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Introduction

Motivation

Quiver Grassmannians where first used byW. Crawley-Boevey and A. Schofield
[23, 68]. They are linked to cluster algebras as introduced by S. Fomin and
A. Zelevinsky [32]. The cluster variables admit a description based on the Euler
characteristic of quiver Grassmannians as shown by P. Caldero and F. Chapoton
[14]. By now there are may publications concerning quiver Grassmannians, their
Euler characteristic and Poincaré polynomials. But most of the research restricts
to quiver Grassmannians for Dynkin quivers. In this work we generalise some con-
structions by P. Caldero, S. Fedotov and M. Reineke [15, 27, 62, 63] to quiver
Grassmannians for bounded quiver representations which are equivalent to modules
over finite dimensional algebras.

On the one hand this thesis is based on the identification of the degenerate flag
variety with a quiver Grassmannian for the equioriented quiver of type A as shown
by G. Cerulli Irelli, E. Feigin and M. Reineke in [20]. On the other hand it is based
on the construction using quiver Grassmannians for the loop quiver to give finite
approximations of the degenerate affine Grassmannian which was introduced by
E. Feigin, M. Finkelberg and M. Reineke in [30]. We generalise their constructions
to describe finite approximations of linear degenerate affine flag varieties using
quiver Grassmannians for the equioriented cycle. The linear degenerations of the
affine flag variety are defined similar to the construction for the classical flag variety
by G. Cerulli Irelli, X. Fang, E. Feigin, G. Fourier and M. Reineke [19].

In some special case quiver Grassmannians for the equioriented cycle were
studied by N. Haupt [42, 41]. The variety of representations of the cycle was
studied by G. Kempken [48]. J. Sauter studied the quiver flag variety for the
equioriented cycle [65]. The Ringel-Hall algebra of the cyclic quiver was studied
by A. Hubery [44]. Based on the work by G. Kempken and A. Hubery we derive
statements about the geometry of quiver Grassmannians for the equioriented cycle
and obtain a generalisation of a result by N. Haupt.

Summary of Main Results

The Grassmannian Grk(n) is the set of all k-dimensional subspaces of the vec-
torspace Cn. On this variety the group of invertible matrices GLn := GLn(C) acts
transitively. Let P be the stabiliser of any point in the Grassmannian. Then the
Grassmannian is isomorphic to the quotient GLn/P . This quotient construction
has been generalised to a great extend for various types of groups for example
algebraic groups or Kac-Moody groups and subgroups like (maximal) parabolic
and Borel or (maximal) parahoric and Iwahori. The resulting quotients are called
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2 INTRODUCTION

Grassmannians or (full/partial) flag varieties depending on the type of the sub-
group.

The main goal of this thesis is the study of the degenerate affine flag variety of
type gln via approximations by quiver Grassmannians for the equioriented cycle.
Analogous to the classical setting the affine flag variety is defined as the quotient

F l(ĝln) := ĜLn/B̂n

where ĜLn is the affine Kac-Moody group to the affine Kac-Moody algebra ĝln and
B̂n is the standard Iwahori subgroup of ĜLn [53, Chapter XIII]. It is not necessary
to know the precise definitions of these groups to understand the main part of this
thesis. Just bear in mind the definition of the full flag variety as the quotient of
the invertible matrices by the invertible upper triangular matrices. This variety
admits an alternative description as the set of all chains of vector spaces where the
dimension of the spaces increases by one for each inclusion.

The first step in the direction of approximations of the affine flag variety by
quiver Grassmannians is an alternative description of the affine flag variety which
is similar to the set of vector space chains in the classical setting. The affine flag
variety is infinite dimensional such that we have to replace the finite dimensional
vector space by some infinite dimensional objects. There are two approaches to
this problem.

The more common construction is via lattice chains [3, 36, 37]. Let C((t)) be
the field of Laurent series and C[[t]] ⊂ C((t)) be the ring of formal power series,
define Λ := C[[t]]n. A lattice L ⊂ C((t))n is a Λ-submodule such that there exists
an integer N ∈ Z≥0 with tNΛ ⊆ L ⊆ t−NΛ and the quotient t−NΛ/L is of finite
rank over C. Λ is called the standard lattice.

A (full periodic) lattice chain is a tuple of lattices (Li)n−1
i=0 such that

L0 ⊂ L1 ⊂ · · · ⊂ Ln−1 ⊂ t−1L0

and each quotient Li+1/Li is a C-module of rank one. The affine flag variety of
type gln is in bijection with the set of full lattice chains in C((t))n. It is possible
to define approximations and degenerations of the affine flag variety in this setting
but we want to take a different path where the analogy to the classical setting is
more visible.

The second construction is based on Sato Grassmannians [30, 45]. For ` ∈ Z
let V` be the vectorspace

V` := span(v`, v`−1, v`−2, . . . )

which is a subspace of the infinite dimensional C-vectorspace V with basis vectors
vi for i ∈ Z. The Sato Grassmannian for m ∈ Z is defined as

SGrm :=
{
U ⊂ V : There exists a ` < m s.t. V` ⊂ U and dimU/V` = m− `

}
.

The vector spaces in the chains for the classical flag variety are elements of the
Grassmannians Grk(n). Analogous we obtain a description of the affine flag va-
riety as a set of cyclic chains where the vector spaces are elements of the Sato
Grassmannians SGrk.
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Proposition 1 ([30, 45]). The affine flag variety F l
(
ĝln
)
as subset in the

product of Sato Grassmannians is described as

F l
(
ĝln
) ∼= {(Uk)n−1

k=0 ∈
n−1∏
k=0

SGrk : U0 ⊂ U1 ⊂ . . . ⊂ Un−1 ⊂ snU0

}

where sn : V → V maps vi to vi+n.

It is shown in [29] that the degenerate flag variety admits a description via
vector space chains where the spaces are related by projections instead of inclusions.
This construction is used to define linear degenerations of the flag variety and
degenerate affine Grassmannians in [19] and [30]. Here we want to follow the same
approach and degenerate the affine flag variety by replacing the inclusion relations
for the chains of vector spaces with projections.

Definition 1. The degenerate affine flag variety F la
(
ĝln
)
is defined as

F la
(
ĝln
)

:=
{(
Uk
)n−1
k=0 ∈

n−1∏
k=0

SGrk : pri+1Ui ⊂ Ui+1, prnUn−1 ⊂ snU0

}

where pri : V → V is the projection of vi to zero.

Later this degeneration is also refered to as the Feigin-degenerate affine flag
variety since its definition is analogous to the description of the degenerate classical
flag variety studied by E. Feigin in [28, 29]. Similar to the construction in [30] the
linear degenerate affine flag varieties are defined by writing linear maps fi instead of
the projections pri. Most of the constructions below work in the setting of certain
linear degenerations of the affine flag variety.

Let Q be a finite quiver with a finite set of vertices Q0 and a finite set of arrows
Q1 between the vertices. A Q-representation R is a pair of tuples R = (V,M) with
a tuple of vector spaces over the vertices V = (Vi)i∈Q0 and a tuple of maps between
the vector spaces along the arrows of the underlying quiver M = (Mα)α∈Q1 .

A subrepresentation S ⊆ R is described by a tuple of vector subspaces Ui ⊂ Vi
which is compatible with the maps between the vector spaces of the surrounding
representation R, i.e. for all arrows α : i → j of Q we have Mα(Ui) ⊆ Uj . The
entries of the dimension vector dimR ∈ ZQ0 of a quiver representation R are given
by the dimension of the vector spaces Vi over the vertices of the quiver.

Definition 2. The quiver Grassmannian GrQe (M) is the set of all subrepre-
sentations of the Q-representation M with dimension vector e ∈ ZQ0 .

M. Reineke showed that every projective variety is a quiver Grassmannian
[64]. Hence it makes sense to restrict the class of quiver Grassmannians which are
considered. In this thesis we focus on quiver Grassmannians for the equioriented
cycle:
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∆n :=

1
2

3

i

n− 1

n

α1

α2αn−1

αn

α3

αi−1αi

αn−2

The set of vertices and arrows of ∆n are in bijection with the set Zn := Z/nZ.
These varieties yield finite dimensional approximations of the affine flag va-

riety of type gln and its linear degenerations. For a positive integer ω the finite
approximation of the Feigin-degenerate affine flag variety is

F laω
(
ĝln
)

=
{

(Ui)ni=0 ∈ F la
(
ĝln
)

: V−ωn ⊂ U0 ⊂ Vωn
}
.

Theorem 1 (Theorem 6.4). Let ω ∈ N be given, take the quiver representation

Mω :=
( (
Vi := C2ωn)

i∈Zn
,
(
Mαi := s1 ◦ prωn

)
i∈Zn

)
and the dimension vector eω := (ei := ωn)i∈Zn . Then the finite dimensional
approximation of the Feigin-degenerate affine flag variety is isomorphic to the quiver
Grassmannian corresponding to Mω and eω, i.e.

F laω
(
ĝln
) ∼= Gr∆n

eω
(
Mω

)
.

This construction allows us to obtain statements about the geometric properties
of the approximations from the corresponding quiver Grassmannians.

Theorem 2 (Theorem 6.35). For ω ∈ N, the approximation F laω
(
ĝln
)
of the

Feigin-degenerate affine flag variety satisfies:
(1) It is a projective variety of dimension ωn2.
(2) It admits a cellular decomposition.
(3) There is a bijection between the cells and affine Dellac configurations to

the parameter ω.
The irreducible components of the finite dimensional approximation of the

Feigin-degenerate affine flag variety satisfy:
(4) They are equidimensional.
(5) They have rational singularities and are normal, Cohen-Macaulay.
(6) There is a bijection between the irreducible components and

grand Motzkin paths of length n.

Grand Motzkin paths of length n are lattice paths from (0, 0) to (n, 0) with
steps (1, 1), (1, 0) and (1,−1). Accordingly the number of irreducible components is
independent of the parameter ω and the same in every approximation. For classical
Motzkin paths we have the additional requirement that the path is not allowed to
cross the x-axis.
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The approximations of the affine flag variety are compatible with its ind-variety
structure in the sense that the local structure around the points is preserved along
the embedding into a bigger approximation. Hence the ind-topology and the Zariski
topology of the degenerate affine flag coincide.

Ordinary Dellac configurations are in bijection with the cells in the degenerate
full flag variety of type A. Affine Dellac configurations are a generalisation of
these configurations to match the structure of the cells in the degenerate affine flag
variety. Classically the configurations consist of marked and unmarked boxes in
a rectangle of boxes. For the affine case we need some additional parameters to
distinguish between the cells in the different approximations.

Definition 3. The set of affine Dellac configurations to the parameter ω is
denoted by D̂Cn(ω). A configuration D̂ ∈ D̂Cn(ω) consists of a rectangle of 2n×n
boxes with 2n entries kj ∈ {0, 1, 2, . . . , ω} such that:

(1) There is one number in each row
(2) There are two numbers in each column
(3)

∑2n
j=1(pj + nrj) = ωn2.

Here pj is the number of steps from the separator to the entry going left and
rj := max{kj − 1, 0}. If the entry is zero then the position is zero as well. The left
hand side and the right hand side of the rectangle are identified to obtain boxes on
a cylinder. The separator is a staircase around the cylinder. In the planar picture
we draw it from the lower left corner to the upper right corner of the rectangle of
boxes.

Example 1. For n = 4 and ω = 3 the subsequent configuration

2
2

3
1

2
0

3
2

Σ =

pj :

1
1
2
4
2
0
2
4

16

rj :

1
1
2
0
1
0
2
1

8

is contained in the set D̂C4(3) since 16 + 4 · 8 = 48 = 3 · 42.

There exists a function

h : D̂Cn(ω) −→ Z
D 7−→ h(D)

such that h(D) is equal to the dimension of the corresponding cell in the approxi-
mation of the affine flag variety.
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Theorem 3 (Theorem 6.59). For ω ∈ N, the Poincaré polynomial of F laω
(
ĝln
)

is given by
p
Flaω
(
ĝln

)(q) =
∑

D∈D̂Cn(ω)

qh(D).

For the linear degenerations of the affine flag variety as mentioned above we
introduce an order depending on the co-ranks of the maps fi to distinguish the
degenerations between the affine flag variety and the Feigin degeneration from the
other degenerations. For these intermediate degenerations we can define partial
degenerate affine Dellac configurations to parametrise their cells (Theorem 6.55).
Moreover there exist dimension functions for these configurations such that we
obtain analogous descriptions of the Poincaré polynomials of the partial degenerate
affine flag varieties (Theorem 6.61).

Methods and Structure

For the proofs of Theorem 1 and Theorem 2 it is necessary to understand the
quiver Grassmannians for the oriented cycle and their geometric properties. In
Chapter 1 we recall some basic results, constructions and definitions concerning
quiver representations and quiver Grassmannians in general. We introduce the
two different realisations of quiver Grassmannians which are both used at various
points in this thesis. They arise from the different possibilities to describe a sub-
representation. We introduce the path algebra of a quiver and representations of
quivers with relations. For an admissible set of relations there is an equivalence of
bounded quiver representations and modules over finite dimensional algebras.

The link between representations of quivers and modules over finite dimen-
sional algebras is the foundation of the realisation of quiver Grassmannians as
framed module spaces which is proven in Chapter 2. This interpretation of quiver
Grassmannians allows us to translate properties between the variety of quiver rep-
resentations and the quiver Grassmannian. For the proof it is necessary that we
restrict us to representations which consist only of injective summands and satisfy
relations from an admissible set. In some cases it is easier to study the orbits
in the first variety instead of strata in the quiver Grassmannian. The proof that
this construction preserves the geometry is based on deframing of extended quiver
representations and stability conditions for quiver representations.

The equioriented cycle and the class of quiver Grassmannians which we want
to examine is introduced Chapter 3. Based on word combinatorics we prove a
dimension formula for the space of morphisms between nilpotent indecomposable
representations of the cycle. This is applied to parametrise the irreducible com-
ponents and prove the geometric properties of the quiver Grassmannians for the
cycle as claimed in Theorem 2 of this introduction. The proof of the geometric
properties utilises the construction of the quiver Grassmannian as framed moduli
space. Hence we can lift them from the variety of quiver representations which was
studied by G. Kempken [48]. In Section 3.1 we summarise some results from her
thesis which was only published in German. This is one main ingredient for the
proof of Theorem 2.

