+28¢%0 + 38¢%% + 53¢*® + 6647 + 81¢%° + 92¢*°
+105¢%* + 110¢% + 116¢*2 + 116¢** + 116¢*° + 110¢*°
+105¢8 + 95¢*7 + 87¢'¢ + 7645 + 66¢'* + 55¢*°
+47¢'? + 37¢" + 3040 + 23¢° + 18¢% + 1347
41065 +7¢° +5¢* +3¢% +2¢% + 1¢* +1¢°
X& g = 4332
pes(q) = 1¢" + 1g™ + 3¢™ + 64" + 11¢"" + 18¢"° + 30¢> + 43¢ + 62¢°"
+83¢%6 + 107¢%° + 131¢>* + 157¢%3 + 179¢%2 + 200¢>*
+217¢%° + 229¢%° + 237¢%® 4 241¢%7 + 240¢°° + 235¢*°
+ 227¢%* + 215¢%% + 201¢%% + 185¢*! + 168¢%° + 150¢*°
+133¢"® + 115¢'7 + 9946 + 844¢"5 + 70¢** 4 57¢*3
+47¢"% +37¢"" +30¢"° + 23¢° + 18¢° + 13¢"
+ 10q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + lq0
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ExampLE C.31. For N € [5], n = 3 and k = 2 the Euler characteristics and
Poincaré polynomials of the approximations Gr’fv (g[n) are given by

X]f,s =14
ph5(q) = 2¢° + 2¢° + 3¢* + 3¢® + 2¢* + 1¢* + 1¢°
X53=T1

5 3(q) = 3¢"2 + 4¢™ +8¢"° +9¢° + 11¢° + 94"
+9¢° + 6¢° + 5¢* + 3¢° + 2¢*> + 1¢* + 1¢°
x5 5 = 226
Ph () = 44" + 6¢"7 + 13¢" + 17¢"° + 22¢™* + 23¢"°
+26¢"% + 23¢" + 21¢"% + 18¢° + 15¢° + 11¢”
+9¢° + 6¢° + 5¢* + 3¢° + 2¢* + 1¢* + 14°
Xis = 555
Pl 3(0) = 56 + 8% + 18¢% + 25¢°" + 35¢%° + 39"
+47¢" 4+ 47¢'7 + 50416 + 46¢*° + 43¢** + 37¢"3
+34¢"% + 27¢"" + 23¢"° + 18¢° + 15¢° + 114"
+9¢° + 6¢° + 5¢* + 3¢> + 2¢% + 1¢* + 1¢°
X553 = 1156
pE 5(q) = 64°° + 10¢* + 23¢°° + 33¢*7 + 48¢°° + 57¢*°
+ 70¢** + 75¢%% + 83¢*2 + 844" + 86¢%° + 804¢"°
+ 76¢™® 4 68¢'7 + 62¢'° + 544¢"° + 47¢"* + 39¢"3
+34¢" + 27¢"" 4 23¢"° + 18¢° + 15¢° + 114"
+9¢° + 6¢° + 5¢* + 3¢% + 2¢* + 1¢* + 1¢°
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ExampLE C.32. For N € [5], n = 3 and k = 1 the Euler characteristics and
Poincaré polynomials of the approximations Gr’fv (g[n) are given by

le,s =10

pYs(q) = 1¢° +2¢" + 3¢° + 2¢* + 1¢" + 1¢°
Xé,s =37

P55(q) = 14" +2¢° + 5¢° + 6¢" + T¢® + 5¢° + 4¢* + 3¢ + 2¢° + 1¢" + 1¢°
X§,3 =92

pl?ig(q) — 1q15 + 2q14 + 5q13 —|—8q12 + 11q11 + 12q10 + 12q9 + 10q8 +8q7
+7¢% +5¢° + 4¢* + 3% + 2¢2 + 1¢* + 1¢°
X5s =185
Phs(a) = 1¢°° +2¢"° + 5¢'% + 8¢'7 + 13¢'® + 16¢"° + 19¢"* + 19¢**
+19¢'2 + 16¢** + 14¢*° + 12¢° + 10¢® + 8¢”
+7¢% +5¢° + 4¢* + 3% + 2¢2 + 1¢* + 1¢°
X5 =326
Pt 5(q) = 1% + 2¢** + 5¢°° + 8¢ + 13¢°" + 18¢*° + 23¢"?
+ 26(]18 4 28q17 4 28(]16 4 27q15 4 24q14 4 21q13
+19¢*2 + 16¢™ + 14¢'° + 12¢° + 10¢® + 847
+7¢° + 5¢° + 4¢" + 3¢ + 2¢> + 1¢" + 1¢°

ExAMPLE C.33. For N € [5] and n = 3 the Euler characteristics and Poincaré
polynomials of the approximations Gry (g[n) are given by

X13="17

p1,3(q) = 1¢* +2¢° + 2¢° + 1¢" + 1¢°
X2,3 =19

p2.3(q) = 1¢® +2¢" +4¢° 4+ 3¢° + 3¢* + 2¢° + 2¢* + 1¢* + 1¢°
X3,3 = 37

p33(q) = 1¢"% +2¢" +4¢"° + 5¢° + 5¢° + 44"
+4¢° + 3¢° + 3¢* + 2¢° + 2¢*> + 1¢* + 1¢°
X4,3 = 61
p473(q) — 1q16 _|_2q15 _|_4q14 +5q13 _|_7q12 +6q11 +6q10 _|_5q9 _|_5q8 +4q7
+ 4q6 + 3q5 + 3q4 + 2q3 + 2q2 + 1q1 + 1q0
Xs5,3 = 91
p573(q) — 1q20 +2q19 +4q18 +5q17+7q16 +8(]15 +8q14 +7q13
+7¢*% + 61 + 6¢'° + 5¢° + 5¢° + 447
+4¢° + 3¢° + 3¢* + 2¢° + 2¢*> + 1¢* + 1¢°
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C.2.4. Poincaré Polynomials for n=4.

ExaMPLE C.34. For N € [5] and n = 4 the Euler characteristics and Poincaré
polynomials of the approximations Grf; (g[n) are given by

X(11,4 =70
ptle(q) — 1q16 + 1q15 =+ 2q14 + 3(]13 4 5q12 4 5q11 + 7(]10 4 7q9 4 8(]8 + 7(]7
+7¢° + 5¢° + 5¢* + 3¢* + 2¢* + 1¢* + 1¢°
X34 = 1107
p5.4(0) = 1% + 1¢°" + 3¢* +5¢* +10¢* + 14¢*7 + 22¢°° + 29¢*°
+40¢%* 4 483 + 59¢% + 66¢*" + 75¢%° + 78¢"°
+ 82¢'® 4+ 80¢'7" + 79¢'6 + 72¢*° + 67¢** + 5843
+51¢*% + 41¢" + 34¢'° + 26¢° + 21¢% + 15¢7
+11¢5 +7¢° + 5¢* +3¢® +2¢° + 1¢* + 1¢°
X§4 = 8092
p34(q) = 1¢* + 1¢" 4 3¢" + 6¢*° + 12¢™ + 19¢*
+ 33¢*% + 48¢™ + 72¢*° + 98¢ + 132¢°% + 16747
+ 211¢%% + 249¢° + 294¢3* + 332¢%3 4 371¢% + 39843
+ 426¢%° + 438¢%° + 449¢%® + 446¢%7 + 43945 + 420¢*°
+ 402¢%* + 371¢%3 + 343¢*% + 308¢*! + 2764%° + 240¢"°
+210¢® + 177¢'7 4 150¢*¢ + 123¢° + 101¢** + 80¢"3
+ 65¢"% + 49¢™ + 38¢'° + 28¢° + 21¢® + 15¢"
+11¢5 +7¢° +5¢* + 3¢ + 2¢° + 1¢* + 1¢°
X4 = 38165
pia(q) = 1¢°* + 1¢% + 3¢°% + 6¢°'
+13¢% + 21¢% + 38¢°® + 59¢°7 + 93¢°¢ + 134¢%°
+192¢°* + 258¢°% + 346¢°% + 439¢°! + 551¢°° + 667¢"°
+ 798¢* + 923¢*7 + 1059¢* + 1181¢* + 1304¢** + 1408¢*
+1507¢*? 4+ 1578¢*" + 1642¢*° 4+ 1674¢% + 1695¢>° + 168847
+1670¢%° 4 1623¢%° + 1571¢%* + 1496¢>3 + 1418432 + 1324¢3*
+1231¢%° 4+ 1126¢%° + 1029¢% + 925¢°7 + 829¢°° + 732¢*°
+ 645¢%* + 558¢%% + 484¢%% + 412¢*" + 350¢%° + 292¢"°
+ 2444¢" + 199¢'7 + 164¢'® + 131¢" + 105¢'* + 82¢'3
+65¢'2 4+ 49¢™ + 38¢10 + 28¢° + 21¢® + 15¢7
+11¢5 +7¢° + 5¢* +3¢® +2¢° + 1¢* + 1¢°
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X&, = 135954