In Chapter 4 we introduce a C∗-action on the quiver Grassmannians for the
equioriented cycle and recall some facts about C∗-actions and decompositions. This
action provides us a combinatoric tool to compute the Euler characteristic of these
quiver Grassmannians which was introduced by G. Cerulli Irelli in [16]. It induces
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a cellular decomposition which allows us to compute the Poincaré polynomials of
the quiver Grassmannians. For the proof of the decomposition it is crucial to find
the right grading for the action on the indecomposable summands of the quiver
representation which generalises to the action on the quiver Grassmannian.

The theory from the first chapters is applied in Chapter 5 to identify approx-
imations for partial degenerations of the affine Grassmannian with quiver Grass-
mannians for the loop quiver. This generalises the construction by E. Feigin,
M. Finkelberg and M. Reineke [30]. It is the foundation for the study of the
partial degenerations of the affine flag. The loop is a special case of the cycle such
that we can apply the theory from the previous chapters concerning the cellular
decomposition and the geometric properties. We compute different parametrisa-
tions of the cells and give formulas for the Poincaré polynomials for the partial
degenerations and their finite approximations.

The main part of this thesis is Chapter 6 where we identify finite approxima-
tions of partial degenerate affine flag varieties with quiver Grassmannians for the
equioriented cycle. Based on the previous chapters we generalise the construction
for the affine Grassmannian. This allows us to describe cellular decompositions
via successor closed subquivers in the coefficient quiver of the quiver representa-
tion which corresponds to the approximation. These subquivers turn out to be
parametrised by affine Dellac configurations. From the configurations it is possi-
ble to recover the dimension of the corresponding cell inducing a formula for the
Poincaré polynomial of the approximations. Moreover the notion of affine Dellac
configurations is compatible with the partial degenerations of the affine flag vari-
ety and the formula for the Poincaré polynomial generalises to this setting. The
parametrisation of the irreducible components of the quiver Grassmannians for
the cycle as computed in Chapter 3 allows to identify the irreducible components
of the degenerate affine flag variety and its approximations with grand Motzkin
paths. Together with the geometric properties which lift from the variety of quiver
representations this finishes the proof of Theorem 2.

In Chapter 7 we recall the definition of a moment graph and its application to
compute the equivariant intersection comomology of varieties with a suitable torus
action. We introduce a combinatoric approach to compute the moment graph for
quiver Grassmannians which is based on the C∗-action and the induced cellular
decomposition of the quiver Grassmannian. Some parts of this Chapter are still
conjectural.

The class of quiver Grassmannians studied in this thesis has some rather strong
restrictions. In Appendix A we give some examples to point out the various prob-
lems and difficulties which turn up if one leaves this class of quiver Grassmannians
or tries to relax the length condition for the nilpotent indecomposable representa-
tions. Moreover we give some counter examples for properties which could still not
be satisfied for the class of studied quiver Grassmannians.

The parametrisation of the cells via successor closed subquivers in the coeffi-
cient quiver of the representation describing the quiver Grassmannian as introduced
in Chapter 4 allows determine the Poincaré polynomials computationally. The im-
plementations of these programs are presented in Appendix B and some results of
the computations are given in Appendix C.
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Outlook

For the study of the approximations of the partial degenerate affine Grass-
mannians new methods are required because the indecomposable summands of
the corresponding quiver representation do not have all the same length. In the
framework of this thesis it was not possible to prove an explicit formula for their
dimension and irreducible components or examine their geometric properties. The
same is true for the partial degenerations of the affine flag variety.

The explicit computation of the equivariant intersection comomology of a
quiver Grassmannian for the equioriented cycle or other quivers is still an open
problem. It would be interesting to see in which generality the combinatoric con-
struction of the moment graph is possible and if this induces some general descrip-
tion of the equivariant intersection comomology for quiver Grassmannians.



CHAPTER 1

Basic facts about Quiver Grassmannians

In this chapter we give a formal introduction to quiver Grassmannians and
recall some results which we want to apply in later Chapters. Let k be an alge-
braically closed field of characteristic zero. For the study of the affine flag variety
we will even restrict to the complex numbers. This introduction follows the article
by G. Cerulli Irelli [17] and the reference therein. More detail and background
information are provided in the book by I. Assem, D. Simson and A. Skowronski
[2], the book by R. Schiffler [66], the lecture notes by O. Schiffmann [67] and the
book by A. Kirillov Jr. [50].

1.1. Quiver Representations

A (finite) quiver Q = (Q0, Q1, s, t) is an ordered quadruple where:
(1) Q0 denotes a finite set of vertices,
(2) Q1 is a finite set of edges,
(3) The functions s, t : Q1 → Q0 provide an orientation of the edges.
For an oriented edge α we write α : sα → tα, i.e. the function s sends an edge

to its source and the function t sends it to its target.
A (finite dimensional) Q-representation is a pair of tuples

M :=
( (
Vi
)
i∈Q0

,
(
Mα

)
α∈Q1

)
where :

(1) Vi is a finite dimensional vector space over the field k for all i ∈ Q0,
(2) Mα : Vsα → Vtα is a linear map for all α ∈ Q1.
A Q-morphism ψ : M → N of two Q-representations is a collection of linear

maps (
ψi : Vi →Wi

)
i∈Q0

such that the following diagrams are commutative

Vsα

Vtα

Wsα

Wtα

Mα

ψsα

Nα

ψtα

≡

i.e. ψtα ◦Mα ≡ Nα ◦ ψsα holds for every arrow α ∈ Q1. With HomQ(M,N) we
denote the set of all Q-morphisms from M to N . We call an injective Q-morphism
ι : U ↪→M embedding.

9
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The dimension vector of a Q-representation M is defined as

dimM :=
(

dim Vi
)
i∈Q0

.

In the introduction the quiver Grassmannian GrQe (M) is defined as the set
of all subrepresentations of the Q-representationM with dimension vector e ∈ ZQ0 .
There are two different interpretations of the notion subrepresentation. The first
one as mentioned in the introduction parametrises a subrepresentation as tuple of
subspaces (Ui)i∈Q0 in the vector spaces over the vertices of the quiver, i.e Ui ⊂Mi

for all i ∈ Q0. Additionally these tuples have to be compatible with maps between
the vectorspaces of M , i.e.

Mα

(
Usα

)
⊆ Utα

for all oriented edges α ∈ Q1. In the above notation for Q-representations this type
of subrepresentation is written as

U :=
( (
Ui
)
i∈Q0

,
(
Mα|Usα

)
α∈Q1

)
and the embedding ι is given by the identity map.

In general a subrepresentation of M is a tuple (U,ϕ) consisting of a Q-
representation U and a embedding ϕ : U ↪→ M such that the diagrams above
commute and all component mas ϕi are injective. These different interpretations
lead to the two different realisations of the quiver Grassmannian recalled below.

1.2. Universal Quiver Grassmannians

In this section we construct quiver Grassmannians based on the subspace
parametrisation of subrepresentations. Let rep(Q) be the category of finite di-
mensional Q-representations. For a fixed dimension vector d ∈ ZQ0

≥0 we denote by
repd(Q) the category of Q-representations with dimension vector d.

The objects of the category repd(Q) are parametrised by the variety

Rd(Q) :=
⊕
α∈Q1

Homk(kdsα ,kdtα )

which is called the variety of quiver representations for the dimension vector d.
This means that for a fixed dimension vector every Q-representation is determined
by the maps along the oriented edges of the quiver up to base change of the vector
spaces over the vertices. The group

GLd :=
∏
i∈Q0

GLdi(k)

acts on the points M in this variety via base change, i.e.

g.M :=
(
gtαMαg

−1
sα

)
α∈Q1

.

The dimension of an orbit OM := GLd.M is given as

dimOM = dim GLd − dim EndQ
(
M
)

=
∑
i∈Q0

d2
i − dim HomQ

(
M,M

)
and the isomorphism classes of quiver representations and the GLd-orbits coincide.
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Now let e and d be two dimension vectors in ZQ0 such that 0 ≤ ei ≤ di holds
for all i ∈ Q0. We define the product of usual Grassmannians as

Gre(d) :=
∏
i∈Q0

Grei(kdi).

The universal quiver Grassmannian is defined as

GrQe (d) :=
{

(N,M) ∈ Gre(d)× Rd(Q) : Mα(Nsα) ⊆ Ntα for all α ∈ Q1

}
.

From the universal quiver Grassmannian we have two projections to the different
components of its elements

pe pd
GrQe (d)

Gre(d) Rd(Q)

Finally, for a quiver Q, a dimension vector e and a representation M ∈ Rd(Q) we
obtain the corresponding quiver Grassmannian as

GrQe (M) := p−1
d (M).

1.3. Quotient Construction of Quiver Grassmannians

In this section we construct quiver Grassmannians arising from the parametri-
sation of subrepresentations of a representationM as pair of a quiver representation
N and an embedding ϕ : N ↪→ M . For two dimension vectors e,d ∈ ZQ0

≥0 define
the variety of k-morphisms

Homk
(
e,d

)
:=
⊕
i∈Q0

Homk
(
kei ,kdi

)
and use triples(
N,ϕ,M

)
:=
((
Nα
)
α∈Q1

,
(
ϕi
)
i∈Q0

,
(
Mα

)
α∈Q1

)
∈ Re(Q)×Homk

(
e,d

)
× Rd(Q)

to define the universal Q-morphism variety

HomQ

(
e,d

)
:=
{(
N,ϕ,M

)
: ϕtαNα = Mαϕsα for all α ∈ Q1

}
.

Since we are interested in subrepresentations we have to restrict it to injective
Q-morphisms

Hom0
Q

(
e,d

)
:=
{(
N,ϕ,M

)
∈ HomQ

(
e,d

) ∣∣∣ ϕi : kei ↪→ kdi is inj. for all i ∈ Q0

}
.

Similar as for the universal quiver Grassmannian we have projections from the
variety of universal Q-morphisms to its components and analogous for the variety
of injective Q-morphisms

pre prd

HomQ

(
e,d

)
Re(Q) Rd(Q)

p̃re p̃rd

Hom0
Q

(
e,d

)
Re(Q) Rd(Q)

The universal quiver Grassmannian is the quotient of the variety of universal in-
jective Q-morphisms by the group acting on the first component

GrQe (d) ∼= Hom0
Q(e,d)/GLe.
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For a fixed representation M we define
Hom0

Q(e,M) := p̃r−1
d (M)

and obtain an isomorphic description of the quiver Grassmannian as the following
quotient

GrQe (M) ∼= Hom0
Q(e,M)/GLe.

This isomorphism is proven in Proposition 2.5.

1.4. Bound Quiver Representations and the Path Algebra

In the previous sections everything works in the setting of finite dimensional
representations of a finite quiver. For the class of quiver Grassmannians for the
equioriented cycle which is studied in this thesis we can restrict this generality
to derive stronger statements about their geometry. Namely we want to work in
the setting of finite dimensional modules over finite dimensional algebras. In this
section we describe how this is related to representations of a finite quiver.

A path p in a quiver Q is a sequence of arrows α1, . . . , αr ∈ Q1 such that
tαi = sαi+1 holds for all i ∈ [r − 1] := {1, 2, . . . , r − 1} and we write

p = (i|α1 . . . αr|j)
where i = sα1 and j = tαr . Using the same notation as for edges, the source of
a path is defined as sp := sα1 and tp := tαr denotes its target. Let p be a path
with notation as above and M ∈ Re(Q) be a quiver representation. The map Mp

is defined as
Mp := Mαr ◦Mαr−1 ◦ · · · ◦Mα1 .

For two paths p = (i|α1 . . . αr|j) and p′ = (k|α′1 . . . α′r|`) the concatenation
pp′ := (i|α1 . . . αrα

′
1 . . . α

′
r|`)

is defined if j = k.

Definition 1.1. The path algebra kQ of a quiver Q is the k-algebra with
basis consisting of all paths in Q and multiplication of two paths p and p′ defined
as

p · p′ :=
{ pp′ if tp = sp′

0 otherwise.

We call two paths p and p′ in Q parallel if sp = sp′ and tp = tp′ . For parallel
paths of length greater than one, a relation ρ is a linear combination

ρ :=
∑
p

λpp

where λp ∈ k for all paths in the sum. The pair (Q,R) consisting of a quiver Q
together with a set of relations R defines a bound quiver.

A representation of (Q,R) is a representation M = ((Vi)i∈Q0 , (Mα)α∈Q1) of Q
such that

Mρ :=
∑
p

λpMp ≡ 0

holds for all relations ρ =
∑
p λpp in R. We call M bound quiver represen-

tation. For a set of relations R let I :=< R > be the ideal in the path algebra
kQ which is generated by the relations in R. If a representation M satisfies the
relations in R it also satisfies all relations in the ideal I.
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From now on we will write I for an ideal generated by some relations R and
call the pair (Q, I) a bound quiver as well. For an ideal I with relations ρ, we
define the variety of bound quiver representations as

Rd(Q, I) :=
{
M ∈ Rd(Q) : Mρ ≡ 0 for all ρ ∈ I

}
.

All the constructions of the previous sections can be done in the same way for bound
quiver representations. A subrepresentation of a representation M ∈ Rd(Q, I)
satisfies the same relations as M . For this reason it is no restriction to assume the
boundedness of the candidates for the subrepresentations in the universal quiver
Grassmannian and the quotient construction of the quiver Grassmannian.

The arrow ideal RQ of the path algebra A := kQ is the two-sided ideal gener-
ated by all arrows in Q. It admits the vector space decomposition

RQ =
⊕
`≥1

kQ`

where kQ` is the vector subspace of kQ with paths of length ` as basis. The vector
space decomposition of A runs over ` ≥ 0. For the k-th power of RQ we have the
decomposition

RkQ =
⊕
`≥k

kQ`

and its vector space basis consists of paths of length greater or equal to k.
A two-sided ideal I of A is called admissible ideal if there exists an integer

k ≥ 2 such that
RkQ ⊂ I ⊂ R2

Q.

For an admissible I the pair (Q, I) defines a bound quiver and the quotient
kQ/I is called bound quiver algebra (or bounded path algebra). The subse-
quent theorem connects the study of modules over finite dimensional algebras and
bounded representations of finite quivers. It is proven in the book by R. Schiffler
[66, Theorem 5.4].

Theorem 1.2. Let A = kQ/I be a bound quiver algebra of a finite connected
quiver Q. Then there is an equivalence of categories between the category A-mod of
finitely generated right A-modules and the category repk(Q, I) of finite dimensional
bound quiver representations.

Remark. Every basic finite dimensional k-algebra is isomorphic to a bound
quiver algebra for a finite connected quiver Q and some admissible ideal I.

We call a quiver representation indecomposable if it can not be written
as the direct sum of two proper subrepresentations. A quiver representation is
called simple if all maps along the arrows are zero, one vector space over the
vertices is isomorphic to k and all other vector spaces are zero. Simple quiver
representations are indecomposable. Every finite dimensional quiver representation
has a decomposition into indecomposable representations which is unique up to the
order of the summands [50, Theorem 1.11]. Hence it is sufficient to understand
the indecomposable representations of a quiver. It is shown by P. Gabriel in [35]
that a quiver admits a finite number of indecomposable representations if and only
if it is a Dynkin quiver. This are quivers where the underlying graph (Q0, Q1) is a
simply-laced Dynkin diagram [66, p. 83].

Moreover for Dynkin quivers the path algebra is already finite. Certain quiver
Grassmannians for Dynkin quivers admit nice geometric properties like cellular
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decompositions into attracting sets of torus fixed points, irreducibility and nor-
mality as proven by G. Cerulli Irelli, E. Feigin and M. Reineke in [20]. But the
cycle is unfortunately not a Dynkin quiver such that we can not apply their results
for the study of the affine flag variety. Hence we have to develop methods which
work in a bigger generality. It is the setting of finite dimensional modules over
finite dimensional algebras which we choose. In Chapter 2 we will examine quiver
Grassmannians for quiver representations which are the direct sum of injective
representations of a bound quiver (Q, I).

The indecomposable projective representation Pi of the bound quiver (Q, I)
is given by the pair of tuples

Pi =
((
P

(i)
j

)
j∈Q0

,
(
P (i)
α

)
α∈Q1

)
where P (i)

j has a basis of equivalence classes p of non-constant paths from i to j in
Q and for an arrow α : j → ` in Q the map

P (i)
α : P (i)

j → P
(i)
`

is defined on the basis consisting of paths by the composition of paths from i to j
with the arrow α, i.e.

P (i)
α

(
p
)

= αp.

The indecomposable injective representation Ii of the bound quiver (Q, I)
is given by the pair of tuples

Ii =
((
I

(i)
j

)
j∈Q0

,
(
I(i)
α

)
α∈Q1

)
where I(i)

j has a basis of equivalence classes p of non-constant paths from j to i in
Q and for an arrow α : j → ` in Q the map

I(i)
α : I(i)

j → I
(i)
`

is defined on the basis consisting of paths by deleting the arrow α from paths going
from j to i, i.e.

I(i)
α

(
p
)

=
{
p′ if p = αp′

0 otherwise.
Using projective and injective we can interpret the path algebra and its dual

as
A =

⊕
i∈Q0

Pi and A∗ =
⊕
j∈Q0

Ij .

In Chapter 2 we will examine quiver Grassmannians for quiver representations
which are the direct sum of injective representations of a bound quiver (Q, I). It
turns out that for the oriented cycle this class of quiver Grassmannians is similar
to the class of quiver Grassmannians which are studied in [20].

1.5. Stratification of Quiver Grassmannians

For the variety of quiver representations its orbit structure has been studied
by many authors, see for example [1, 8, 9, 48]. The analogous structure for
quiver Grassmannians is their stratification. In Chapter 2 we study the connection
between the stratification of quiver Grassmannians and the orbit structure of the
variety of quiver representations.
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The stratum SN of a subrepresentation N ∈ GrQe (M) is the set of all subrep-
resentations U ∈ GrQe (M) isomorphic to N , namely

SN = {V ∈ GrQe (M) : V ∼= N}.
We can use the quotient construction of the quiver Grassmannian to give a more
formal definition. Restricting the projection to the first component p̃re to the
pre-image of the representation M we obtain the following map

p0 : Hom0
Q(e,M)→ Re(Q)

and can redefine the stratum of N as
SN ∼= p−1

0
(
GLe.N

)
/GLe.

For a Q-representation with finitely many isomorphism classes of subrepresenta-
tions the quiver Grassmannian admits a finite stratification

GrQe (M) =
∐
SN .

This is for example true for representations of Dynkin quivers. Moreover we have
the subsequent formula for the dimensions of the strata. For Dynkin quivers this
statement is proven by G. Cerulli Irelli, E. Feigin and M. Reineke in the article
[20, Lemma 2.4].

Lemma 1.3. Each SN is an irreducible locally closed subset of GrQe (M) of
dimension

dim HomQ(N,M)− dim EndQ(N).

With the same methods it is possible to prove this statement in the setting of
modules over finite dimensional algebras. That is the generality which is required to
apply it to the representations of the equioriented cycle as introduced in Chapter 3.





CHAPTER 2

Framed Moduli Interpretation

In this chapter we introduce one of the main tools used in this thesis for the
study of quiver Grassmannians. It allows us to translate geometric properties
from the variety of quiver representations to the quiver Grassmannian for a certain
class of quiver representations M and dimension vectors e. In our setting the
variety of quiver representations has been studied intensively by G. Kempken in
[48] whereas about the corresponding quiver Grassmannians there is not a lot know.
Some special cases of quiver Grassmannians for the loop quiver were studied by
N. Haupt in [41]. The method to lift geometric properties from the variety of quiver
representations to the quiver Grassmannian was already known to K. Bongartz [10]
before it was proven by M. Reineke for Dynkin quivers in [62, 63]. Some parts of
the proof were generalised to the setting of finite dimensional algebras by S. Fedotov
in [27]. In the remainder of this chapter we generalise the statement and its proof
to the setting of finite dimensional algebras.

The extended representation variety is defined as

Re,d(Q, I) := Re(Q, I)×Homk(e,d)

Definition 2.1. A point (M,f) of Re,d(Q, I) is called stable if there is no
non-zero subrepresentation U of M which is contained in Kerf ⊆ M . The set of
all stable points of Re,d(Q, I) is denoted by Rs

e,d(Q, I).

Theorem 2.2. Let Q be a finite connected quiver and I an admissible ideal
of the path algebra kQ. The indecomposable injective representation of the bound
quiver (Q, I) ending at vertex j ∈ Q0 is denoted by Ij. Then

GrQe (J) ∼= Ms
e,d(Q, I)

where
J :=

⊕
j∈Q0

Ij ⊗ kdj

and Ms
e,d(Q, I) is the geometric quotient of Rs

e,d(Q, I) by the group GLe.

Deviating from the previous chapter d is a tuple with multiplicities of injective
bounded quiver representations and not the dimension vector of the quiver repre-
sentation J . The proof of this theorem is given in Section 2.1. This theorem was
fist proven by M. Reineke for Dynkin quivers in [63, Proposition 3.9]. S. Fedotov
used the same methods to derive the statement in the generality of modules over
finite dimensional algebras in [27, Theorem 3.5].

The subsequent theorem establishes a bijection between orbits in the variety of
quiver representations and strata in the corresponding quiver Grassmannian which
preserves geometric properties. It allows us to lift the properties of the variety of
quiver representation studied by G. Kempken to the quiver Grassmannians which

17
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are used for the finite approximations of the affine flag variety and its degenerations
in Chapter 6. In the case of Dynkin quivers it is proven by M. Reineke in [63,
Theorem 6.4].

Define R(d)
e (Q, I) as the image of the projection

pr : Rs
e,d(Q, I)→ Re(Q, I).

Theorem 2.3. There is a bijection between AutQ(J)-stable subvarieties of
Ms

e,d(Q, I) and GLe-stable subvarieties of R(d)
e (Q, I) such that inclusions, closures,

irreducibility and types of singularities are preserved.

We postpone the proof to Section 2.5 until we established the framed module
interpretation of the quiver Grassmannians.

2.1. Quotient Construction and Framed Moduli Spaces

In this section we prove Theorem 2.2 following the approach by M. Reineke
[63]. For the proof we use the quotient construction of quiver Grassmannians by
P. Caldero and M. Reineke [15, Lemma 2]. They proved it in the setting of quivers
without oriented cycles. Below we generalise their proof to the setting of arbitrary
finite quivers. Based on the quotient construction of the quiver Grassmannian the
idea of the proof for Theorem 2.2 is to define a map

Φ : Rs
e,d(Q, I)→ Hom0

Q(e, J)

which is bijective and descends to an isomorphism of the GLe-quotients. In the
first part of this section we prove the quotient construction and introduce a map
whose properties are examined in the second part of the section.

Definition 2.4. Let G be an algebraic group and X a G-variety. A geometric
quotient of X by G is a pair (Y, π) with a morphism π : X → Y satisfying the
properties:

(1) π is surjective and its fibres are exactly the G-orbits in X.
(2) A subset U ⊂ Y is open if and only if π−1(U) ⊂ X is open.
(3) The sheaves OY and (π∗OX)G are equal on Y .

By (1) and (2) we can identify Y with the orbit space X/G and the variety
structure of Y is uniquely determined by (3). For an introduction to actions of alge-
braic groups we refer to the lecture notes by M. Brion [13]. Quiver Grassmannians
for finite quivers admit a description as certain geometric quotients.

Proposition 2.5. Let M be a representation of the finite quiver Q and e a
dimension vector with 0 ≤ e ≤ dimM . The quiver Grassmannian

GrQe (M)

isomorphic to the geometric quotient

Hom0
Q(e,M)/GLe.

Proof. Define the map

Φ : Hom0
Q(e,M)→ GrQe (M)

(N,ψ) 7→
(
ψ(N),M |ψ(N)

)
:=
((
ψi(kei)

)
i∈Q0

,
(
Mα

∣∣
ψ(N)

)
α∈Q1

)
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where Ni = kei since N ∈ Re(Q). The map ψ is a Q-morphism and hence satisfies

ψtαNα ≡Mαψsα for all α ∈ Q1.

This implies that

Mα|ψ(N)
(
ψsα(kesα )

)
≡ ψtα

(
Nα(kesα )

)
for all α ∈ Q1.

Since N is a Q-representation it satisfies

Nα(kesα ) ⊆ ketα for all α ∈ Q1

which implies

Mα|ψ(N)
(
ψsα(kesα )

)
⊆ ψtα

(
ketα

)
for all α ∈ Q1

because ψ is injective and linear. Hence the tuple of vector spaces ψ(N) describes
a subrepresentation of M such that the pair

(
ψ(N),M |ψ(N)

)
is indeed included in

the quiver Grassmannian GrQe (M).
Let

V :=
((
Vi
)
i∈Q0

,
(
Mα|Vsα

)
α∈Q1

)
be an element of the quiver Grassmannian GrQe (M) which is written in terms of the
interpretation of the quiver Grassmannian via the universal Grassmannian. The
inclusions Vi ⊆ kdi for all i ∈ Q0 can be described by injective linear maps

fi : kei → kdi such that Vi = fi
(
kei
)
.

Define the pair (N, f) as

(N, f) :=
((
Nα
)
α∈Q1

,
(
fi
)
i∈Q0

)
where

Nα := ftα |Vtα ◦Mα|Vsα ◦
(
fsα |Vsα

)−1
.

Then N ∈ Re(Q) holds because f is injective and linear and M ∈ Re(Q). If
M satisfies bounding relations from an admissible ideal I the same relations are
satisfied by N . The pair (N, f) we defined above is included in the space of injective
Q-morphisms Hom0

Q(e,M) by construction. Its image under the map Φ is V which
proves that Φ is surjective. Now let (N,ψ), (U,ϕ) ∈ Hom0

Q(e,M) be given such
that Φ(N,ψ) = Φ(U,ϕ). For the first component of the images this implies the
equalities

ψi
(
kei
)

= ϕi
(
kei
)

for all i ∈ Q0.

Here ψi and ϕi are injective linear maps with the same image such that we can
define

gi :=
(
ψi
∣∣
Imψi

)−1
◦ ϕi

∣∣
Imϕi

and hi :=
(
ϕi
∣∣
Imϕi

)−1
◦ ψi

∣∣
Imψi

∈ Endk
(
kei
)

and obtain hi = g−1
i and gi ∈ GLei(k) = Autk

(
kei
)
. Hence the tuple of the gi’s is

included in the group GLe and we obtain

Φ(N,ψ) = Φ(g.U, g.ϕ).

So (N,ψ) and (U,ϕ) have to live in the same GLe-orbit if they have the same image
under the map Φ.
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Conversely we compute Φ(g.U, g.ϕ) for (U,ϕ) ∈ Hom0
Q(e,M) and g ∈ GLe.

Using the formula for the action of GLe defined above we obtain

Φ(g.U, g.ϕ) =
(
g.ϕ
(
g.U
)
,M |g.ϕ(g.U)

)
=
((
ϕig
−1
i (kei)

)
i∈Q0

,
(
Mα|g.ϕsα (g.U)

)
α∈Q1

)
=
((
ϕi(kei)

)
i∈Q0

,
(
Mα|ϕsαg−1

sα (kesα )
)
α∈Q1

)
=
((
ϕi(kei)

)
i∈Q0

,
(
Mα|ϕsα (kesα )

)
α∈Q1

)
= Φ(U,ϕ)

which proves that Φ is constant on GLe-orbits. Let V ∈ GrQe (M) and N ∈
Hom0

Q(e,M) constructed from V as above. Then

Φ−1(V ) = GLe.N for all V ∈ GrQe (M)

which implies the isomorphism. �

Let π be the quotient map

π : kQ→ kQ/I
p 7→ p

where p denotes the set of all elements of the path algebra which are equivalent to
p, i.e.

p :=
{
q ∈ kQ : there exists an r ∈ I such that q = p+ r

}
.