Pe4(0) =1¢*" +1¢" +3¢™ + 6¢"7 + 13¢"° + 22¢™ + 40¢™ + 644"
+104¢™ + 155¢™ + 2309 + 322¢5° + 4474¢%® + 592457
+ 775¢% + 980¢% + 1223¢%* + 1482¢% + 1776¢%% + 2077¢%!
+ 2404¢50 + 2724¢°%° + 3058¢°% + 3372¢°7 + 3687¢°® + 3968¢°°
+4237¢°* + 4461¢° + 4664¢°% + 4813¢°! + 4936¢°° + 5001¢*°
+ 5038¢® + 5018¢*" + 4972¢*6 + 4875¢* + 4757¢** + 4595¢*3
+ 4419¢* 4 4209¢* 4 3994¢*° 4 3753¢% + 3515¢%° + 326147
+3016¢% 4 2763¢%° 4 2524¢%* 4 22844 4 2062¢%? 4 1843¢>!
4 1644¢°° + 1451¢%° + 1279¢%® + 1115¢*7 4 971¢%° + 836¢°°
+ 719¢%* + 610¢%® + 518¢%2 + 434¢*" + 364¢*° + 300¢*°
4 248" + 201¢"'7 + 164¢*® 4 131¢" + 105¢™* + 82¢'3
+ 65¢'2 + 49¢' + 38410 + 28¢° + 21¢® + 15¢”
+11¢5 + 7¢° + 5¢* +3¢% +2¢* + 1¢* +1¢°
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ExampLE C.35. For N € [5], n = 4 and k = 3 the Euler characteristics and
Poincaré polynomials of the approximations Gr’fv (g[n) are given by

X]f,4 =50
PYa(a) =2¢" +2¢" + 4" + 5¢° + ¢ + 64"
+7¢5 + 5¢° + 5¢* + 3¢> + 2¢% + 1¢* + 1¢°
X54 =573
P54(q) = 3¢°* + 4¢°® + 10¢°* + 15¢°" + 25¢°° + 31¢"°
+ 41q18 + 45q17 + 52q16 + 51q15 + 51q14 + 46q13
+ 444" + 364" + 31¢'° + 24¢° + 204° + 1447
+11¢° + 7¢° + 5¢* + 3¢ + 2¢* + 1¢* + 14°
X5.4 = 3256
pl§74(q) _ 4q36 + 6q35 + 16q34 + 27q33 + 47q32 + 66q31
+97¢%° 4+ 120¢%° + 152¢8 + 174¢*7 + 198¢5 + 209¢%°
+222¢%* + 218¢% + 218¢%% + 206¢** + 195¢*° + 175¢*°
+ 161" + 139¢'7 + 122¢*¢ + 102¢'° + 86¢** + 69¢**
+ 58¢'2 + 44¢™ + 35¢1° + 26¢° + 20¢° + 144"
+11¢5 +7¢° +5¢* +3¢% +2¢* + 1¢* +1¢°
X5 4 = 12529
s 4(q) = 5¢* + 8¢"" + 22¢"° + 39¢* + 71¢** + 105¢**
+161¢*2 + 214¢™ + 287¢*° + 352¢3° + 428¢® + 4894°7
+ 558436 + 601¢%° + 645¢3* + 665¢>> + 683¢% 4 676¢°"
+ 67040 + 641¢%° + 617¢%® + 576¢°7 + 538¢%° + 489¢%°
+ 448" + 39643 + 353¢%% + 307¢*" + 2684¢%° + 227¢*°
+195¢8 + 161¢'7 + 136¢*¢ + 110¢*° + 90¢** + 71¢*3
+ 58¢™% + 44¢™ + 35¢"° + 264° 4 20¢° + 144"
+11¢5 +7¢° + 5¢* + 3¢ + 2¢° + 1¢* + 1¢°
Xk 4 = 37654
PE 4(q) = 6¢°° + 10¢°° + 28¢°® + 51¢°7 + 95¢°° + 146¢°°
+ 229¢5%% 4 316¢°% + 438¢°% + 560¢°! + 710¢°° + 850¢*°
+1011¢* + 1147¢* + 1294¢*° 4 1408¢*® + 1520¢** + 1593¢*3
+1663¢* 4+ 1689¢*" + 1711¢%° + 1694¢>° + 16744 + 162147
+ 157035 + 1490¢%° + 1416¢3* + 1322¢3% + 1233¢3% + 11304
4 1040¢%° 4 937¢%° + 847¢%% + 753¢%7 + 671¢*° + 588¢%°
+518¢%* + 446¢% + 387¢*% + 329¢% + 282¢%° + 235¢1°
+199¢'® +163¢'7 + 136¢*¢ + 110¢*® + 90¢'* + 71¢*?
+ 58¢"% + 44q¢™ + 35¢'° + 26¢° + 20¢° + 144"
+11¢° + 7¢° + 5¢* + 3¢ + 2¢* + 1¢* + 14°
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ExaMpPLE C.36. For N € [5], n = 4 and k = 2 the Euler characteristics and
Poincaré polynomials of the approximations Gr’fv (g[n) are given by

X’f,4 =36
pFa(q) = 14" +2¢° + 5¢° + 5¢7
+6¢° + 5¢° + 5¢* + 3¢> + 2¢% + 1¢* + 1¢°
X5.4 = 301
P54(0) = 1¢°° +2¢" + 7¢"® + 13¢"7 + 22¢"° + 26¢"° + 31¢"* + 31¢"°
+32¢'2 4+ 29¢™ + 26¢° + 21¢° + 18¢® + 13¢"
41065 + 7¢° + 5¢* +3¢3 +2¢® + 1¢* +1¢°
x54 = 1336
p54(q) = 1¢°° + 2¢% + 7¢°® + 15¢*7 + 30¢°° + 47¢*°
+69¢%* + 82¢%3 4 95¢%2 + 101¢%" + 106¢%° + 104¢*°
+102¢"8 + 94¢*7 + 87¢'¢ + 7645 + 66¢'* + 55¢*°
+47¢*% + 37¢" + 3040 + 23¢° + 18¢% + 1347
41065 + 7¢° + 5¢* +3¢% +2¢% + 1¢* +1¢°
x5 4 = 4209
Pha(q) = 14" +2¢* + 7¢°® + 15¢%7
+32¢%¢ + 55¢%° 4+ 90¢%* + 127¢%® + 169¢>2 + 19943!
4 227¢%° + 244¢%° + 259¢%® 4 263¢*7 + 265¢°° + 258¢%°
+ 250¢** + 23443 + 218¢** + 197¢* + 178¢*° + 156¢*°
+ 137¢*® 4+ 117¢'7 4 101¢'¢ + 84¢"° + 70¢'* + 57¢*®
+47¢" + 37¢" 4 30¢"° + 23¢° + 18¢° + 1347
+10¢° + 7¢° + 5¢* +3¢% +2¢* + 1¢* +1¢°
XE 4 = 10700
p§’4(q) _ 1q50 4 2(]49 + 7q48 + 15(]47 + 32(]46 4 57(]45 + 98q44 4 148(]43
+214¢" 4 282¢*" + 354¢"" + 410¢™ + 462¢°° + 498¢”7
+530¢%° + 547¢% + 559¢** + 558¢™ + 554¢™ 4 537¢"!
+518¢°" 4 490¢* + 461¢°® + 425¢>" + 391¢°° + 353¢*°
+319¢%* + 283¢% + 251¢%2 + 219¢** + 192¢*° + 164¢*°
+141¢" 4 119¢" + 101¢'® + 84¢"° + 70¢"* + 57¢"°
+47¢"% +37¢" +30¢" + 23¢° + 18¢° + 13¢”
41065 + 7¢° + 5¢* +3¢% +2¢% + 1¢* +1¢°
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ExampLE C.37. For N € [5], n = 4 and k = 1 the Euler characteristics and
Poincaré polynomials of the approximations Gr’fv (g[n) are given by

X’f,4 =26
ph 4(q) = 2¢° + 3¢" + 5¢° + 4¢° + 5¢* + 3¢° + 2¢° + 1¢" + 1¢°
X54 =159

P5.4(2) = 30" + 64" +12¢"* + 14"
+18¢"% +18¢" +19¢"° +16¢° + 15¢° + 11¢"
+9¢° +6¢° + 5¢* +3¢° + 2¢°> + 1¢" + 1¢°
X54 = 552
P5.4(a) = 46" + 9% + 19¢* + 26> + 35¢*° + 39¢"
+46¢"® + 46¢'7 + 48¢"0 4 45¢" + 43¢"* + 37¢"*
+34¢" + 27¢" + 23¢"% + 18¢° + 15¢° + 114"
+9¢° + 6¢° + 5¢* + 3¢° + 2¢* + 1¢* + 1¢°
X5 4 = 1425
P 4(g) = 567 +12¢%" + 26¢° + 38¢%° + 54¢% + 64> + T7¢%° + 84¢%°
+93¢%* + 94¢%3 4 98¢%2 + 94¢°' + 92¢%° + 85¢*°
+80q'® 4 70¢'7 + 64¢'¢ + 54¢*° + 47¢'* 4 39¢"3
+ 34¢" + 27¢"" + 23¢"° + 18¢° + 15¢° + 1147
+9¢° + 6¢° + 5¢* + 3¢® + 2¢* + 1¢* + 1¢°
X5 4 = 3066
Pk 4(q) = 6¢" + 15¢* + 33¢°® + 5047
+ 73¢%0 4 91¢° + 112¢%* + 126¢°% + 144¢%? + 153¢>!
+165¢° + 168¢%° 4 173¢%® + 169¢%" + 168¢%° + 159¢*°
+153¢%* + 141¢%3 + 132¢*% + 118¢*! + 108¢%° + 944¢"°
+ 84" + 72¢'7 + 64¢'0 + 54¢" + 47¢"* + 39¢"*
+34¢"% +27¢" 4+ 23¢"° +18¢° + 15¢° + 11¢”
+9¢° +6¢° + 5¢* + 3¢° + 2¢°> + 1¢" + 1¢°
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ExaMmpPLE C.38. For N € [5] and n = 4 the Euler characteristics and Poincaré
polynomials of the approximations Gry (g[n) are given by