The bounded path algebra kQ/I is finite dimensional since the ideal I is admissible.
The condition that I is admissible implies that there exists an integer m such that
all paths consisting of more than m arrows are included in the ideal I. Let B(Q, I)
denote a k-basis of kQ/I. For i, j ∈ Q0 let Pi,j(Q, I) be the set of paths from i to
j in the bounded path algebra, i.e.

Pi,j(Q, I) :=
{
p ∈ kQ : sp = i, tp = j and p /∈ I

}
.

Here the condition p /∈ I ensures that for p, q ∈ Pi,j(Q, I) with p 6= q we obtain
p 6= q. The sets Pi,j(Q, I) are finite for all i, j ∈ Q0 since the ideal I is admissible
and hence contains all paths which are longer than a fixed integer m. In the sets
Pi,i(Q, I) we also have the constant path εi over the vertex i ∈ Q0. The sum of all
constant paths is the identity element of the path algebra kQ.

Proposition 2.6. A k-basis B(Q, I) of the bounded path algebra kQ/I is
given by

B(Q, I) := π
(
P (Q, I)

)
:=

⋃
i,j∈Q0

π
(
Pi,j(Q, I)

)
.

Proof. The map π : P (Q, I) → B(Q, I) is injective by the definition of the
sets Pi,j(Q, I). For any p ∈ kQ/I we can choose a representative p which is not
included in I. Hence p has to be included in one of the sets Pi,j(Q, I) and it is
clear that the set B(Q, I) generates the bounded path algebra as k-vector space.
The generating system B(Q, I) is minimal since the image p of the path p /∈ I
can not be written in terms of the generators π

(
P (Q, I) \ {p}

)
. This holds for any

p ∈ Pi,j(Q, I) by the definition of these sets. �
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Using the sets of paths in the bounded path algebra we can define a map
from the variety of framed quiver representations to the variety of Q-morphisms as
follows.

Definition 2.7. For an admissible ideal I of the finite quiver Q and a injective
bounded Q-representation J we define the map

Φ : Re,d(Q, I)→ HomQ(e, J)
(M,f) 7→

(
M,ϕ(M,f)

)
where n := dim J and the components of ϕ(M,f) are given as

ϕ
(i)
(M,f) := ϕi :=

⊕
j∈Q0

⊕
p∈Pi,j(Q,I)

fj ◦Mp : kei −→ kni =
⊕
j∈Q0

⊕
p∈Pi,j(Q,I)

kdj

for all i ∈ Q0.

Here Mp is the concatenation of the maps Mα for the edges α which build the
path p as defined in Section 1.4 and fj ∈ Homk(kej ,kdj ). The representation J is
injective. Hence we obtain∑

j∈Q0

∑
p∈Pi,j(Q,I)

dj = ni =
(
dim J

)
i

and ϕi ∈ Homk(kei ,kni) for all i ∈ Q0.
In order to show that Φ is well defined we have to check that

ϕ
(tα)
(M,f) ◦Mα ≡ Jα ◦ ϕ(sα)

(M,f)

holds for all pairs (M,f) ∈ Re,d(Q, I) and all α ∈ Q1. Form the definition of
ϕ

(tα)
(M,f) we obtain that the map on the left is given by( ⊕

j∈Q0

⊕
p∈Ptα,j(Q,I)

fj ◦Mp

)
◦Mα.

On the right hand side we have

Jα ◦

( ⊕
j∈Q0

⊕
p∈Psα,j(Q,I)

fj ◦Mp

)
.

The representation J is the sum of injective representations Ij , i.e.

J =
⊕
j∈Q0

Ij ⊗ kdj .

The vector space I(j)
i over the vertex i ∈ Q0 belonging to the injective bounded

representation Ij has a basis labelled by equivalence classes of paths from j to i
in Q and the map I

(j)
α is the projection sending all basis vectors to zero whose

indexing path is not going through α. The other basis elements are send to those
whose indexing path is obtained by removing the edge α. Accordingly Jα is acting
in the same way and the right hand side is equal to⊕

j∈Q0

⊕
p∈Ptα,j(Q,I)

fj ◦Mp ◦Mα.

This proves ϕ(M,f) ∈ HomQ(M,J) and that the map Φ is well defined.
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Lemma 2.8. The subspace Kerϕ(M,f) is the maximal subrepresentation of M
contained in Ker f .

Proof. First we have to show that Kerϕ(M,f) is a subrepresentation of M .
Set Ui := Kerϕi then

Mα(Usα) ⊆ Utα
holds for all α ∈ Q1 since Kerϕ(M,f) is a morphism of Q representation and
commutes with the maps Mα. It remains to show that U is maximal in Ker f .
Let N ⊆ Ker f a subrepresentation of M . Hence it satisfies

Mα(Nsα) ⊆ Ntα for all α ∈ Q1

and this is also true for concatenations of arrows, i.e.
Mp(Nsp) ⊆ Ntp for all p ∈ P (Q, I).

Since N is contained in Ker f it also satisfies fi(Ni) = 0 which implies
fj ◦Mp(Ni) = 0 for all p ∈ Pi,j(Q, I).

By the definition of ϕ(M,f) this yields ϕi(Ni) = 0 for all i ∈ Q0 and hence we obtain
N ⊆ Kerϕ(M,f). Accordingly the subrepresentation Kerϕ(M,f) is the maximal
subrepresentation of M which is contained in Ker f . �

Corollary 2.9. The map ϕ(M,f) : M → J is injective if and only if the pair
(M,f) is stable.

Proof. By definition of stability for the pair (M,f), the kernel Ker f contains
no proper subrepresentation of M . The kernel Kerϕ(M,f) ⊆M is a subrepresenta-
tion of M and maximal among the subrepresentations of M which are contained
in Ker f ⊆ M as shown in the lemma above. Since the only subrepresentation of
M contained in Ker f is the zero representation, the kernel of ϕ(M,f) is zero and
the map is injective.

If ϕ(M,f) : M → J is injective, the kernel of ϕ(M,f) is zero. By the above
lemma, this is the maximal subrepresentation of M contained in Ker f . Hence
Ker f contains only the zero representation and the pair (M,f) is stable. �

This implies that the image of Rs
e,d(Q, I) under the map Φ lives inside the set

Hom0
Q(e, J) which contains the injective Q-morphisms to J . Now we have to show

that the image contains all injective Q-morphisms.

Proposition 2.10. The restricted map
Φ : Rs

e,d(Q, I)→ Hom0
Q(e, J)

is a bijection.

Proof. The set of paths Pi,i(Q, I) contains the empty path εi because the
ideal I is admissible and can not contain empty paths. By convention the mapMεi

is equal to the identity map. We can split the maps ϕi into components indexed
by j ∈ Q0 and p ∈ Pi,j(Q, I). The component of ϕi indexed by i and εi equals the
map fi. Hence we can recover the maps fi form ϕi by applying the projection to
ϕi which only keeps the component indexed by i and εi. We want to denote this
projection by prεi : kni → kdi .

The first component of the map Φ is the identity map on the variety of bound
quiver representations. Accordingly two pairs (M,f) and (N, g) can not have the
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same image under Φ if M 6= N . By the study of the second component of Φ as
done above, it is clear that ϕ(M,f) = ϕ(N,g) is only possible if fi = gi for all i ∈ Q0.
Otherwise the components of ϕ(i)

(M,f) and ϕ(i)
(N,g) which are indexed by i and εi can

not be equal since they are given by fi and gi. This shows that the map Φ is
injective.

Now let (U,ψ) be an element of Hom0
Q(e, J). We have to find a pair (N, f) ∈

Rs
e,d(Q, I) which is mapped to (U,ψ). Since Φ is acting as identity on the first

component we can choose N := U and define fi := prεi ◦ ψi. Then fi is injective
and Ker f ⊆ N only contains the zero subrepresentation since ψi is injective. Thus
we have found a stable pair (N, f) satisfying that Φ(N, f) = (U,ψ) which proves
that Φ is surjective. Here the equality ϕ(N,f) = ψ follows since both maps are
morphisms of Q-representations and hence commute with maps Nα and Jα for all
α ∈ Q1 and thus these commutativity relations also hold for paths. This allows to
deduce the equality of the maps ϕ(N,f) and ψ from the equalities of the components
indexed by i and εi which are equal by definition together with the structure of the
map Φ. �

Proposition 2.11. The restricted map

Φ : Rs
e,d(Q, I)→ Hom0

Q(e, J)

is GLe-equivariant.

Proof. The action of the group GLe on Re(Q, I) extends to the action

GLe × Rs
e,d(Q, I)→ Rs

e,d(Q, I)(
g, (M,f)

)
7→ (g.M, g.f)

where

g.M :=
(
gtαMαg

−1
sα

)
α∈Q1

and g.f := (fig−1
i )i∈Q0 .

On the variety of injective Q-morphisms to J the group GLe acts via

GLe ×Hom0
Q(e, J)→ Hom0

Q(e, J)(
g, (N,ψ)

)
7→ (g.N, g.ψ)

where

g.N :=
(
gtαNαg

−1
sα

)
α∈Q1

and g.ψ := (ψig−1
i )i∈Q0 .

To prove the GLe-equivariance of Φ we have to show

g.Φ(M,f) = Φ
(
g.(M,f)

)
.

The first component of Φ(M,f) is given byM and GLe acts on the first component
of Hom0

Q(e, J) and Rs
e,d(Q, I) in the same way. Hence the first component of the

map Φ is GLe-equivariant. For the second component we have to check

g.ϕ(M,f) = ϕg.(M,f).
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By the definition of Φ and the GLe-action this translates to the subsequent equa-
tions for all i ∈ Q0

ϕ
(i)
(M,f)g

−1
i = ϕ

(i)
(g.M,g.f)( ⊕

j∈Q0

⊕
p∈Pi,j(Q,I)

fj ◦Mp

)
g−1
i =

⊕
j∈Q0

⊕
p∈Pi,j(Q,I)

fjg
−1
j ◦ (g.M)p( ⊕

j∈Q0

⊕
p∈Pi,j(Q,I)

fj ◦Mp

)
g−1
i =

⊕
j∈Q0

⊕
p∈Pi,j(Q,I)

fjg
−1
j ◦ gjMpg

−1
i

=
⊕
j∈Q0

⊕
p∈Pi,j(Q,I)

fj ◦Mpg
−1
i .

Here we got from the second line on the right hand side to the third line since a
path p ∈ Pi,j(Q, I) can be written as

p = αjk ◦ · · · ◦ αj2 ◦ αj1
where i = sp = sαj1 and j = tp = tαjk for some integer k. This means that Mp is
given as

Mp = Mαjk
◦ · · · ◦Mαj2

◦Mαj1
.

Hence for (g.M)p we obtain

(g.M)p = gik+1Mαjk
g−1
ik
◦ gikMαjk−1

g−1
ik−1
◦ · · · ◦ gi3Mαj2

g−1
i2
◦ gi2Mαj1

g−1
i1

= gik+1Mαjk
◦ · · · ◦Mαj2

◦Mαj1
g−1
i1

= gjMpg
−1
i

where we write iq := sαjq and ik+1 := tαjk for simplicity and used j = ik+1 and
i1 = i in the last step. �

Now we have collected all properties required to prove the isomorphism.

Proof of Theorem 2.2. We have a GLe-equivariant isomorphism
Φ : Rs

e,d(Q, I)→ Hom0
Q(e, J)

which hence descends to an isomorphism of the geometric GLe-quotients
Ms

e,d(Q, I) := Rs
e,d(Q, I)/GLe ∼= Hom0

Q(e, J)/GLe ∼= GrQe (J).
Here the existence of the geometric quotient of the left hand side is shown by
H. Nakajima in [60]. �

2.2. One Point Extensions and Deframing

In this section, we prove that the quotient map from the variety of extended
quiver representations to the framed module space is smooth. This is required for
the proof of Theorem 2.3. For this purpose we rewrite the framed moduli space in
terms of ordinary quiver moduli. Therefore we have to add one additional point
and certain additional arrows to the original quiver. This technique was called
deframing by W. Crawley-Boevey in [24]. In this section we follow the approach
of M. Reineke as presented in the articles [62, 63].

As before, let Q be a finite quiver and I ⊂ kQ an admissible ideal of bounding
relations. A linear function

Θ : ZQ0 → Z
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is called stability forQ. The dimension ofQ-representation is given by the function
dim : repk(Q, I) −→ ZQ0 −→ Z

U 7→ d := dimU 7→
∑
i∈Q0

di.

Combining both functions the slope σΘ of a Q-representation is obtained by the
function

σΘ : repk(Q, I) −→ Q

U 7−→ Θ(dimU)
dimU

.

If we are working with a fixed stability Θ we drop the index and just write σ.
Definition 2.12. A Q-representation V ∈ repk(Q, I) is called

a) σ-stable if σ(U) < σ(V ) for all proper subrepresentations U of V and
b) σ-semistable if σ(U) ≤ σ(V ) for all proper subrepresentations U of V .

For a dimension vector d, the variety of σ-stable Q-representations is given by
Rσ−s

d (Q, I) :=
{
V ∈ Rd(Q, I) : V is stable

}
and the variety of σ-semistable Q-representations is given by

Rσ−ss
d (Q, I) :=

{
V ∈ Rd(Q, I) : V is semistable

}
.

Some properties of the variety of σ-(semi-)stable Q-representations are col-
lected in the subsequent theorem. The proofs can be found in the article by A. King
[49] and this formulation is due to M. Reineke [63, Theorem 3.2]. In the article
by M. Reineke the statement is restricted to the case of finite quivers without ori-
ented cycles. The original article by A. King is written in the generality of finite
dimensional algebras, i.e. finite quivers with an admissible set of relations. This is
the generality we need for our application.