X1,4 =19
p1.4(q) = 1¢® +1¢" + 3¢° + 3¢° + 4¢* + 3¢ + 2¢* + 1¢* + 1¢°
X2,4 = 85

Pp2.4(q) = 1¢"° + 1¢"° + 3¢" + 4¢" + 7¢"* + 8¢"" + 10" + 10¢° + 10¢° + 8¢"
+7¢% +5¢° + 49" + 3¢3 + 2¢* + 1¢* +1¢°
X34 = 231
p3.a(q) = 1% +1¢%° + 3¢% + 4¢** + 7¢*° + 9¢*°
+13¢" + 15¢'7 + 18¢"° + 19¢"® + 20¢™* + 19¢"*
+19¢"% +16¢"" + 14¢" + 12¢° + 10¢° + 84"
+7q6 +5q5 _|_4q4 +3q3 +2q2 + 1q1 + 1(]0
X4,4 = 439
Paa(q) = 1¢% + 1¢*" + 3¢°° + 4¢*° + 7¢** + 9¢*" + 13¢°° + 16¢™°
+21¢%* + 24¢% + 28¢% + 304" + 32¢*° 4 32¢"°
+33¢"% + 31¢"7 + 30¢"° + 27¢"° + 244" + 21¢"
+19¢"% + 16¢"" + 14¢"° + 12¢° + 10¢° + 84"
+7¢° + 5¢° + 4¢* + 3¢* + 2¢*> + 1¢* + 1¢°
Xs5,4 = 891
ps.a(q) = 1¢" + 1¢% + 3¢® + 4¢%
+ 7(]36 + 9q35 4 13(]34 + 16q33 4 21q32 + 25(]31
+31¢°° + 35¢°% + 40¢°® + 43¢°7 + 46¢°° + 47¢*°
+49¢* + 48¢73 4 48¢%% + 46¢°* + 44¢%° + 40¢*°
+37¢" +33¢"" + 30¢"° + 27¢"° + 24¢™ 4 21¢"°
+19¢"2 + 16¢"" + 14¢™° + 12¢° + 10¢® + 84"
+7¢° + 5¢° + 4¢* + 3¢° + 2¢*> + 1¢* + 1¢°
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C.2.5. Poincaré Polynomials for n=5.

ExaMPLE C.39. For N € [5] and n = 5 the Euler characteristics and Poincaré
polynomials of the approximations Grf; (g[n) are given by

Xis =252
p(f,s(Q) _ 1q25 + 1q24 + 2q23 + 3q22 + 5q21 + 7q20 + 9q19
+ 11q18 + 14q17 + 16q16 + 18q15 + 19ql4 + 20q13
+20¢" +19¢*" + 18¢"° + 16¢° + 14¢® + 1147
+9¢% + 7¢° + 5¢* + 3¢® + 2¢*> + 1¢* + 1¢°
X5 5 = 8953
P35(q) = 1¢°° + 1¢* + 3¢*® + 5¢*7 + 10¢*° + 16¢*° + 264™* + 37¢*
+56¢* + 75¢"*" + 103¢"0 + 131¢* + 168¢°® + 203¢”"
+247¢°° + 285¢% + 329¢°* + 365¢™ + 403¢*? + 429¢”!
+457¢% + 468¢% + 479¢°° + 475¢%" + 469¢°° + 4504
+431¢*! + 399¢% + 370¢* + 333¢°" + 299¢* + 260¢"°
+ 228¢8 +192¢'7 + 163¢*® + 133¢° + 109¢** + 8643
+69¢'% +52¢"" + 41¢"° + 30¢° + 22¢° + 15¢"
+11¢°% +7¢° +5¢* + 3¢ +2¢* + 1¢* +1¢°
X4 5 = 116304
P55(0) =1¢"° + 1¢™ + 3¢ + 6¢™ + 12¢"" + 214" + 37¢% + 58¢°® + 92¢°7
+137¢56 + 200¢%° + 279¢5* + 385¢°%% + 510¢% 4 667¢5*
+ 849¢%° + 1061¢°° + 1297¢°® + 1564¢°7 + 1845¢°° + 2149¢°°
+2460¢°* 4 2777¢%3 + 3088¢°% + 3394¢°! + 3675¢°° + 3935¢*°
+ 4162¢*® 4 4351¢*7 + 4498¢*® + 4604¢*® + 4659¢** + 4670¢**
+ 4637¢*% + 4557¢™ + 44404 + 4287¢% 4 4102¢°® + 3891437
+ 3663¢%¢ 4 3415¢%° 4 3161¢>* 4 2901¢> 4 2642¢>? 4 2385¢>!
+ 2141¢%° 4+ 1901¢% + 1679¢% + 1469¢>7 + 1277¢%¢ + 1099¢%*°
+942¢%* + 797¢%3 + 672¢%* + 560¢%* + 464¢%° + 379¢*°
+ 310¢"® + 248¢'7 + 199¢*® + 157¢"° + 123¢'* 4 94¢"3
+ 73¢"% + 54¢™ + 41¢"° + 30¢° + 22¢% + 1547
+11¢° 4+ 7¢° + 5¢* + 3¢® +2¢* + 1¢" + 1¢°
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X} 5 = 856945
Pk (@) = 1¢M%° 4+ 1¢%° + 3¢%® + 6¢°7 + 13¢%° + 23¢%° + 42¢°* + 69¢° + 115¢°% + 177¢™
4,5
+272¢%° + 3964 + 573¢%® + 795¢%7 + 1092¢%¢ + 14544°°
+1914¢5* + 24543 + 3113¢% + 3864¢5! + 4746¢%° + 5719¢°
+6825¢™ + 8012¢"" 4 9319¢™° + 10682¢™° + 12137¢™* + 13613¢">
+ 151469 + 16651¢7 + 18169¢° + 19613¢%° 4 21021¢°® + 22307457
+ 23517¢% + 245644¢%° + 25500¢%* + 26245¢5% 4 26854¢°2 + 2725745
q
+ 27518¢%° + 27566¢°° + 27475¢° 4 27187¢°7 + 26771¢°® + 261784
+ 25483¢°* + 2463843 + 23720¢°% + 22687¢°! 4 21609¢°° + 20451¢*°
+ 19282¢"® 4 18062¢"7 + 16858¢"% + 15637¢" + 14452¢™ + 13273¢*3
+ 12151¢%2 4 11052¢*! + 10022¢*° + 9029¢° + 8109¢>® + 7235437
+ 6439¢%¢ + 5689¢%° + 5014¢3* + 4388¢>2 + 38304 + 3317¢%!
+2868¢%° 4 2458¢2% + 2104¢>® + 1785¢%7 + 1511¢%% + 1267¢%°
+1062¢%* + 879¢% + 728¢%2 + 596¢>" + 488¢° + 393¢"°
+ 318¢'® + 252¢'7 + 201¢*% + 157¢%° + 123¢'* + 9443
+ 73¢"% + 54¢™ + 41¢'° + 30¢° + 22¢° + 15¢"
+11¢°% + 7¢° + 5¢* + 3¢ + 2¢* + 1¢* + 1¢°
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X5 5 = 4395456

p§,5(q) _ 1q125 + 1q124 + 3q123 + 6q122 + 13q121
+ 24q120 + 44q119 + 74q118 + 126q117 + 200q116 + 314(1115
+472¢M 4+ 70041 + 1003¢12 4 1417¢HT + 19494110 + 26414100
+ 3503¢"%® 4 458047 4 58804¢'°¢ + 7456¢'*° + 9301¢'** + 114674
+ 139464192 + 16776¢'°1 + 19936¢%° + 23458¢% + 27301¢%® + 31487¢°7
+ 35962¢% + 40725¢%° + 45713¢”* + 50919¢% 4 56254¢°2 + 61703¢°*
+ 67181¢%° + 72652¢%° + 78032¢%® + 83289¢%7 + 88331¢%¢ + 93133¢4%°
+ 97616¢%* + 101746¢%® 4 10546842 + 108762¢%" + 111571¢%° 4 113891¢"°
+115695¢"® + 116974¢"7 + 117724476 + 117953¢"° 4+ 117661¢™ + 116872¢"
+115607¢™% + 113881¢™* + 111739¢™° + 1092064¢%° + 106319¢°® + 103113¢57
+ 99640¢% + 95921¢5% + 92017¢%* + 87951¢5% + 83775¢%% 4 79514¢5*
+ 75222¢%° + 70905¢°° + 66625¢°° 4 62387¢°7 + 58232¢°° + 54166¢°°
+ 50232¢%* + 46419¢°% + 42769¢°2 4 39269¢°* + 35948¢°° + 32793¢*°
+ 29830¢%® + 27033¢"7 + 244324¢%° 4 22001¢*° + 19754¢** + 17670¢*3
+ 15764¢* + 14006¢* + 12412¢*° + 10954¢>° + 9640¢°8 + 844847
+ 738540 4 6423¢°° + 5574¢>* + 4814¢™ + 41464 + 3551¢°"
+3036¢°° + 2578¢%° + 2186¢%° + 1841¢%7 + 1547¢%*¢ + 1291¢*
+1076¢%* + 887¢% + 732¢% + 598¢%! + 488¢%° + 393¢*°
+ 318¢18 + 252¢'7 4 201¢*¢ + 157¢° + 123¢** + 9443
+ 73¢*% + 54gt + 41¢'° + 30¢° + 22¢% + 15¢7
+11¢5 +7¢° +5¢* +3¢3 +2¢° + 1¢* +1¢°
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ExampLE C.40. For N € [5], n = 5 and k = 4 the Euler characteristics and
Poincaré polynomials of the approximations Gr’fv (g[n) are given by

\hs = 182

Pi5(0) = 2¢%° +2¢" + 4¢"® + 6¢'7 + 9¢'° + 11¢"° + 14¢™* + 15¢"?
+17¢" +17¢" +17¢%° + 15¢° + 14¢° + 1147
+9¢% 4+ 7¢° 4+ 5¢* 4+ 3¢® + 2¢° + 1¢* + 1¢°

Xa.5 = 4707

pg,s(Q) = 3¢%0 + 4¢%° + 10438 + 17¢%
+31¢%0 + 45¢%° + 69¢3* + 91¢%3 + 12462 + 152¢%!
+ 188¢3Y 4 214¢%° + 247¢%8 + 265¢%7 + 286¢°° + 292¢%°
+ 298¢ + 289¢% + 283¢% + 263¢%1 + 246¢%° + 219¢*°
+197¢"® +169¢'7 + 148¢*¢ + 122¢*° + 102¢** + 81¢*3
+ 6642 4 50¢" + 40¢'° + 29¢° + 22¢° + 15¢7
+11¢° + 7¢° + 5¢* + 3¢ + 2¢* + 1¢* + 14°

X5.5 = 47660

P8 5(q) = 4¢°° + 6¢°° + 16¢°® + 30¢°™ + 57¢°° + 91¢°°
+ 150¢°* + 217¢°3 + 316¢°% + 428¢°* + 572¢°° + 723¢*°
+ 906¢*® + 1082¢*7 + 1280¢*® + 1463¢*® + 1650¢** + 180643
4 1960¢*% + 2069¢™ + 2167¢"° + 222043 4 2253¢°% + 224137
+ 2217¢%0 4 2149¢% 4 2072¢%* 4 19644 4 1850¢%2 4 1714¢>!
+ 1584¢%° 4 1438¢% + 1302¢%® + 1160¢>7 4+ 1030¢%¢ + 900¢2°
+ 787¢%* + 674¢% + 578¢%% + 487¢*" + 410¢*° + 338¢*°
4 280¢"® + 226¢'7 + 184¢'® 4 146" + 116¢™* + 89¢'3
+ 70¢'2 + 52¢1 + 4040 + 29¢° + 22¢% + 15¢”
+11¢5 + 7¢° + 5¢* +3¢% +2¢* + 1¢* +1¢°

k
2

s
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X5 = 287005

Pi5(q) =5¢* +8¢™ +22¢™ + 43¢"" + 85¢"® + 141¢™ + 241¢™ + 366¢™
+557¢™ + 789¢"™ + 1105¢™° + 1469¢%° + 1935¢5® + 2441457
+3045¢%¢ + 3679¢%° + 4392¢5* + 5102¢% + 5870¢%% + 6596¢°!
+ 7345¢%° + 8019¢°° + 8681¢°® + 9238¢°7 4 9761¢°° + 10152¢°°
+10491¢°* 4 10695¢°% + 10838¢°2 4 10844¢°* + 10797¢°° + 10622¢*°
+10403¢"® 4 10078¢*" + 9722¢"% 4 9282¢"*° + 8833¢** + 8318¢™
+ 7811¢*% + 7264¢™ + 6738¢* + 6189¢%° 4 5675¢% + 5152437
+4670¢%% 4 4191¢° + 3756¢>* + 3333¢3% + 2957¢%? + 2593¢3!
+2274¢3° +1972¢%° + 1711¢% + 1467¢%7 + 1259¢°° + 10664
+905¢%* + 756¢% + 634¢*% + 523¢* + 434¢°%° + 352¢"°
+ 288¢'8 + 23047 4 186¢1¢ + 14645 + 116¢** + 8943
+ 70¢'% + 52¢' + 40¢*° + 29¢° + 22¢% + 15¢7
+11¢5 +7¢° + 5¢* + 3¢ + 2¢° + 1¢* + 1¢°

Xk 5 = 1243476

pE 5(q) = 6¢"%° + 10¢°° + 28¢°° + 56¢°7
+ 113¢% + 193¢ + 336¢™ + 525¢% + 818¢"% + 1194¢°*
+1718¢% + 2357¢%° + 3195¢%% + 4169¢57 + 5369¢%¢ + 6721¢%°
+ 8300¢%* + 10009¢% + 11933¢52 + 13941¢%! 4+ 16116¢%° + 18315¢™
+20612¢™® + 22858¢"7 + 2513647 4 27281¢7° + 29382¢™ + 31289¢73
+33087¢" + 34631¢™ + 36027¢7° + 37128¢5° + 38049¢%® + 386664°7
+ 3908846 + 39208¢5° + 39147¢%* 4 38799¢5% + 38289¢% + 37533451
+ 36644¢%° + 35544¢°° + 34356¢°° 4 33002¢°7 + 31596¢°¢ + 30074¢°°
+ 28534¢°* 4 26920¢°% + 25329¢°2 4 23697¢% + 22113¢°° + 20523¢*°
+19000¢*® 4 17493¢*" + 16073¢*5 + 14686¢*° + 13390¢** + 12141¢*3
+10987¢* + 9886¢™ + 8883¢%° + 7932¢%° + 7072¢® + 6268437
+ 5548¢3¢ + 4878¢%° + 4285¢3* + 3738¢>% + 3259¢°2 + 2819¢3!
+2438¢%° 4+ 2090¢%° + 1793¢%® + 1523¢%7 + 1295¢%¢ + 1090¢*°
+919¢%* + 764¢% + 638¢%% + 525¢°" + 434¢°° + 352¢"°
+ 288¢'® + 230¢'7 4 186¢*¢ + 14645 + 116¢** + 8943
+70¢"2 4 52¢™ + 40¢'° + 29¢° + 22¢® + 15¢7
+11¢5 +7¢° + 5¢* +3¢> +2¢° + 1¢" + 1¢°



C.2. FOR APPROXIMATIONS OF PARTIAL-DEGENERATE AFFINE GRASSMANNIANS209

ExampLE C.41. For N € [5], n = 5 and k = 3 the Euler characteristics and
Poincaré polynomials of the approximations Gr’fv (g[n) are given by

xh 5 =132
p’f,{;(‘]) _ 1q17 + 2q16 —|—5q15 + 7q14 + 10q13

+12¢'2 4 14¢" + 15¢1° + 14¢° + 13¢° + 1147
+ 9q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1qO
495

P55(0) = 16> +2¢* + 7¢* + 15¢*

+30¢%° + 45¢%° + 70¢%® + 92¢%7 + 1184¢%° + 140¢*°
+161¢** + 171¢% + 182¢*% + 181¢** + 179¢° + 168¢*°
+157¢'8 + 139¢'7 4+ 125¢*¢ + 107¢'° + 91¢™* + 74¢*
+61¢'% + 47¢" + 38¢*° + 28¢° 4 21¢® + 15¢7

+11¢5 +7¢° +5¢* +3¢® + 2¢° + 1¢* + 1¢°

X5 5 = 19748
P55(q) = 16°" +2¢°° + 7¢*° + 17" + 38¢"" + 70¢"® + 124¢" + 189¢™* + 277¢"*

+ 376¢*% + 486¢*! + 598¢*° + 712¢%° + 812¢>8 + 904¢°7
+979¢%% 4 1032¢3% 4 1064¢>* + 1078¢3 + 1070¢%? + 1044¢>!
+1005¢%° 4 950¢%° + 889¢% + 821¢%7 + 749¢%¢ + 674¢*°
+602¢%* + 529¢%3 4 462¢*% + 398¢°% + 340¢%° + 286¢*°
+240¢"® + 197¢"7 + 162¢*® + 131¢*® + 105¢™* + 82¢"3
+65¢'2 4 49¢" + 38¢1° + 28¢° + 21¢% + 15¢7

+11¢° + 7¢° + 5¢* + 343 + 2> + 1¢* + 1¢°

X5 = 97401
Ph5(a) = 1% +2¢°7 + 7% + 17¢% + 40¢°* + 78¢% + 1494 + 250¢°"

+ 403450 4 59447 + 842¢°% + 1123¢°" + 1451¢°° + 1792¢°°

+ 2157¢%* + 25113 + 2868¢° + 3189¢°! + 3490¢°° + 3735¢%°
+ 3947¢* + 4092¢*" + 4197¢* + 4235¢"° 4 4238¢** + 4179¢*3
+ 4090¢*% + 3953¢™ + 3798¢*° + 3606¢>° + 3407¢3® + 3184437
+2963¢%¢ + 2728¢% + 2502¢%* + 2271¢%® + 2055¢>2 + 18404¢>!
+1643¢%° + 1451¢%° + 1279¢%® + 1115¢%7 4 971¢%° + 836¢°°
+ 719¢%* + 610¢% + 518¢%2 + 434¢ + 364¢%° + 300¢*°

+ 248¢"® + 201¢'7 + 164¢'° + 131¢" + 105¢'* + 82¢'3
+65¢'2 4 49¢" + 38¢10 + 28¢° + 21¢® + 15¢7

+11¢5 +7¢° + 5¢* +3¢® + 2¢° + 1¢* + 1¢°
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XE 5 = 357036