Theorem 2.13. The σ-semistable locus Rσ−ss
d (Q, I) is an open subset of the

variety of bound quiver representations Rd(Q, I) and the σ-stable locus Rσ−s
d (Q, I)

is an open subset of Rσ−ss
d (Q, I). There exists an algebraic quotient Mσ−ss

d (Q, I) of
Rσ−ss

d (Q, I) by the group GLd and a geometric quotient Mσ−s
d (Q, I) of Rσ−s

d (Q, I)
by the group GLd. The variety Mσ−s

d (Q, I) embeds as an open subset into the
projective variety Mσ−ss

d (Q, I).
In the version of this theorem by M. Reineke there is also a dimension formula

for the variety Mσ−ss
d (Q, I) and the quotient Mσ−s

d (Q, I) is a smooth variety in
his setting. These two statements are not true if we allow oriented cycles in our
quiver Q. In this setting the path algebra kQ is not finite any more and we have
to introduce bounding relations I in order to apply A. Kings theory for modules
over finite dimensional algebras.

Definition 2.14. For a finite quiver Q and a dimension vector d ∈ ZQ0 define
the one point extension Q̃(d). The set of vertices is given by adding one extra
vertex

Q̃(d)0 := Q0 ∪ {∞}
and from every point i of Q we add di many framing arrows to the extra vertex,
i.e.

Q̃(d)1 := Q1 ∪
{
αi,k : sαi,k = i and tαi,k =∞ for all k ∈ [di]

}
.
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We denote the set of extending arrows which are added to the arrows of the
original quiver by E(Q,d). For a dimension vector e ∈ ZQ0 we define its extension
ẽ ∈ ZQ̃(d)0 by

ẽi := ei for all i ∈ Q0 and ẽ∞ := 1.
These one point extensions can be used to identify the framed quiver representa-
tions with classical representations of an extended quiver. Let I be an admissible
ideal for the path algebra kQ. Then I is also admissible for the path algebra kQ̃(d)
of the extended quiver Q̃(d).

Proposition 2.15. There is an isomorphism between the variety of represen-
tations of the extended quiver and the variety of extended quiver representations,
i.e.

Rẽ
(
Q̃(d), I

) ∼= Re,d(Q, I).

Proof. The variety of quiver representations for the extended quiver is defined
as

Rẽ
(
Q̃(d)

)
:=

⊕
α∈Q̃(d)1

Homk
(
kẽsα ,kẽtα

)
.

The set of arrows of the extended quiver consists of the arrows of the original quiver
and the extending arrows. So we can rewrite the variety of quiver representations
as

Rẽ
(
Q̃(d)

)
=
⊕
α∈Q1

Homk
(
kẽsα ,kẽtα

)
⊕

⊕
α∈E(Q,d)

Homk
(
kẽsα ,kẽtα

)
The dimension vector of the extended quiver is defined as

ẽi := ei for all i ∈ Q0 and ẽ∞ := 1

and the extending arrows all head towards the vertex ∞ which yields

Rẽ
(
Q̃(d)

)
=
⊕
α∈Q1

Homk
(
kesα ,ketα

)
⊕

⊕
α∈E(Q,d)

Homk
(
kesα ,k

)
= Re(Q)⊕

⊕
i∈Q0

⊕
k∈[di]

Homk
(
kei ,k

)
∼= Re(Q)⊕

⊕
i∈Q0

Homk
(
kei ,kdi

)
= Re,d(Q).

The relations in the ideal I only effect the first part of the direct sum decomposition
of the variety of quiver representations of the extended quiver such that every step
also works for the varieties of bounded quiver representations. �

In order to carry this isomorphism to the geometric quotients we have to iden-
tify the group actions on these varieties.

Proposition 2.16. On the variety of extended quiver representations

Rẽ
(
Q̃(d), I

)
the orbits of the groups PGLẽ := GLẽ/k∗ and GLe coincide.
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Proof. The group GLẽ acts on the variety of representations of the extended
quiver via

GLẽ × Rẽ
(
Q̃(d), I

)
→ Rẽ

(
Q̃(d), I

)(
g,M

)
7→ g.M

where
g.M :=

(
gtαMαg

−1
sα

)
α∈Q̃(d)1

.

The action of the group GLe on the variety of extended quiver representations was
defined as

GLe × Rs
e,d(Q, I)→ Rs

e,d(Q, I)(
g, (N, f)

)
7→ (g.N, g.f)

where
g.N :=

(
gtαNαg

−1
sα

)
α∈Q1

and g.f := (fig−1
i )i∈Q0 .

By the isomorphism between both varieties, each M in the variety of representa-
tions of the extended quiver corresponds to a pair (N, f) in the variety of extended
quiver representations. This isomorphism is given by the subsequent identifications

Mα = Nα for α ∈ Q0 and Mα = fi if sα = i and tα =∞.

This induces an action of the group GLe on the variety

Rẽ
(
Q̃(d), I

)
where g ∈ GLe acts via

g.M :=
{ Mαg

−1
sα if tα =∞

gtαMαg
−1
sα otherwise.

The above isomorphism is GLe-equivariant with respect to this action.
Every element of the group GLẽ can be written as a pair (g, λ) where g ∈ GLe

and λ ∈ k∗ because

GLẽ :=
∏

i∈Q̃(d)0

GLẽi(k) =
∏
i∈Q0

GLei(k)×GLe∞(k) = GLe ×GL1(k) = GLe × k∗.

The group PGLẽ is obtained by the relation

(g, λ) ∼ (h, ν) :⇔ There exists a µ ∈ k∗ s.t.
(
(µgi)i∈Q0 , µλ

)
=
(
(hi)i∈Q0 , ν

)
on the elements of the group GLẽ. With this definition of the group PGLẽ, its
action on the variety

Rẽ
(
Q̃(d), I

)
is independent of the choice of the representative, i.e.

(µg).M =
(
(µgtα)Mα(µgsα)−1)

α∈Q̃(d)1
=
(
µgtαMαg

−1
sα µ

−1)
α∈Q̃(d)1

=
(
µµ−1gtαMαg

−1
sα

)
α∈Q̃(d)1

=
(
gtαMαg

−1
sα

)
α∈Q̃(d)1

= g.M.

Hence in every class we can take (h, 1) with h ∈ GLe as representative and the
action of (h, 1) coincides with the action of h as element of the group GLe with
its action on the variety of representations of the extended quiver as introduced
above. �
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Corollary 2.17. The isomorphism

Rẽ
(
Q̃(d), I

) ∼= Re,d(Q, I).

is GLe-equivariant and the GLẽ-orbits and PGLẽ-orbits in the variety of represen-
tations of the extended quiver coincide.

With the same methods as in the proof of the above proposition it is checked
that the additional k∗-action on the extending vertex has no effect on the orbits.
Given a λ ∈ k∗ acting on the vector space over the extending vertex rescaling the
matrices acting on the spaces over the points of the original quiver by the same
parameter leads to the same point in the orbit. Moreover the GLe-equivariant
isomorphism of these varieties is compatible with the notions of stability on both
sides such that it descends to an isomorphism of the quotients.

Proposition 2.18. For the stability

Θ : repk
(
Q̃(d), I

)
→ Z

U 7→ −(dimU)∞.

there is an isomorphism

MσΘ−ss
ẽ

(
Q̃(d), I

) ∼= Ms
e,d(Q, I).

Proof. In the previous proposition we have show that the variety of quiver
representations of the extended quiver and the variety of framed quiver representa-
tions of the original quiver are isomorphic. Hence we have to relate the notions of
stability on both sides and show that the isomorphism descends to an isomorphism
of the quotients.

Let V ∈ Rẽ
(
Q̃(d), I

)
be a bounded representation of the extended quiver

Q̃(d). By Proposition 2.15 we can view V as a pair (N, f) ∈ Re,d(Q, I) where
N ∈ Re(Q, I) and all fi : kei → kdi are linear maps. With the stability Θ defined
in this proposition the representation V has slope

σΘ(V ) = − 1
dimN + 1

since e∞ = 1. Let U be a non-zero proper subrepresentation of V . For the slope
of U we distinguish two different cases.

First we compute the slope for subrepresentations U with dimU∞ = 1. In
terms of framed representations U can be written as a pair (M,h) and the slope
computes as

σΘ(U) = − 1
dimM + 1 < − 1

dimN + 1 = σΘ(V )

since U is a proper subrepresentation of V .
Now we consider subrepresentations U with dimU∞ = 0 and obtain their slope

as
σΘ(U) = − 0

dimM + 1 = 0 > − 1
dimN + 1 = σΘ(V ).

These computation shows that for this definition of stability the σΘ-stable locus
and the σΘ-semistable locus coincide. A representation V can only be stable if
there exist no proper subrepresentations U of V such that the dimension of the
subrepresentations over the extending vertex is zero. Hence U is unstable if there
is a U ⊂ V such that dimU∞ = 0.
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Again we write U = (M,h) and V = (N, f). Since dimU∞ = 0 the framing
maps hi have to send everything to zero. Let ι : M → N be an embedding. Since
U is a subrepresentation of V the maps fi have to send the image ι(M) ⊂ N
to zero. Hence ι(M) is contained in the kernels of the maps fi and the pair
(N, f) ∈ Re,d(Q, I) is not stable.

Now let M be a proper subrepresentation of N which is included in the kernel
of the maps fi. Then U := (M,f |M ) is a subrepresentation of V = (N, f) in
Rẽ
(
Q̃(d), I

)
. Since f |M = 0 we have dimU∞ = 0 and the representation V is

not σΘ-stable. Hence the notions of stability on the two isomorphic varieties are
equivalent and we obtain

RσΘ−s
ẽ

(
Q̃(d), I

)
= RσΘ−ss

ẽ
(
Q̃(d), I

) ∼= Rs
e,d(Q, I).

The insomorphism is GLe-equivariant and the GLẽ-orbits and GLe-orbits in the
variety RσΘ−s

ẽ
(
Q̃(d), I

)
coincide. Hence the isomorphism of the varieties above

descends to an isomorphism of the geometric quotients

MσΘ−ss
ẽ

(
Q̃(d), I

)
= RσΘ−ss

ẽ
(
Q̃(d), I

)
/GLẽ = RσΘ−ss

ẽ
(
Q̃(d), I

)
/GLe

∼= Rs
e,d(Q, I)/GLe = Ms

e,d(Q, I).

�

2.3. Free Group Action and Smooth Quotient Map

In this section we prove that the action of the group GLe on the variety of
extended quiver representations is free and that the quotient map to the framed
moduli space is smooth. The smoothness of the quotient map is required in order
to apply the theorem by K. Bongartz concerning the preservation of geometric
properties. For our purpose it is sufficient to work in the setting of algebraic
varieties over the field k. The statement we use to prove the smoothness of the
quotient map works for algebraic schemes and we recall it in the full generality of
its original formulation. Let G be an algebraic group and X an algebraic scheme
over k and

ρ : G×X → X; (g, x) 7→ g.x

an action of G on X. The statement we want to apply needs the subsequent notion
of freeness as introduced in the book by D. Mumford [59, Definition 0.8.iv)].

Definition 2.19. The action ρ is called free if

Ψ : G×X → X ×X
(g, x) 7→ (g.x, x)

is a closed immersion.

This is more restrictive than the notion of set theoretical freeness where the
map Ψ is only required to be injective.

Definition 2.20. Let (Y, π) be a geometric quotient of X by G. Assume that
G is flat and of finite type over S = Spec(k). If the quotient and the group action
satisfy the properties:

(1) π is a flat morphism of finite type and
(2) Ψ is an isomorphism of G×X and X ×Y X

we call X a principal fibre bundle over Y , with group G [59, Definition 0.10].
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To show that the quotient map from the variety of framed quiver representa-
tions to the framed moduli space is smooth, we use the subsequent proposition by
D. Mumford [59, Proposition 0.9].

Proposition 2.21. Let G be an algebraic group and X be an algebraic variety
over k If the action ρ of G on X is free and (Y, π) is a geometric quotient of X by
G, then X is a principal fibre bundle over Y with group G.

If we can show that the action of GLe on Rs
e,d(Q, I) is free in the sense of

D. Mumford this proposition implies that the quotient map to the framed moduli
space is a principal fibre bundle. This property is necessary to prove Theorem 2.3.
The proof of the subsequent lemma follows the proof in the article by M. Reineke
[62, Lemma 6.5].

Lemma 2.22. The action of PGLe on Rσ−ss
e (Q, I) is free.

Proof. For the stability σ as introduced in the previous section we have seen
that the stable and semistable locus coincide. Thus every representation M ∈
Rσ−ss

e
(
Q, I

)
is already stable and the stabiliser of the group GLe acting on the

representation M is isomorphic to k∗. Accordingly the stabiliser is trivial for the
action of the group PGLe := GLe/k∗ and the map

Ψ : PGLe × Rσ−ss
e

(
Q, I

)
−→ Rσ−ss

e
(
Q, I

)
× Rσ−ss

e
(
Q, I

)
(g,M) 7−→ (g.M,M)

is injective. This proves that the action is set theoretically free.
It remains to show that the image of Ψ is closed and that Ψ and Ψ−1 are

continuous. In the first component of the map Ψ we have a tuple of matrix mul-
tiplications and the second component is an identity. The inverse of a matrix and
the multiplication of matrices admit polynomial descriptions for the entries of the
resulting matrices. Hence both components of Ψ are continuous. Now we show
that Im Ψ is closed. For the rest of the proof we use the abbreviations

Rss
e := Rσ−ss

e (Q, I), Ee :=
⊕
i∈Q0

Endk(kei), G := GLe, PG := PGLe.

Define the map

Φ : Rss
e × Rss

e −→ Homk(Ee,Re)
(X,Y ) 7−→ Φ(X,Y ) : Ee −→ Re

φ = (φ)i∈Q0 7−→ Φ(X,Y )
(
(φ)i∈Q0

)
:=
(
φtαXα − Yαφsα

)
α∈Q1

.