P 5(q) = 1¢* +2¢* + 7¢% + 17¢* + 40¢®" + 80¢* + 157¢™
+275¢™ + 464477 + 729¢7° + 1097¢" + 1556¢™* + 2134¢™
+2799¢™ + 3561¢7 + 439097 + 5278¢% 4 6187¢58 + 7122457
+ 8035¢%6 + 89204¢%° + 9749¢%* + 10512¢% + 11180¢°%% + 11756¢5*
+12218¢% 4 12567¢% + 12805¢°® + 12927¢°7 + 12940¢°° 4 12855¢°°
+ 12674¢°* 4 12404¢°3 + 12065¢°% + 11658¢°" + 11201¢°° 4 10699¢*°
+10167¢* + 9605¢*" 4 9034¢*6 + 8450¢*° + 7868¢** + 7289¢*3
+6724¢" + 6169¢"" + 5640¢"° + 5128¢%° + 4645¢> + 4187¢%7
+3761¢%¢ + 3359¢3° + 2992¢3* + 2650432 + 2340¢>? + 2055¢>!
+ 1800¢%° + 1565¢%° + 1359¢%® + 1171¢*7 + 1007¢% + 860¢>°
+ 733¢%* + 618¢% 4 522¢*2 + 4364 + 364¢%° + 300¢*°
+ 248¢"® + 201¢*7 + 164¢*® + 131¢*® + 105¢** + 82¢'3
+65¢'2 4 49¢" + 38¢1° + 28¢° + 21¢® + 15¢7
+11¢% 4+ 7¢° + 5¢* + 3¢ + 2¢* + 1¢* + 14°
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ExaMpPLE C.42. For N € [5], n = 5 and k = 2 the Euler characteristics and
Poincaré polynomials of the approximations Gr’fv (g[n) are given by

X]f,5 =96
PY5(q) = 2¢"" + 44" + 7¢" + 9¢"" + 12¢"° + 12¢° + 12¢° + 104"
+9¢5 +7¢° +5¢* +3¢° +2¢% + 1¢* + 1¢°
X535 = 1329
P5.5(0) = 3¢°° + 84”7 +20¢° + 32¢
+ 52¢%* 4 67¢% + 86¢*% + 96¢*! + 107¢*° + 107¢"°
+109¢'® + 101¢'7 4 9646 + 85¢'° + 76¢™* + 63¢**
+ 54¢*% + 42¢" + 35¢'° + 26¢° + 20¢° + 144"
+11¢% +7¢° + 5¢* + 3¢® + 2¢° + 1¢* + 1¢°
x5 5 = 8234
Ph 5(q) = 4" + 12¢*" + 33¢"° + 63¢>° + 108¢®® + 158¢°7
+222¢%6 + 280¢%° + 344¢3* + 394¢>3 + 441¢%? 4 469¢°"
+493¢3° + 495¢%° 4 495¢8 + 479¢%7 + 461¢%¢ + 431¢*°
+ 403¢* 4 365¢%% + 331¢%2 + 292¢%! + 258¢%° + 221¢"°
+ 191" + 159¢'7 + 134¢*® 4 110¢"° + 90¢** + 71¢*3
+ 58¢'2 + 44¢™ + 35¢10 + 26¢° + 20¢° + 144"
+11¢5 + 7¢° + 5¢* +3¢% +2¢% + 1¢* +1¢°
X5 5 = 33293
Pk 5(q) = 5¢° + 16¢°°
+ 46¢°* + 94¢°3 + 174¢°% 4 269¢° + 398¢°° + 534¢*°
+ 697¢*® 4 85047 4 1016¢* + 1156¢"*° + 1296¢** + 13984
+1493¢*2 + 1545¢*! + 1589¢*° + 1592¢>° + 1589438 + 1552¢°7
+ 1514¢%% 4 1447¢% 4 1382¢>* 4 12964 + 1215¢%? 4 1118¢>!
+1031¢%° + 932¢° + 845¢% + 752¢%7 + 67145 + 588¢%°
+ 518¢%* + 44643 + 387¢** 4 329¢* + 282¢*° + 235¢*°
+199¢8 + 163¢'7 4 136¢'° + 1104 + 90¢'* + 71¢*3
+ 58¢*2 + 44¢™ + 35¢'° + 26¢° + 20¢® + 1447
+11¢5 +7¢° + 5¢* + 3¢ + 2¢° + 1¢* + 1¢°
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Xk 5 = 103320

PE 5(q) = 6¢7° +20¢%° + 59¢°° + 125¢°7
+ 240¢5% + 392¢%° + 598¢54 + 836¢°% + 1126452 + 1432¢5*
+1777¢%0 + 2113¢%° + 2466¢° + 2786¢°7 + 3100¢°° + 3362¢>°
+ 3607¢%* 4 3787¢°3 + 3942¢°% + 4032¢°! + 4097¢°° + 4101¢*°
+4087¢*® + 4019¢*7 + 3940¢*® + 3818¢*° + 3688¢** + 3524¢*°
+ 3361¢*2 4 3170¢* + 298640 + 2783¢%° + 2590¢%° + 2386¢>"
+2197¢35 + 2001¢%° + 1823¢3* + 1644¢3% + 1482¢3% + 1322431
+1182¢3° + 1043¢%° + 923¢8 + 807¢*" + 707¢*° + 612¢°
+532¢%* + 454¢% + 391¢%2 + 33147 + 282¢%° + 235¢1°
+199¢"® + 163¢'7 + 136¢*® 4 110¢'° + 90¢** + 71¢*3
+58¢'2 + 44¢™ + 35¢'° + 26¢° + 20¢° + 1447
+11¢°% + 7¢° + 5¢* + 3¢ + 2¢* + 1¢* + 14°
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ExaMPLE C.43. For N € [5], n = 5 and k = 1 the Euler characteristics and
Poincaré polynomials of the approximations Gr’fv (g[n) are given by

X’f,5 =70
PYs(a) = 1¢" +2¢"% + 5¢"" + 7¢"° + 9¢° + 10¢° + 94"
+ 8¢5 +7¢° +5¢* +3¢° +2¢% + 1¢* + 1¢°
Vs =111
P 5(q) = 1¢°° + 2¢*° + T¢** + 13¢™ + 24¢* + 33¢>" + 45¢*° + 52¢"°
+ 59¢'® 4+ 60¢' 7" + 62¢'° + 58¢*° + 55¢'* 4 4943
+43¢" 4 35¢" + 30¢'° + 23¢° + 18¢% + 13¢”
+10¢° + 7¢° + 5¢* + 3¢ +2¢* + 1¢* +1¢°
X5 = 3452
p§75(q) _ 1q39 + 2q38 + 7q37 + 15q36 + 30q35 + 49q34 + 76q33 + 102q32 + 131q31
+157¢%° + 179¢%° 4 196¢°% + 209¢%7 + 215¢%¢ + 216¢°°
+ 214¢%* 4+ 206¢% + 195¢%2 + 182¢*! + 166¢*° + 149¢*°
+133¢'8 + 115¢'7 4 9946 + 84¢'° + 70¢™* + 57¢*3
+47¢'2 4+ 37¢" + 3040 + 23¢° + 18¢% + 13¢”
+10¢°% +7¢° + 5¢* + 3¢> + 2¢° + 1¢" + 1¢°
X5 5 = 11451
Pis(q) = 17 +2¢°" + 7¢°° + 15¢*
+32¢™ + 55¢*7 + 92¢* + 134¢*® + 189¢** + 243¢*
+ 304¢™ + 358¢*" + 413¢"° 4 4564 + 498¢°% + 525¢°7
+549¢°5 + 560¢%° 4 566¢>* + 560> + 553¢>2 + 533¢3!
4 512¢%° + 484¢*° + 455¢%% 4 420¢%7 + 388¢°° + 351¢%°
+318¢* + 283¢% 4 251¢%2 + 219¢%! + 192¢%° + 164¢"°
+141¢™ + 119¢'7 + 101¢*® + 844" + 70¢'* + 57¢*3
+47¢"2 4+ 37¢" + 30¢'° + 23¢° + 18¢% + 13¢”
+10¢° + 7¢° + 5¢* + 3¢ +2¢* + 1¢* +1¢°
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XE 5 = 30102

p’g’s(q) = 1¢5° 4+ 2¢°* + 7% + 15¢%% + 32¢%!
+ 57¢%° + 98¢ + 1504°® + 221¢°7 + 302¢°° + 398¢°°
+497¢%* + 603¢°3 + 705¢°% + 805¢°* + 8964°° + 980¢*°
+1051¢™ + 1111¢%7 4 1159¢% + 1193¢"° + 1214¢™ + 1224¢"3
+ 1221¢*% + 1207¢* + 1185¢* + 1151¢%° 4 1110¢°® + 106447
+1011¢5 4 953¢%° 4 895¢>* + 833¢%% + 77142 + 7094>!
+ 648430 + 5884 + 532¢% + 47647 + 425¢°° + 377¢*
+ 333¢%* 4 291¢%% + 255¢%2 + 221¢%! + 192¢%° + 164¢"°
+ 141¢"® +119¢'7 + 101¢*® + 84¢*° + 70¢'* + 57¢"3
+47¢'2 4+ 37¢" + 3040 + 23¢° + 18¢% + 13¢”
+10¢° + 7¢° + 5¢* + 3¢ +2¢* + 1¢* +1¢°
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ExaMPLE C.44. For N € [5] and n = 5 the Euler characteristics and Poincaré
polynomials of the approximations Gry (g[n) are given by

X1,5 =51
p1,5(q) — 1q12 Jr2(111 +ZquO + 5(]9 + 7(]8 + 7q7
+7¢5 + 6¢° + 5¢* + 3¢> + 2¢* + 1¢* + 14°
X2,5 = 381
p2,5(Q) — 1q24 _|_2q23 + 6q22 _|_9q21 4 15q20 + 19q19
+25¢"® + 27¢"7 + 32¢*% + 32¢"° + 33¢M + 31¢"3
+30¢"2 + 25¢" 4+ 23¢"° +18¢° + 15¢% + 1147
+9¢% + 6¢° + 5¢* + 3¢> + 2¢> + 1¢* + 1¢°
X35 = 1451
p3.s(q) = 1q36 + 2q35 + 6q34 + 11q33 + 19q32 +27q31
+39¢%° 4+ 47¢%° + 58¢*8 + 66¢*7 + 75¢%° + 80¢*°
+ 87q24 + 88q23 + 90q22 + 88q21 + 86q20 + 80q19
+ 764" 4+ 68¢'7 + 62¢16 + 54¢*° + 47¢* + 3943
+ 34¢% + 27¢" 4+ 23¢'° + 18¢° + 15¢% + 1147
+9¢5 + 6¢° 4+ 5¢* + 3¢> + 2¢% + 1¢* + 14°
Xa,5 = 3951
pas(q) = 1¢* + 2¢*" 4+ 6¢"° + 11¢* + 21¢™ + 31¢™3
+47¢*% + 61¢™ + 80¢*° + 94¢° + 113¢°® + 126¢°7
+143¢35 + 154435 4 168¢3* + 175¢3 + 185¢%? + 187¢%!
+191¢%° + 188¢° + 187¢%*® + 179¢%" + 17445 + 163¢*°
+ 155¢%* + 142¢3 + 132¢*% 4 118¢*" + 108¢%° + 944"°
+ 844 4+ 72¢'7 + 64¢16 + 54¢*° + 47¢* + 3943
+ 344" + 27¢" +23¢"° +18¢° + 15¢° + 1147
+9¢° 4+ 6¢° + 5¢* + 3¢® + 2¢* + 1¢* + 14°
X5,5 = 8801
ps.s(q) = 1q60 + 2q59 + 6q58 + 11q57 + 21q56 + 33q55
+51¢°* + 69¢°3 4 94¢°% + 116¢°" + 143¢°° + 166¢*°
+ 193¢ 4 214¢*7 + 240¢"® + 259¢*° + 281¢** + 297¢*
+ 315¢*2 + 325¢*! + 338¢%0 + 342¢3° + 347¢38 + 345¢°7
+ 344435 + 335¢%5 + 329¢3* + 31643 + 305¢>? + 289¢3!
+275¢%0 + 256¢%° + 241¢%® + 221¢%7 + 204¢*° + 185¢*°
+169¢* + 150¢%3 + 136¢%*% + 120 + 108¢%° + 94¢°
+ 84q18 + 72q17 +64q16 —|—54q15 +47q14 + 39q13
+ 34¢"% + 27¢" +23¢"° +18¢° + 15¢° + 1147
+9¢° + 6¢° + 5¢* + 3¢> + 2¢% + 1¢* + 14°
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C.2.6. Poincaré Polynomials for n=6.

ExaMPLE C.45. For N € [3] and n = 6 the Euler characteristics and Poincaré
polynomials of the approximations Grf; (g[n) are given by

Xi6 = 924

i 6(a) = 1¢°° + 1¢% +2¢* + 3¢*° + 5¢* + 7¢”!
+11¢%° 4+ 13¢% + 18¢%° + 22¢°7 4 28¢%° + 32¢*
+39¢°" +42¢% + 48¢7 + 51¢°! + 55¢*° + 55¢"°
+58¢"% +55¢'7 + 55¢'% + 51¢'° + 48¢" + 42¢"°
+39¢"% + 32¢" + 28¢" + 22¢° + 18¢° + 134"
+11¢° +7¢° + 5¢" + 3¢° + 2¢° + 1¢" + 1¢°

X546 = 73789

P56(0) =147 +1¢"" +3¢™ +5¢% + 10¢% + 16¢°7
+28¢°¢ + 41¢%° + 64¢°* + 91¢5% + 131¢5% + 178¢5*
+244¢% 4 316¢%° + 412¢°% + 518¢°7 4 648¢°° + 786¢°°
+951¢°* + 1118¢°3 4 1310¢°2 + 1499¢°* + 1704¢°° + 18984¢*°
+2104¢*8 + 2284¢% + 2467¢"° 4 2619¢"® + 2762¢** + 2865¢*3
+2957¢*% + 3001¢™ + 3031¢*° + 3015¢>° + 2982¢°% + 290747
+2822¢% + 2696¢°° + 2565¢%* + 240743 + 2248¢% + 2069¢>"
+1899¢%° 4 1715¢% + 1545¢% + 1371¢%7 + 1212¢%% + 1055¢%
+918¢%* + 783¢% 4 669¢*% + 561¢%1 + 470¢%° + 385¢"°
+ 317¢'% 4 254¢*7 + 205¢%¢ + 161¢%° + 127¢'* + 97413
+ 76¢'2 + 564" + 42¢° + 30¢° + 22¢® + 15¢”
+11¢° + 7¢° + 5¢* + 3¢ + 2¢* + 1¢* + 14°
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X4 6 = 1703636

pgﬁ(q) _ 1q108 + 1q107 + 3q106 + 6q105 + 12q104 + 21q103
+39¢'%% + 62¢1° +102¢1%° + 157¢ + 2404¢°® + 350¢°7
+509¢% + 710¢% 4 985¢™* + 1328¢%% + 1772¢% + 2310¢"*
+2986¢%° + 3778¢%° + 4740458 + 5845¢°7 + 7141¢%¢ + 8593¢5°
+10255¢% 4 12067¢% + 14087¢%% + 16243¢%" + 18581¢%° 4 21017¢™
+23601¢7® 4 26221¢"7 + 28932¢7% 4 31616¢7° + 34316¢"™* + 36912473
+39457¢" + 41814¢™ + 44050 + 46035¢%° 4 47832¢°® + 49323457
+50587¢% + 51502¢5° + 52165¢%* 4 52472¢5% + 52516¢°2 + 52211¢%*
+ 51665¢%° 4 50790¢%° + 49706¢°® + 48342¢°7 + 46808¢°° 4 45047¢°°
+ 43174¢°* 4 41127¢%3 + 39022¢°% + 36807¢°" + 34581¢°° 4 32300¢*°
+ 30060¢"® 4 27808¢*" + 25635¢*° + 23494¢*° + 21455¢** 4 19478¢*3
+17626¢*2 + 15851¢*" + 14211¢*° 4 12662¢° + 11247¢3% + 9926¢°7
+ 8737¢%¢ + 7636¢%° + 6657¢>* + 5763¢>® + 4976¢°2 + 4264¢>!
+3647¢%° + 3092¢%° + 2618¢%° + 2197¢%7 + 1840¢°° + 1526¢°
+1265¢%* + 1036¢%® + 849¢%% + 687¢*' + 556¢%° + 443¢"°
+355¢'8 + 278¢'7 4 219¢*¢ + 169¢'° + 131¢** + 9943
+ 76¢'2 4 564" + 42¢'° + 30¢° + 22¢® + 15¢”
+11¢5 +7¢° + 5¢* + 3¢ + 2¢° + 1¢* + 1¢°
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ExaMPLE C.46. For N € [3], n = 6 and k = 5 the Euler characteristics and
Poincaré polynomials of the approximations Gr’fv (é\[n) are given by
Vi =672
Pio(a) = 2¢°° +2¢% + 4¢°° + 6¢°7 + 10¢7° + 13¢°
+19¢%* +22¢%° + 29¢% + 33¢*" + 39¢*° + 414"
+47¢"® +46¢"" + 48¢'% + 46¢"° + 45¢"* + 404"
+38¢'% +31¢"" +28¢"° +22¢° 4 18¢° + 13¢"
+11¢% +7¢° + 5¢* +3¢> +2¢° + 1¢* + 1¢°
X5 = 39183
pl2c76(q) _ 3q60 + 4q59 + 10q58 + 17q57 + 33q56 + 51q55
+83¢% + 119¢° 4 176¢°2 + 238¢°" + 324¢°° 4 415¢"
+534¢*® + 651¢*7 + 793¢*® + 929¢*° + 1083¢** + 1219¢*®
+1367¢"% + 1486¢*! + 1609¢*° + 1694¢>° + 1774¢>® + 1813¢%7
+1847¢%¢ + 1835¢%° + 1817¢3* + 1761¢>% + 1700¢°2 + 1606¢>!
+1515¢%° 4 1398¢%° + 1290¢%® + 1165¢>7 + 1050¢%¢ + 927¢*°
+ 820¢%* + 707¢* + 612¢%% + 518¢°" + 440¢*° + 363¢"°
+302¢"® + 243¢'7 + 198¢'® + 156¢'° + 124¢'* + 95¢"3
+ 75¢"2 4 55¢1 + 42¢1° + 30¢° + 22¢° + 15¢7
+11¢5 +7¢° + 5¢* +3¢> + 2¢° + 1¢" + 1¢°
X5 = 706364
pgﬁ(q) = 4¢"° +6¢™ + 16¢*® + 30¢%" + 60¢%° + 101¢%
+175¢%* 4 270¢%3 + 423¢5% + 618¢5! 4 896¢%° + 1238¢™
+1699¢™® + 2238¢™" + 2923¢"% + 3703¢" + 4641¢™ + 56704
+6861¢"™ + 8116¢™" + 9514¢™ + 10943¢%° + 12469¢5% + 13973¢°%7
+ 15531¢% 4 16997¢% + 18459¢%* + 19778¢5% 4 21034¢%? + 220944°*
+23055¢%° + 23777¢%° + 24374¢%° 4 24722457 + 24927¢°° + 2488640
+ 24717¢°* 4 24312¢°3 + 23800¢°% + 23093¢°" + 22303¢°° 4 21355¢*°
+20365¢*® + 19254¢*7 + 18137¢*¢ 4 16947¢* + 15776¢** + 14569¢*3
+ 13414¢" 4 122464 + 11149¢*° + 10069¢>° + 9069¢>® + 8101¢"
+ 722235 + 6380¢%° + 5627¢%* + 4919¢3 4 4292¢%% + 371043
+3206¢° + 2739¢%° + 2340¢%® + 1978¢*7 4 1671¢® + 1395¢°
+1166¢%* + 960> + 793¢%2 4 645¢>* + 526¢%° + 421¢*°
+340¢*® + 267¢*7 + 212¢*° + 164¢*° + 128¢** + 97¢"3
+ 75¢"2 4 55¢1 + 42¢1° + 30¢° + 22¢° + 15¢7
+11¢% 4+ 7¢° + 5¢* + 3¢ + 2¢* + 1¢* + 14°
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ExaMpPLE C.47. For N € [3], n = 6 and k = 4 the Euler characteristics and
Poincaré polynomials of the approximations Gr’fv (g[n) are given by