Any Q-morphism ψ : X → Y commutes with the maps Xα and Yα by definition
and hence is send to zero by the map Φ. This implies that the kernel of the map Φ
is given by HomQ(X,Y ) which is the space of all Q-morphisms from X to Y . The
image of Ψ is the set

Im Ψ :=
{

(g.M,M) : M ∈ Rss
e , g ∈ PG

}
.

For some representative of g ∈ PG the corresponding tuple of matrices parametrises
a Q-morphism φ(g) : M → g.M such that Φ(M, g.M) is non-trivial. We want to
show that the image of Ψ has an equivalent characterisation based on the map Φ,
i.e.

Im Ψ =
{

(Y,X) ∈ Rss
e × Rss

e : ker Φ(X,Y ) 6= {0}
}

=: B.
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But first we show that Im Ψ it is closed if it is equal to B. Here ker Φ(X,Y ) 6= {0}
is equivalent to the condition that rank Φ(X,Y ) ≤ m− 1 where m is the maximal
rank for the elements of Homk(Ee,Re). Accordingly the image of Ψ is described as

Im Ψ = Φ−1
({
A ∈ Homk(Ee,Re) : rankA ≤ m− 1

})
.

The set on the right hand side is closed in Homk(Ee,Re) and hence its preimage
in Rss

e × Rss
e is closed because the map Φ is continuous as its components have

polynomial descriptions. This proves that the image of Ψ is closed under the
assumption of the above parametrisation.

It remains to show that the image of Ψ is equal to B and that there exists a
continuous inverse to Ψ. The set B is covered by open subsets UI,J for I, J ∈

([m]
r

)
which contain the pairs (X,Y ) where the I×J minor of Φ(X,Y ) is non-vanishing.
For a fixed minor we can construct a local inverse of the map Φ(X,Y ) and can
recover a tuple non-zero matrices in Ee satisfying the commutativity relations of
HomQ(X,Y ). From this tuple of matrices we can construct the unique element of
the group PG which sends X to Y . In this way we can locally invert the morphism
Ψ. Analogous to the inverse of a matrix this local inverse Ψ−1 has a polynomial
description and hence is continuous. �

Based on the technique of deframing we can use this lemma to prove the
freeness of the group action on the variety of extended quiver representations.

Corollary 2.23. The action of GLe on Rs
e,d(Q, I) is free.

Proof. In Proposition 2.15 we have identified the action of GLe on Re(Q, I)
with the action of PGLẽ on Rẽ

(
Q̃(d), I

)
. For the stability σΘ as introduced above

we have the isomorphism

Rs
e,d(Q, I) ∼= RσΘ−ss

ẽ
(
Q̃(d), I

)
and to the PGLẽ-action on the latter variety we can apply Lemma 2.22. �

Finally we can put everything together.

Corollary 2.24. The set Rs
e,d(Q, I) ⊆ Re,d(Q, I) is open. The quotient map

π : Rs
e,d(Q, I) −→ Ms

e,d(Q, I) ∼= GrQe (J)
(N, f) 7−→ [N, f ] := GLe.(N, f)

is a principal GLe-bundle. In particular, π is a smooth morphism.

Proof. We have identified Rs
e,d(Q, I) with Rσ−ss

ẽ
(
Q̃(d), I

)
which is open in-

side Rẽ
(
Q̃(d), I

)
by Theorem 2.13. The latter space is identified with Re,d(Q, I)

and hence the variety of stable framed representations is open in this space. By
Corollary 2.23 we know that GLe acts freely on Rs

e,d(Q, I). Applying the proposi-
tion by D. Mumford we arrive at the desired statement. �

2.4. Non-emptiness of the Framed Moduli Space

The interpretation of the quiver Grassmannian as framed moduli space al-
lows to lift geometric properties from the variety of quiver representations to the
corresponding quiver Grassmannian. Let Q be a finite quiver and take a dimen-
sion vector e ∈ ZQ0 with at least one positive entry. Then the variety of quiver
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representations is non-empty since it always contains the direct sum of simple rep-
resentations

Se :=
⊕
i∈Q0

Si ⊗ kei

where the simple representation Si has the vector space k over the i-th vertex and
the rest is zero.

For quiver Grassmannians the question of non-emptiness is much harder to
answer since it depends on the choice of dimension vector of the subrepresentations
and the shape of the indecomposable embeddings. For equioriented quivers of type
A these embeddings are easy to understand but in general their shape can be
arbitrarily complicated. This makes it hard to give a general criterion for the non-
emptiness of quiver Grassmannians. For Dynkin quivers there exists a criterion by
K. Möllenhoff and M. Reineke [58, Theorem 1.1].

If the quiver Grassmannian admits a description as framed moduli space there
is a criterion based on this parametrisation. In the setting of Dynkin quivers the
subsequent Lemma is proven by M. Reineke in [63, Lemma 4.1]. With the same
methods it is possible to prove the generalisation to modules over the bounded
quiver algebra of a finite connected quiver.

Lemma 2.25. Given a representationM , there exists a map f : M → V making
the pair (M,f) stable if and only if

dim HomQ

(
Si,M

)
≤ di for all i ∈ Q0.

For a pair (M,f) in the framed module space Re,d(Q, I) it is possible to define
the map

ϕ(M,f) : M → J

as in Definition 2.7. This map is injective if and only if the pair (M,f) is stable as
shown in Corollary 2.9. Hence we arrive at the following corollary.

Corollary 2.26. Given a representation M , there exists an embedding

ψ : M ↪→ J

if and only if
dim HomQ

(
Si,M

)
≤ di for all i ∈ Q0.

This criterion for the existence of embeddings is important to parametrise the
image of the projection from the quiver Grassmannian to the variety of quiver rep-
resentations as done in Section 3.5 for the equioriented cycle. This parametrisation
of the quiver Grassmannian is useful to determine strata of maximal dimension
computationally. More details about these computations are given in the section
where the parametrisation of the image is developed and in Section 3.2 where the
framed moduli interpretation is applied to compute the dimension of certain quiver
Grassmannians for the equioriented cycle.

2.5. Orbits and Strata of Quiver Representations

This section is devoted to the proof of Theorem 2.3 which links the action
of the group GLe on the variety of quiver representations and the action of the
automorphism group on the quiver Grassmannian. This link allows us to translate
various geometric properties between both varieties.
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The structure of the proof is based on the approach by M. Reineke [63]. All
the steps in the proof are similar to the Dynkin case but have to be generalised to
the setting of finite dimensional algebras, i.e. the setting of finite connected quivers
Q with an admissible ideal I describing relations on the paths.

Let π be the map
π : Rs

e,d(Q, I) −→ Ms
e,d(Q, I) ∼= GrQe (J)

(N, f) 7−→ [N, f ] := GLe.(N, f).

Define R(d)
e (Q, I) as the image of the projection

pr : Rs
e,d(Q, I) −→ Re(Q, I)

(N, f) 7−→ N.

The automorphism group for a quiver representation M with dimension vector
e := dimM is defined as

AutQ(M) :=
{
ψ ∈ HomQ(M,M) : ψi : kei → kei is bijective for all i ∈ Q0

}
and it is isomorphic to the stabiliser group of M in GLe, i.e.

AutQ(M) ∼= StabGLe(M) :=
{
g ∈ GLe : g.M = M

}
.

Lemma 2.27. Given a representationM and two embeddings ϕ,ψ ∈ Hom0
Q(M,J)

of M into an injective representation J , any automorphism a ∈ AutQ(M) of M
extends to an automorphism A ∈ AutQ(J) of J such that Aϕ = ψa.

Proof. Let J ′ ⊆ J be the injective hull of ϕ(M) ⊆ J , i.e. the smallest injec-
tive subrepresentation of J containing the image ϕ(M). The quiver representation
J is injective and can be written as direct sum of injective indecomposable represen-
tations of Q. Hence we can write it as J = J ′ ⊕ J ′′ where J ′′ is the complement of
J ′ in J . For the morphism ϕ there also exists a decomposition into the components
ϕ′ and ϕ′′ such that ϕ′(M) = ϕ(M) and ϕ′′ ≡ 0.

By definition the injective hull of a representation is unique up to isomorphism.
Hence the map

ψ ◦ a : M → J

factors into (ψ ◦ a)′ and (ψ ◦ a)′′ with (ψ ◦ a)′(M) = ψ ◦ a(M) and (ψ ◦ a)′′ ≡ 0
together with an injective hull J̃ ′ such that there exists an isomorphism A′ : J ′ → J̃ ′

satisfying A′ϕ′ = ψa.
Since J , J ′ and J̃ ′ are injectiveQ-representations which can be written as direct

sums of indecomposable injective Q representations and J ′ and J̃ ′ are isomorphic
there also exists an isomorphism

A′′ : J ′′ → J̃ ′′.

The map A with components A′ and A′′ becomes an automorphism of J and
satisfies Aϕ = ψa by construction. �

Lemma 2.28. Two subrepresentations of an injective representation J are con-
jugated under the action of AutQ(J) if and only if they are isomorphic.

Proof. Following the universal Grassmannian construction, subrepresenta-
tions U of the representation J can be described by subspaces Ui in the vectorspaces
Ji for i ∈ Q0 which are compatible with the maps Jα for α ∈ Q1. The maps Uα
can be defined as the restrictions of Jα, i.e. Uα := Jα|Usα .
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An element A of the automorphism group AutQ(J) acts on J as

A.J =
( (

Ai(Ji)
)
i∈Q0

,
(
AtαJαA

−1
sα

)
α∈Q0

)
=
( (
Ji
)
i∈Q0

,
(
Jα
)
α∈Q0

)
.

This induces an action on the subrepresentations of J by

A.U =
( (

Ai(Ui)
)
i∈Q0

,
(
Jα|Asα (Usα )

)
α∈Q0

)
.

Hence two subrepresentations U and V of J are conjugated by the automorphisms
of J if and only if there exists an A ∈ AutQ(J) such that

Ai(Ui) = Vi

holds for all i ∈ Q0 and the restrictions ai := Ai|Uiwhich are invertible satisfy
atαUαa

−1
sα = atαJα|Usαa

−1
sα = Jα|asα (Usα ) = Jα|Vsα = Vα.

This proves that U and V are conjugated by some element of GLe where e := dimU
and hence they are isomorphic.

For the other direction let U and V be two isomorphic subrepresentations of
J . Hence there exists an isomorphism ρ : U → V and two embeddings ϕ : U ↪→ J
and φ : V ↪→ J such that

ψ (U) := φ ◦ ρ (U) = φ (V ).
Now we can apply the previous lemma to U,ϕ and ψ and obtain an automorphism
A of J conjugating the subrepresentations (U,ϕ) and (V, φ). �

The subsequent lemma is commonly known and for example applied by K. Bon-
gartz to obtain Corollary 1 from Theorem 3 in [8].

Lemma 2.29. Let G and H be special algebraic groups and Z a G×H-variety
with two morphisms φ : Z → X and ψ : Z → Y such that:

(a) φ is a G-equivariant smooth H-quotient,
(b) ψ is a H-equivariant principal G-bundle,
(c) The image of a G-orbit in X under the map ψ ◦ φ−1 is a H-orbit in Y .

Then the map ψ ◦ φ−1 : X → Y induces a bijection between G-stable subvarieties
of X and H-stable subvarieties of Y . This correspondence preserves and reflects
closures, inclusions and types of singularities occurring in orbit closures.

In the setting of the article by K. Bongartz a stronger version of (a) is satisfied.
Namely it is of the same form as part (b). But it is still sufficient to make the above
assumption in order to obtain the properties of the orbit correspondence. It would
even be sufficient to use analogous requirements for part (b) as in part (a) of
the above version. We prove Theorem 2.3 by showing that the above conditions
(a), (b), (c) are satisfied in our setting where Z = Rs

e,d(Q, I), X = R(d)
e (Q, I),

Y = Ms
e,d(Q, I), G = GLe and H = AutQ(J). For the original version it was

sufficient to assume that the groups are algebraic and with the above version it
still might be sufficient to assume that the algebraic groups are connected. But the
groups in our application are even special such that it is not necessary to extend
the generality of the above lemma.

Proof of Theorem 2.3. The proof in the setting of bound quiver represen-
tations works in the same way as the proof for quivers without relations given by
M. Reineke in [63]. Hence we prove the statement following his approach. We have
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pr π

GLe
Rs

e,d(Q, I)
AutQ(J)

GLe R(d)
e (Q, I) Ms

e,d(Q, I) AutQ(J)

were π is the geometric GLe quotient and pr is the projection as defined above.
The projection pr factors into and open immersion

ι : Rs
e,d(Q, I) ↪→ Re,d(Q, I)

and a projection
p : Re,d(Q, I) = Re(Q, I)×Homk(e,d)→ Re(Q, I)

along an affine space since the stability form the above definition describes an open
subset of Re,d(Q, I) and the projection to the variety of quiver representations
is given by forgetting the information about the framing which is encoded by an
element in Homk(e,d).

Open immersions are smooth and trivial fibrations where the fibre is a smooth
variety are also smooth. Hence the map pr is smooth as the concatenation of two
smooth morphisms. By the definition of the map pr it is clear that this map is
GLe-equivariant and it is AutQ(J)-invariant since it forgets the framing in J . The
surjectivity of pr follows from the definition of R(d)

e (Q, I) and we can apply the
quotient criterion [51, Satz 3.4] to show that pr is a AutQ(J)-quotient. It follows
that all assumptions of (a) are satisfied.

The quotient map π is AutQ(J)-equivariant because the action of GLe and the
AutQ(J) action commute. This follows from the GLe equivariance of the isomor-
phism of Rs

e,d(Q, I) and Hom0
Q,I(e, J) and the properties of both actions on the

second space. Moreover π is a principal GLe-bundle and smooth by Corollary 2.24.
Accordingly it satisfies part (b) of Lemma 2.29.