Vg = 490

Py 6(a0) = 1¢°° +2¢%° + 5¢** + 7¢* +12¢* + 16¢>" + 22¢*° + 26¢"°
+33¢™ + 35¢'7 + 39¢'6 + 39¢'° + 40¢** 4 37¢"3
+ 3642 4 30¢" + 27¢'° + 22¢° + 18¢% + 13¢”
+11¢5 +7¢° + 5¢* +3¢> +2¢° + 1¢* + 1¢°

X5 = 20915

P5.6(q) = 167 +2¢°" + 7¢°° + 15¢*°
+32¢*8 + 53¢*7 +90¢% + 135¢*° + 199¢** 4 271¢*3
+363¢"% + 456¢*! + 566¢"° + 668¢>° + 776¢® + 869¢37
+960¢°¢ 4 1022¢% + 1078¢* 4 1106¢>3 + 1122¢%% 4 11094
+1088¢%° 4 1040¢2° + 990¢°® + 92147 + 851¢°5 + 770¢%°
+695¢%* + 611¢% 4 537¢*% + 462¢%1 + 397¢%° + 333¢"°
+ 280" + 228¢'7 + 187¢'® + 149¢"® + 119¢™* + 92¢'3
+ 73¢"% + 54¢™ + 41¢"° + 30¢° + 22¢° + 15¢7
+11¢% + 7¢° + 5¢* + 3¢ + 2¢* + 1¢* + 14°

X5 = 294966

p’?f,@'(@) _ 1q78 + 2q77 + 7q76 + 17q75 + 40q74 + 78q73
+ 148¢™ 4 248¢™" + 40647 + 619¢%% + 912¢°%® + 1277¢%7
+1747¢5¢ + 2289¢5° + 2935¢5* + 3646¢5% + 4439¢52 + 5262¢°*
+ 6138450 + 6993¢%° + 7856¢°° + 8657¢°7 + 9415¢°° + 10068¢°°
+10655¢°* + 11104¢°% + 11462¢°% 4 11678¢° + 11794¢°° + 11771¢*°
+ 11664¢" 4 11426¢%" + 11121¢*° + 10714¢" + 10257¢** + 9726¢**
+9177¢*2 + 8575¢*! + 7974¢*° + 7350¢%° + 6743¢> + 6133¢>"
+ 5558¢3¢ + 499043 + 4466¢3* + 3962¢>2 + 3502¢>% + 3067¢>!
+2681¢%° + 2319¢%° + 2002¢%® + 1711¢%7 + 1459¢%¢ + 1231¢%°
+1038¢%* + 863¢%% + 718¢% 4 590¢>" + 484¢%° + 391¢"°
+ 318¢"® + 252¢'7 + 201¢*® + 157¢*® + 123¢™* + 94¢"3
+ 73¢"% + 54¢™ + 41¢"° + 30¢° + 22¢° + 15¢"
+11¢5 +7¢° + 5¢* + 3¢ + 2¢° + 1¢* + 1¢°
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ExAMPLE C.48. For N € [4], n = 6 and k = 3 the Euler characteristics and
Poincaré polynomials of the approximations Gr’f\, (g[n) are given by

X’f,ﬁ = 358
PY6(q) = 2¢°% + 4¢°" +8¢%° + 11¢"°
+19¢'® + 22¢'7 + 28¢'¢ + 30¢*° + 33¢'* 4 32¢"3
+ 33¢% + 28¢M + 2640 + 21¢° + 18¢% + 134"
+ 1165 + 7¢° +5¢* +3¢° +2¢* + 1¢* +1¢°
X5 = 11205
p5.6(q) = 3¢™ + 8¢™ + 22¢" + 40¢*" + 76¢*° + 119¢* + 180¢® + 243¢°"
+324¢%0 4 393¢%° + 471¢%* + 531¢% 4 59142 + 627¢3"
+661¢%° + 666427 + 669¢° 4 648¢>7 + 625¢°° + 583¢*°
+545¢%% + 491¢% + 44442 + 389¢% + 342¢%° + 291¢"°
+ 25048 + 20647 + 172¢'¢ + 138¢"° + 112¢'* 4 87¢"3
+ 70¢"% + 52¢" + 404" + 29¢° + 22¢° + 15¢7
+11¢° + 7¢° + 5¢* + 3¢ + 2¢* + 1¢* + 14°
X5 = 123766
P56(q) = 4¢°° + 12¢%° + 36¢°* + 77¢% + 155¢°% + 268¢°
+ 446450 + 668¢°° + 971¢°% + 1317¢°7 + 1734¢°° + 2168¢°°
+ 2652¢°* + 3111¢°% + 3587¢°2 4+ 4009¢°* + 4417¢°° + 4746¢*°
+ 5045¢* 4 5246¢*7 4 5408¢*® + 5473¢* + 5496¢** + 5428¢*3
+ 5330¢*% + 5153¢* + 4959¢*° + 4705¢% 4 4445¢38 + 4144437
+ 3853¢%¢ 4 3534¢% 4 3235¢>* 4 292443 + 263842 + 2349¢>!
+2091¢%° 4 1835¢%° 4+ 1611¢% + 1394¢*” + 1207¢%¢ + 1030¢%°
+ 881¢%* + 74093 + 624¢** + 517¢*" + 430¢° + 3504"°
+ 288¢18 + 23047 + 186¢*¢ + 146¢° + 1164 4 89¢*3
+ 70 + 52¢" + 404" + 29¢° 4 22¢® + 1547
+11¢°% +7¢° +5¢* +3¢° +2¢* + 1¢* +1¢°
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X5 ¢ = 783319

Pi6(q) = 5¢*® + 16¢®™ + 50¢*° + 114¢*°
+ 2445 + 445¢% + T74¢5% + 1231¢5" + 1880¢%° + 2698¢™
+ 3754q"® + 4982¢7" + 64499 + 8051¢"° + 9837¢™ + 11677¢"
+13625¢7 4 15523¢™* + 174409 4 19226¢%° + 20950458 + 224724°%7
+23879¢% + 25031¢5° + 26031¢°* 4 26754¢5% + 27305¢% + 27577451
+27687¢%° + 27531¢°° + 27235¢° 4 26710¢°7 + 26074¢°® + 25249¢°°
+ 24354¢°% 4 23311¢°3 + 22235¢°% + 21057¢°" + 19878¢°° 4 18637¢*°
+ 17427¢"® 4 16183¢"7 4 14993¢%® + 13799¢"° + 12672¢** + 11559¢*3
+10525¢% 4+ 9517¢™ + 8593¢%° + 7705¢% + 6899¢% + 6133437
+ 5448¢% + 4801¢3° 4 4229¢3* + 369643 + 3229¢%2 + 2797¢3!
+2424¢3° + 2080¢%° + 1787¢% + 1519¢%7 4 1293¢° + 1088¢°°
+919¢%* + 764¢% 4 638¢*% + 525¢%1 + 434¢%° + 352¢*°
+ 288¢'® 4 230¢'7 + 186¢'® + 146¢'° + 1164¢'* + 89¢'3
+ 70¢"% + 52¢™ + 404" + 29¢° + 22¢° + 15¢7
+11¢5 +7¢° + 5¢* +3¢> +2¢° + 1¢* + 1¢°
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ExaMpPLE C.49. For N € [4], n = 6 and k = 2 the Euler characteristics and
Poincaré polynomials of the approximations Gr’fv (g[n) are given by

v = 262

p’fﬁ(q) =1¢% +2¢" + 7¢*® + 10¢"" + 164"® + 20¢"° + 24¢'* + 25¢*°
+28¢'2 4 25¢M + 24¢1° + 20¢° + 17¢% + 13¢”
+ 1165 +7¢° +5¢* +3¢° +2¢* + 1¢* +1¢°

X5 6 = 6021

p56(q) = 14" + 2¢*° + 9¢* + 20"
+45¢3% + 74¢%° + 117¢%* + 161¢% + 212¢3% + 256¢°!
+303¢%° + 336¢%° + 367¢%® + 382¢%7 + 391¢*° + 385¢*°
+377¢%* + 354¢% + 332¢%% + 30147 + 272¢%° + 238¢1°
+209¢"® + 177¢'7 + 150¢'¢ + 123¢"° + 101¢** 4 80¢"3
+65¢'2 4 49¢" + 38¢1° + 28¢° + 21¢® + 15¢7
+11¢° + 7¢° + 5¢* + 3¢ + 2¢* + 1¢* + 14°