By Lemma 2.28 we know that two subrepresentations of J are conjugate under
the action of AutQ(J) if and only if they are isomorphic. Hence the image of a
GLe-orbit in R(d)

e (Q, I) under the map
π ◦ pr−1 : R(d)

e (Q, I)→ Ms
e,d(Q, I)

is a AutQ(J)-orbit in Ms
e,d(Q, I). This proves that part (c) of Lemma 2.29 is

satisfied. Moreover distinct GLe-orbits cannot have the same AutQ(J)-orbit as
image. From the definition of R(d)

e (Q, I) it follows that all of the AutQ(J)-orbits in
Ms

e,d(Q, I) are obtained in this way. Thus we have even shown the bijectivity of the
map between GLe-stable subvarieties of R(d)

e (Q, I) and AutQ(J)-stable subvarieties
of Ms

e,d(Q, I). Hence all conditions of Lemma 2.29 are satisfied and we can apply
it to obtain the statement of the theorem. �





CHAPTER 3

The Equioriented Cycle

In this chapter we introduce nilpotent representations of the equioriented cy-
cle and a class of quiver Grassmannians containing subrepresentations of certain
nilpotent representations. These quiver Grassmannians are used to describe ap-
proximations of partial degenerations of the affine Grassmannian and the affine
flag variety of type gln in Chapter 5 and Chapter 6.

The geometric properties of these quiver Grassmannians are examined in Sec-
tion 3.4. In Section 3.2 we develop a formula to compute the dimension of the
space of morphisms between two nilpotent representations of the cycle based on
word combinatorics for the representations. In Section 3.1 we recall results about
the variety of quiver representations for nilpotent representations of the equiori-
ented cycle which were obtained by G. Kempken in her thesis [48].

From now on let ∆n be the quiver

1
2

3

i

n− 1

n

α1

α2αn−1

αn

α3

αi−1αi

αn−2

The vertices of the equioriented cycle are in bijection with Zn := Z/nZ. For every
i ∈ Zn we define the path with ` arrows starting at vertex i as

pi(`) := (i|αiαi+1 . . . αi+`−1|i+ `).
The path algebra k∆n is denoted by An. This algebra is not finite dimensional
because there are paths pi(`) of arbitrary length around the cycle. To stay in
the setting of finite dimensional algebras we have to define an admissible ideal of
relations. Let

IN := 〈 pi(N) : i ∈ Zn 〉 ⊂ k∆n

be the ideal of the path algebra generated by all paths of length N . For N ∈ N
we define the bounded path algebra ANn := k∆n/IN . The subsequent result is a
special case of Theorem 1.2.

Proposition 3.1. The category repk(∆n, IN ) of bounded quiver representa-
tions is equivalent to the category ANn -mod of (right) modules over the bounded
path algebra.

37
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Let Pi ∈ repk(∆n, IN ) be the projective bounded representation of ∆n at vertex
i ∈ Zn. Define the projective representation

X :=
⊕
i∈Zn

Pi ⊗ kxi

where xi ∈ N for all i ∈ Zn. Analogous let Ij ∈ repk(∆n, IN ) be the injective
bounded representation of ∆n at vertex j ∈ Zn and define the injective represen-
tation

Y :=
⊕
j∈Zn

Ij ⊗ kyj

with yj ∈ N for all j ∈ Zn.
Throughout this chapter we study quiver Grassmannians of the form

Gr∆n
e (X ⊕ Y )

where e := dimX is the dimension vector of X. This class of quiver Grassmanni-
ans is similar to the class of quiver Grassmannians for Dynkin quivers studied by
G. Cerulli Irelli, E. Feigin and M. Reineke in [20]. The main difference is that here
we take a non Dynkin quiver which additionally has an oriented cycle such that its
path algebra is not finite any more.

It turns out that this generality is sufficient to provide finite dimensional ap-
proximations of the affine Grassmannian and the affine flag variety and their degen-
erations in type gln. This is done in Chapter 5 and Chapter 6. One key to the study
of these varieties is the observation that all bounded projective representations of
the equioriented cycle are bounded injective representations.

Let M ∈ repk(∆n) be a representation of the equioriented cycle. By definition
it consists of a tuple of vector spaces (Vi)i∈Zn and a tuple of linear maps(

Mi : Vi → Vi+1

)
i∈Zn

.

Define V := ⊕i∈ZnVi and the linear map AM : V → V which is of the form

AM :=



0 0 . . . 0 0 Mn

M1 0 . . . 0 0 0

M2
. . .

...
...

...
. . . 0 0 0

0 Mn−2 0 0
Mn−1 0


where all blocks in the matrix below the diagonal with the blocks Mi for i ∈ [n−1]
are equal to zero. The representation M ∈ repk(∆n) is called nilpotent if there
exists an integer ` ∈ N such that A`M = 0. This is equivalent to the condition that
Mpi(`) = 0 for all i ∈ Zn. Accordingly the nilpotent representations of the cycle are
representations of the bound quiver (∆n, IN ) for some bounding parameter N ∈ Z.

For ` ∈ N and i ∈ Zn define V := k` and the map A : V → V . It acts on the
standard basis vectors of V by

A(ej) :=
{ej+1 if j < `

0 if j = `.

This describes a representation of ∆n by the decomposition of V into the spaces
Vi for i ∈ Zn induced by ek ∈ Vi+k−1. This representation of the oriented cycle is
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denoted by Ui(`). For j := i + ` − 1 in Zn this decomposition of V and the map
A are represented by the following picture where the dots correspond to the basis
vectors ej for j ∈ [`] and an arrow indicates the map ej → ej+1 and the separation
of the dots into tuples over the vertices of the quiver represent the basis vectors for
the spaces Vi.

i

i + 1
j − 1

j

j + 1

i − 1

Proposition 3.2 (Proposition 3.24 in [67]; Theorem 7.6 in [50]). All inde-
composable nilpotent representations of ∆n are of the form Ui(`) for i ∈ Zn and
` ∈ N.

These graphical interpretations of quiver representations are called coefficient quiv-
ers. Under certain circumstances they turn out to be useful in the computation of
the Euler characteristics of quiver Grassmannians. Coefficient quivers are formally
introduced in Definition 4.8. We give some examples and applications in Sec-
tion 4.5. In the Chapter 5 and Chapter 6 they are used to compute the Poincaré
polynomials for the approximations of the affine Grassmannian and the affine flag
variety. Based on this description of the indecomposable nilpotent representations
of the equioriented cycle we can prove that projective and injective representations
are isomorphic. This is a direct consequence of their definition based on paths in
the quiver as given in Section 1.4.

Corollary 3.3. For n,N ∈ N and all i, j ∈ Zn the projective and injective
representations Pi and Ij of the bound quiver (∆n, IN ) satisfy

Pi ∼= Ui(N) ∼= Ii+N−1 and Ij ∼= Uj−N+1(N) ∼= Pj−N+1.

This allows us to apply Theorem 2.2 to the class of quiver Grassmannians as
introduced above. Accordingly it is possible to realise these quiver Grassmannians
as framed moduli spaces

Gr∆n
e (X ⊕ Y ) ∼= Ms

e,d(∆n, IN )

where di := yi + xi−N+1. With this identification we are able to deduce re-
sults about the geometric properties of the quiver Grassmannian from the variety
of quiver representations using Theorem 2.3. The latter variety was studied by
G. Kempken in her thesis [48]. Below we recall some of her results about orbit
closures and singularities.
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3.1. Orbits and Singularities in the Variety of Quiver Representations

In this section we collect some of the main ideas from the thesis of G. Kempken
[48]. Originally it was published in German and can not be found online and is
only available in a few libraries. If not pointed out differently, everything which
is written in this section can be found in her thesis and the translation is as close
to the original text as possible. The aim of her work is to describe the orbit
structure of Re(∆n) and the types of singularities occurring in the orbit closures.
We want to use her results to derive informations about the structure of the quiver
Grassmannians for ∆n as introduced in above. The remarks in this section are
added to the original material to point out the connection to quiver Grassmannians.

Let Z be an irreducible variety of dimension n and f : W → Z is a resolution
of singularities, i.e. W is smooth and f is proper and birational. Z has rational
singularities if Z is normal and the higher direct images Rif∗OW of the structure
sheaf OW vanish for i > 0.

Theorem 3.4 ([46], p. 50). Z has rational singularities if and only if
a) Z is normal and Cohen-Macaulay.
b) For every n-form w defined on the smooth points of Z it is possible to

extend f∗w to W .

Theorem 3.5 (p. 67). The orbit closures inside Re(∆n) have rational singu-
larities.

Remark. For a representation U ∈ Re(∆n, IN ) the closure of the orbit in-
side Re(∆n) and its closure in Re(∆n, IN ) coincide such that we can apply this
theorem to bounded quiver representations. By application of Theorem 2.3 by
K. Bongartz we get rationality of the singularities in the closures of the strata in
the corresponding quiver Grassmannians.

3.1.1. Minimal Degenerations of Orbits. Every quiver representationX ∈
Re(∆n, IN ) can be written as direct sum of indecomposable nilpotent representa-
tions Ui(`) with ` ≤ N . This is proven in the thesis and can also be found in [50,
Theorem 7.6].

Definition 3.6. For a nilpotent representation Ui(`) of the equioriented cycle
on n vertices the corresponding word wi(`) is defined as

wi(`) := i i+ 1 i+ 2 . . . i+ `− 2 i+ `− 1
where we view each number in Zn.

To each quiver representation X we assign a diagram

ϑX =

wr

...
w2

w1

consisting of words w1, . . . , wr corresponding to the indecomposable summands in
the decomposition of X with the same order as for the summands of X.

Remark. By convention we always write the words in a diagram such that
the last letters of the words are in one column. This helps us to count repetitions
of certain letters in the words starting from their end as used in Proposition 3.10.
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Example 3.7. Let n = 4, X = U1(5)⊕ U2(4)⊕ U3(3)⊕ U4(2). Then

ϑX =

41
341

2341
12341

Proposition 3.8 (p. 28). Two elements of Re(∆n, IN ) are conjugate under
the action of G := GLe if and only if their diagrams are the same with respect to
permutations of the words.

Let X and Y be elements of Re(∆n, IN ) with diagrams ϑX and ϑY . If G.Y
is included in the closure G.X, we write ϑY ≤ ϑX . We call Y and X (resp.
ϑY and ϑX) adjacent if G.Y ⊂ G.X and there exists no Z ∈ Re(∆n, IN ) with
G.Y ( G.Z ( G.X, i.e. the orbit G.Y is dense in G.X \G.X. For adjacent X and
Y we call G.Y ⊂ G.X (resp. ϑY < ϑX) a minimal degeneration.

The subsequent proposition characterises the orbits and orbit closures in the
variety of nilpotent representations. For i ∈ Zn, j ∈ ZN and U ∈ Re(∆n, IN ) define

U◦jαi := Uαi+j ◦ Uαi+j−1 ◦ · · · ◦ Uαi+2 ◦ Uαi+1 ◦ Uαi .

Proposition 3.9 (p. 32). The orbit closure of the nilpotent representation
X ∈ Re(∆n, IN ) is given as

G.X =
{
Y ∈ Re(∆n) : corank Y ◦jαi ≥ corankX◦jαi for all i ∈ Zn, j ∈ ZN

}
.

In particular G.X contains only nilpotent representations of ∆n.

For a representation X ∈ Re(∆n, IN ) let xp(i) be the number of repetitions of
the letter i ∈ Zn in the last p columns of the diagram ϑX .

Proposition 3.10 (p. 69). Let X,Y ∈ Re(∆n, IN ). Then

G.Y ⊆ G.X ⇐⇒ yp(i) ≥ xp(i) for all i ∈ Zn and all p ∈ [N ].

For two words w1 and w2 in the letters Zn, we can build the word w1w2 if w1
ends with i and w2 starts with i+ 1.

Example 3.11. Let n = 4 and consider the words w1 = 23412 and w2 = 341234
which correspond to the representations U2(5) and U3(6). It is possible to build

w1w2 = 23412341234
which corresponds to the indecomposable representation U2(11) but w2w1 does not
exist.

Theorem 3.12 (p. 73). For a minimal degeneration ϑY < ϑX it is possible to
obtain the diagram of Y from the diagram of X by replacing a pair of words w, w′
in ϑX of the form w = w1w2w3, w′ = w2 by the pair w2w3, w1w2. Here the wi
satisfy one of the following conditions:

A) |w3| < n and |w1| ≥ |w3|,
B) |w1| < n and |w3| ≥ |w1|,
C) |w1| = n and |w3| = r · n for r ≥ 1.

Remark. This result can also be used to describe the degeneration starting
from Y . Thus it is possible to determine the orbit structure of Re(∆n, IN ) starting
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from the orbit of Se which is zero-dimensional and is included in every orbit closure
of nilpotent representations.

Moreover we can describe the structure of the stratification of a quiver Grass-
mannian for ∆n if we start with a representative of the stratum of smallest di-
mension and use that by Theorem 2.3 the representatives of closures of strata and
closures of orbits coincide. This stratum can be determined using Lemma 4.19.

Theorem 3.13 (p. 96). Let ϑY < ϑX be a minimal degeneration of type A,B
or C from Theorem 3.12 and let e denote the number of words in ϑY which are of
the form w1w2 or w2w3. Then

codimG.X G.Y =
{ e− 1 in case A and B

2(e− 1) in case C

Remark. The results in Section 3.2 about the Hom-space dimensions allow
us to use this theorem to compute the codimension in the closures of the strata.

3.1.2. Singularities in Minimal Degenerations and in Codimension
2. Let U and W be two varieties with u ∈ U and w ∈ W . The singularity of U
in u is called smooth equivalent to the singularity of W in w if there exists a
variety Z, a z ∈ Z and two morphisms

f : Z → U and g : Z →W

such that f(z) = u, g(z) = w and f and g are smooth [1], [43].
This defines an equivalence class of punctured varieties (U, u) which we denote

by Sing(U, u). For the action of an regular algebraic group on U we get
Sing(U, u) = Sing(U, u′)

if u and u′ belong to the same orbit O. In this case Sing(U,O) denotes the equiv-
alence class.

Let U and W be vector spaces of dimension p respective q and define
Dp,q :=

{
X ∈ Hom(U,W ) : rankX = 1

}
.