X5 = 52132

p§76(q) _ 1q60 + 2q59 + 9q58 + 22q57 + 55q56 + 1O8q55
+202¢°* 4 322¢°% 4 487¢% 4 674¢°" + 891¢°° + 1113¢*
+ 1352¢*® + 1573¢*" + 17944 + 1984¢™ + 2156¢** + 2285¢*3
+ 2392¢"% + 2448¢™ + 2481¢™° + 2469¢% 4 2434¢°® + 2361437
+ 22765 4 2159¢°° + 2038¢>* + 18984 + 1758¢? 4 1607¢>!
+1465¢%° 4 1316¢%° + 1179¢% + 1043¢*™ + 919¢°° + 799¢%°
+ 695¢%* + 594¢% + 508¢%% + 428¢*! + 360¢*° + 298¢*°
+ 248" + 201¢"'7 + 164¢*® 4 131¢" + 105¢™* + 82¢'3
+ 65¢% + 49¢M* + 38¢'° + 28¢° + 21¢% + 1547
+11¢5 +7¢° +5¢* +3¢% +2¢* + 1¢* +1¢°
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Xie = 270729

Pie(q) = 1¢*° +2¢™ + 9¢™ +22¢"7 + 57¢"® + 118¢™ + 236¢™* + 414¢™
+691¢™ +1047¢™ + 1514¢° + 2057¢5%° + 2690¢5® + 3370457
+4112¢5¢ + 4859¢5° + 5631¢5* + 6372¢% + 7096¢°% + 7755¢5!
+ 8370450 + 8887¢%° + 9340¢°° + 9684¢°7 + 9950¢°° + 10104¢°°
+10185¢°* + 10156¢°% + 10064¢°% + 9879¢°! + 9641¢°° + 9330¢*°
+ 8986¢*® + 8583¢*7 + 8165¢*® + 7710¢*° + 7251¢** + 6771¢**
+6302¢*% + 5822¢™ + 5363¢*° + 4906¢>° 4 4473¢® + 4051437
+ 366045 + 3281¢%° + 2936¢%* + 2608¢3% + 2311432 + 2033¢>*
+1786¢°° + 1555¢%° + 1353¢%% + 1167¢*7 4+ 1005¢%¢ + 858¢2°
+733¢%* + 618¢%% + 522¢%% + 436¢°" + 364¢° + 300¢"°
+248¢" 4 201¢'7 + 164¢'° + 131¢" 4 105¢'* + 82¢*3
+65¢1% + 49¢M + 38¢1° + 28¢° + 21¢° + 15¢7
+11¢% +7¢° + 5¢* +3¢> + 2¢° + 1¢" + 1¢°
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ExampLE C.50. For N € [4], n = 6 and k = 1 the Euler characteristics and
Poincaré polynomials of the approximations Gr’fv (g[n) are given by

¥ = 192

plf’e(q) _ 2q18 + 3q17 + 7q16 + 1Oq15 + 15q14 + 17q13
+21¢"2 4 20¢" + 21¢1° + 18¢° + 16¢° + 12¢7
+11¢5 +7¢° + 5¢* +3¢> +2¢° + 1¢" + 1¢°

X5 = 3243

pg’g(q) _ 3q36 + 6q35 + 16q34 + 28q33 + 48q32 + 69q31
+98¢%° 4 122¢%° + 153¢%8 + 174¢%" + 196¢°° + 207¢%°
+ 219¢%* + 216¢23 + 215¢%% + 203¢%* + 193¢%° + 174¢"°
+159¢"8 + 138¢"7 + 122¢'% + 102¢"° + 86¢'* + 69¢*>
+58¢1% + 44 + 35¢*° + 26¢° + 20¢° + 1447
+11¢5 +7¢° + 5¢* + 3¢ + 2¢° + 1¢* + 1¢°

X5 ¢ = 22024

P56(q) = 4¢°* + 9¢° + 25¢°% + 48¢°" + 87¢™ + 135¢*
+205¢*® + 278¢*7 + 371¢%% + 464¢™*® + 569¢** + 663¢*3
+ 766¢" + 846¢™ + 927¢"° + 983¢%° 4 1034¢>® + 1056437
+ 1076435 + 10664 + 1055¢>* 4 1020¢>% + 984¢>? + 9294
+879¢%° + 812¢%° + 752¢*® + 682¢*7 4 620¢%° + 551¢°
+492¢%* + 429¢% 4 377¢%% + 323¢%1 + 278¢%° + 233¢*°
+199¢"® + 163¢'7 4 136¢'° + 110¢'° + 90¢™* + 71¢*3
+58¢'2 4 44¢™ + 35¢1° + 26¢° + 20¢° + 1447
+11¢5 +7¢° + 5¢* +3¢> + 2¢° + 1¢" + 1¢°
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Xie = 93885

Pie(a) =5q™ +12¢"" + 34¢™ + 68¢%° + 128¢%° + 207¢°7
+ 3244°% + 460¢% + 637¢%* + 830¢%% + 1060¢°% + 1296¢°!
+1562¢%° + 1819¢%° + 2094¢° 4 2345¢°7 + 2602¢°° + 28204¢%°
+3033¢°* 4 3198¢°% + 3352¢°% + 3452¢°! + 3538¢°° + 3571¢*°
+3592¢*® + 3561¢*7 + 3521¢*® + 3437¢*° + 3348¢** + 3221¢**
+ 3095¢* 4 2938¢™ 4 2788¢%° 4 2615¢% 4 24504® + 22704%"
+2105¢5 +1927¢% + 1766¢3* + 1600¢>% + 1451¢3% + 1299
4+ 1166¢°° + 1032¢° + 917¢*® + 803¢*7 + 705¢%° + 610¢*°
+ 532¢%* 4 454¢%3 + 391¢%% + 331¢%! 4 282¢%° + 235¢"°
+199¢'® +163¢'7 + 136¢*¢ + 110¢*® + 90¢'* + 71¢*3
+ 58¢"% + 44¢™ + 35¢'° + 26¢° + 20¢° + 144"
+11¢° + 7¢° + 5¢* + 3¢ + 2¢* + 1¢* + 14°



226 C. EULER CHARACTERISTICS AND POINCARE POLYNOMIALS

ExaMmpLE C.51. For N € [4] and n = 6 the Euler characteristics and Poincaré
polynomials of the approximations Gry (g[n) are given by

X1,6 = 141
p1e(g) = 1¢"° + 1¢'7 + 3¢'% + 5¢"° + 8¢'* + 10"
+14¢"% + 14" + 164" + 15¢° + 14¢° + 114"
+10¢° + 7¢° + 5¢* + 3¢® + 24> + 1¢* + 1¢°
X2,6 = 1751
p2,6(Q) — 1q36 + 1q35 + 3(]34 4 6q33 + 11(]32 + 17q31
+28¢%% + 38¢* + 53¢ + 66°7 + 81¢*° + 92¢*
+105¢*! + 110¢* + 116¢** + 116¢°" + 116¢*° + 110¢"°
+105¢"® + 95¢"7 + 87¢'° + 76¢"° 4 66¢"* + 55¢'
+47¢" + 37¢" +30¢" + 23¢° + 18¢° + 134"
+10¢°% + 7¢° + 5¢* + 3¢% +2¢* + 1¢* + 1¢°
X3,6 = 9331
p36(g) = 1¢°* + 167 +3¢°% + 6¢°" + 11¢™ + 18¢"
+31¢™ + 45¢*7 + 67¢%0 + 92¢* + 124¢* + 157¢*3
+198¢*% + 235¢* + 277¢"° + 313¢° + 35043 + 378¢37
+ 406¢°%¢ + 422¢%° + 438¢3* + 443¢3% + 446¢°% + 439¢3*
+ 432¢%° + 415¢%° + 398¢%® + 374¢%" + 351¢%° + 323¢*°
+297¢%* + 267¢%3 4 241¢%*% + 213¢%* + 188¢%° + 162¢"°
+141¢"® + 119¢'7 + 101¢'® + 84¢'® + 70¢'* + 57¢*3
+47¢'? + 37¢" + 30¢'° + 23¢° + 18¢% + 1347
+10¢° + 7¢° + 5¢* + 3¢> + 2¢° + 1¢* + 1¢°
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X4,6 = 32661

pae(q) = 1¢% + 1¢™ + 3¢™ +6¢% + 11¢%® + 18¢°7
+ 31¢5¢ + 46¢5° + 70¢%* + 99¢%3 + 138452 + 183¢5!
4 241¢%° + 302¢°%% + 376¢°® + 452¢°7 + 537¢°° + 619¢°°
+ 708¢°* + 78843 + 871¢°% + 942¢°! 4 1011¢°° + 10664
4+ 1119¢*® + 1154¢*7 + 11864 + 1202¢" + 1214¢** + 1210¢*
+1203¢* + 1181¢*! 4 1157¢* + 1120¢° 4 1081¢®® + 1032¢°7
+ 984436 + 92743 + 872¢3* + 812¢33 + 755¢% 4 694¢>!
+638¢° + 579¢%° + 52648 + 472¢%7 + 423¢%¢ + 375¢*°
+ 333¢%* + 291¢% + 255¢%% 4 221¢*" + 192¢° + 164¢*°
+141¢"® 4+ 119¢'7 + 101¢'® + 84¢"® + 70¢'* + 57¢"3
+ 47¢"% + 37¢" + 30¢"° + 23¢° 4 18¢° + 134"
+10¢% +7¢° + 5¢* + 3¢® + 2¢° + 1¢* + 1¢°
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