For the closure we obtain
Dp,q = Dp,q ∪ {0}

and 0 is an isolated rational singularity in Dp,q [48, Section 4.5.], [47, §3]. We
denote this equivalence class by dp,q, i.e.

dp,q := Sing
(
Dp,q, 0

)
.

In End(U) there exists a uniquely determined nilpotent conjugation class C of
minimal dimension 2(p− 1) [48, Section 5.9.c)].

The closure of C is C = C ∪ {0} and 0 is an isolated singularity in C [52, 2.3].
We denote this equivalence class by ap−1, i.e.

ap−1 := Sing(C, 0).
Let N be the set including all nilpotent elements of End(U). There is a unique

nilpotent orbit of codimension 2 in N , the so called subregular orbit Os. By a
result of E. Brieskorn we get

Sing(N,Os) = Ap−1

where Ap−1 := Sing(Z, 0) is the singularity of the surface
Z :=

{
(x, y, z) ∈ C3 : xp + yz = 0

}
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in the origin [12].
We have the following relations on the types of singularities:

A1 = a1, dp,q = dq,p

and Dp,q is smooth for p = 1 or q = 1.
Now we want to determine Sing(G.X,G.Y ) explicitly. For type A and B we

define p as the number of words of the form w1w2 in ϑY and q as the number of
words of the form w2w3 in ϑY .

For type C we distinguish the cases:
C1): |w1| = |w3| = n, i.e. w1w2 = w2w3. Here we set ` as the number of words of
the form w1w2 in ϑY .
C2): |w1| = n and |w3| = r · n for r ≥ 1. We set ` := r + 1.

Theorem 3.14 (p. 114). Let X and Y be adjacent elements of Re(∆n, IN ).
Then

Sing
(
G.X,G.Y

)
=
{ dp,q in case A and B
a`−1 in case C1
A`−1 in case C2.

Theorem 3.15 (p. 132). Let X and Y be adjacent elements of Re(∆n, IN )
and codimG.X G.Y = 2. Then G.X is smooth in G.Y or Sing(G.X,G.Y ) = A` for
some ` ∈ N.

This ` is determined uniquely and the closures of the orbits are smooth in
codim ≤ 2 if ei = 0 for some i ∈ Zn. If codimG.X G.Y = 1, the closure G.X is
smooth in the orbit G.Y because G.X is normal [69, II, §5, Theorem 5].

3.2. Morphisms of Quiver Representations and Words

In this subsection we develop the main tools required to prove the parametri-
sation of the irreducible components for the class of quiver Grassmannians for the
equioriented cycle as introduced in the beginning of this chapter.

Recall that to each indecomposable nilpotent representation of the equioriented
cycle there is assigned a word with letters in Zn. Define rj(w) as the number of
repetitions of the letter j in a word w. These numbers can be used to compute
the dimension of the space of morphisms between two indecomposable nilpotent
representations of the cycle. The linearity of the morphisms allows us to generalise
this formula to compute the dimension of the morphism space for all nilpotent
representations of the cycle.

Proposition 3.16. For two indecomposable nilpotent representations Ui(`)
and Uj(k) of ∆n let wi(`) and wj(k) be the corresponding words. Then the dimen-
sion of the space of morphisms from Ui(`) to Uj(k) is computed as

dim Hom∆n

(
Ui(`), Uj(k)

)
= min

{
ri
(
wj(k)

)
, rj+k−1

(
wi(`)

)}
= rj+k−1

(
wi(m)

)
.

where m := min{`, k}.

This proposition is just a different formulation of the subsequent theorem by
A. Hubery [44, Theorem 16 (1) ].
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Theorem 3.17. Let M(i;`) and M(j;m) be two indecomposable nilpotent rep-
resentations of the equioriented cycle. The dimension of the space of morphisms
from M(i;`) to M(j;m) is computed as

dim Hom∆n

(
M(i;`),M(j;m)

)
=
∣∣{max{0, `−m} ≤ r ≤ `− 1 : r ≡ j − i mod n

}∣∣.
In this statement the orientation of the quiver is the other way around, i.e.

the index of the vertices decreases by one along an arrow whereas in this work it
increases by one.

Moreover the indecomposable nilpotent representations have an injective la-
belling, i.e. M(j;N) = Ij in repk(∆n, IN ) where in this work we label the inde-
composable nilpotent representations Ui(`) projective such that Ui(N) = Pi in
repk(∆n, IN ).

For some applications it is useful to work with the injective labelling of rep-
resentations of the equioriented cycle. This is the case if we look at embeddings
of indecomposable representations or successor closed subquivers of the coefficient
quiver of a quiver representations as done in Chapter 4. Hence we define

U(j;N) := Uj−N+1(N).

Proof of Proposition 3.16. Translating the theorem of Andrew Hubery
into our notation we obtain

dim Hom∆n

(
Ui(`), Uj(m)

)
=
∣∣{0 ≤ r ≤ min{`,m}−1 : r ≡ j− i+m−1 mod n

}∣∣.
This holds since both sets count the possibilities to write the words corresponding
to the source and target representation of the morphisms parallel such that in the
overlap both words have the same letters, the word of the source representation
does not start before the word of the target representation and the word of the
target representation does not end after the word of the source representation.

In our notation this equals the number of repetitions of the letter j + m − 1
in the word corresponding to Ui(k) with k = min{`,m} where we have to use the
minimum to ensure that the word of the source representation Ui(`) does not start
before the word of the target representation Uj(m).

This can also be done by taking the minimum of the repetitions of the letter
j + m − 1 in the word corresponding to Ui(`) and the repetitions of the letter i
in the word corresponding to Uj(m) such that both, the ending and the starting
condition are handled in the same way. �

It is also possible to compute the dimension of the space of morphisms by
counting certain repetitions of the letter i in the word corresponding to Uj(k).
Here we have to exclude the repetitions coming before max{0,m − `} such that
the parametrisation of the word wherein we have to count the repetitions becomes
more complicated and we exclude this case from the proposition.

Definition 3.18. An embedding of quiver representations ϕ : U ↪→ V is called
decomposable if there are embeddings

ψ1 : U1 ↪→ V1 and ψ2 : U2 ↪→ V2

such that U = U1⊕U2 holds and for the decomposition V = V1⊕V2 both summands
are non-zero. An embedding which is not decomposable is called indecomposable.
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This does not imply that the original embedding ϕ equals the embedding of
the decompositions

ψ = (ψ1, ψ2) : U1 ⊕ U2 ↪→ V1 ⊕ V2.

Proposition 3.19. In the category repk(∆n, IN ) all indecomposable embed-
dings of representations are of the form

ϕ : Ui(`) ↪→ Ui−k(`+ k)
for k ∈ Z≥0.

Remark. With the notation using an injective labelling of indecomposable
representations, the indecomposable embeddings are of the form

ϕ : U(j; `) ↪→ U(j; `+ k)
for k ∈ Z≥0.

This result about the structure of the embeddings of quiver representations for
∆n helps us to examine the structure of the corresponding quiver Grassmannians.
For the proof we require some statements about the structure of coefficient quivers
which will be introduced in Chapter 4. This section is independent of the current
section and therein we give a proof of this proposition using Corollary 4.12.

It is also possible to prove this statement independent of the results about
torus fixed points. For that independent proof we require information about the
structure of Auslander Reiten quivers for ∆n. But since we do not need it elsewhere,
we decide to omit their construction and the results about their shape from this
thesis. The structure of Auslander Reiten quivers for ∆n is very similar to the
structure of Auslander Reiten quivers for equioriented quivers of type A.

We can use the word combinatorics to compute the dimension of the space of
morphisms from an arbitrary representation in Re(∆n, IN ) to an indecomposable
representation of maximal length in this variety of quiver representations.

Proposition 3.20. Let M ∈ Re(∆n, IN ) then
dim Hom∆n

(
M,Ui(N)

)
= ei+N−1 for all i ∈ Zn.

Remark. Here it is important that the indecomposable representation Ui(N)
is of maximal length or at least longer than every summand of M . Otherwise
M could contain Ui−1(N + 1) which contradicts the statement of the proposition
because

dim Hom∆n

(
Ui−1(N + 1), Ui(N)

)
= 0

by Proposition 3.16 since ri+N
(
wi(N)

)
= 0. For the injective labelling of the

indecomposable representations the statement of the proposition reads as
dim Hom∆n

(
M,U(j;N)

)
= ej for all j ∈ Zn.

Proof of Proposition 3.20. Every representationM ∈ Re(∆n, IN ) is nilpo-
tent and can be written as direct sum of indecomposable nilpotent representations,
namely

M ∼=
⊕
j∈Zn

⊕
`∈[N ]

Uj(`)⊗ kmj,` .

Thus
dim Hom∆n

(
M,Ui(N)

)
=
∑
j∈Zn

∑
`∈[N ]

mj,` · dim Hom∆n

(
Uj(`), Ui(N)

)
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because the morphisms of quiver representations are linear.
Now it suffices to show

dim Hom∆n

(
Uj(`), Ui(N)

)
=
(
dimUj(`)

)
i+N−1.

We want to apply Proposition 3.16. By assumption we know that ` ≤ N and hence
we have to count the repetitions of the vertex i + N − 1 (which is the end point
of Ui(N)) in the word wj(`) corresponding to Uj(`). This value is given by the
(i+N − 1)-th entry of the dimension vector of Uj(`). �

Proposition 3.20 implies that the codimension of the orbits in Re(∆n, IN )
equals the codimension of the strata in the quiver Grassmannian Gr∆n

e (X ⊕ Y ).
Accordingly we can compute the orbit dimensions in Re(∆n, IN ) for the elements
of the Grassmannian Gr∆n

e (X ⊕ Y ) in order to find the strata of highest dimen-
sion in the quiver Grassmannian. By Lemma 1.3 the dimension of the stratum of
U ∈ Gr∆n

e (X ⊕ Y ) is given as

dim Hom∆n

(
U,X ⊕ Y

)
− dim End∆n

(
U
)
.

For the first part we can apply Proposition 3.20 and obtain

dim Hom∆n

(
U,X ⊕ Y

)
= dim Hom∆n

(
X,X ⊕ Y

)
for all U ∈ Gr∆n

e (X⊕Y ) because X and Y consist of summands of the form Ui(N)
and the morphisms are linear. Hence we are interested in the value of

dim End∆n

(
U
)

= dim Hom∆n

(
U,U

)
and want to find the elements of the quiver Grassmannian minimising this value.
This is equal to the codimension of an orbit in the variety of quiver representations
because for U ∈ Re(∆n, IN ) we compute its orbit dimension as

dim GLe.U = dim GLe − dim Hom∆n

(
U,U

)
.

For the rest of this section, we turn our attention to the dimensions of the
orbits in Re(∆n, IN ) for elements of the quiver Grassmannian Gr∆n

e (X ⊕ Y ).

Remark. Let Q be a Dynkin quiver and let X, Y be exceptional representa-
tions of Q such that Ext1

Q(X,Y ) = 0. Then

dim HomQ

(
U,U

)
≥ dim HomQ

(
X,X

)
holds for all U ∈ GrQe (X ⊕ Y ), i.e. the dimension of the orbit of X in Re(Q) is the
highest among all elements of the quiver Grassmannian. Thus we obtain

dim GrQe (X ⊕ Y ) = dim HomQ

(
X,Y

)
and the quiver Grassmannian is the closure of the stratum of X. For more details
on this see Section 3.1 in [20].

Unfortunately this does not hold in full generality for the equioriented cycle.

Proposition 3.21. Let N = ω · n for ω ∈ N. Then

dim Hom∆n

(
U,U

)
≥ dim Hom∆n

(
X,X

)
holds for all U ∈ Gr∆n

e (X ⊕ Y ).
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There are counter examples for this result if N 6= ω · n. To carry out the
computations in the examples is lengthy such that we put them in the appendix
to this thesis (see Example A.2 and Example A.3).

The indecomposable representation Ui(ωn) has length ωn which means that in
the picture of Proposition 3.2 it is winding around the cycle on n points exactly ω
times. For this reason we refer to ω as winding number.

Proof. The idea of the proof is to show that for every element U ∈ Gr∆n
e (X⊕

Y ) its orbit in the variety of quiver representations degenerates to an orbit with
the same codimension as the orbit of X or already has the same codimension. In
the first case it follows from the definition of the degeneration of orbits that the
codimension of its orbit is strictly bigger. The subsequent property of a subrepre-
sentation helps us to decide how far the representation is degenerate from X.

For U ∈ Gr∆n
e (X ⊕ Y ) define the set

S(U) :=
{
Ui(`) ⊆ U summand : ` < N

}
including all direct summands of U which are not of maximal length. If the set
S(U) is empty, we directly obtain

dim Hom∆n

(
U,U

)
= dim Hom∆n

(
X,X

)
since

dim Hom∆n

(
Ui(N), Uj(N)

)
= ω

for all i, j ∈ Zn and N = ω · n. This follows from Proposition 3.20 if we set
M = Ui(N).

Now let U ∈ Gr∆n
e (X ⊕ Y ) be given such that S(U) 6= ∅. Since all entries of

the dimension vector dimU are equal and it is divided into segments of length at
most N , S(U) has to contain at least two elements.

We can find Ui(`), Uj(k) ∈ S(U) and can assume without loss of generality
that j is contained in the word wi(`+ 1). This pair has to exist because otherwise
the dimension vector of U could not be homogeneous, i.e. all entries are equal. By
changing the labelling of the two representations we can ensure that they satisfy
the relation we want.

Let w2 be the overlap of the words wi(`) and wj(k). We can write them as
wi(`) = w1w2 and wj(k) = w2w3 where it is possible that w2 is the empty word.

We define

Û := U ⊕ Ui(i− j + `+ k)⊕ Uj(j − i) \ Ui(`) \ Uj(k).

This representation Û embeds into the same summands of X ⊕ Y as U did. By
Proposition 3.19 we know that Ui(i − j + ` + k) embeds into the same Up(N) as
Uj(k) and Uj(j− i) embeds into the same Uq(N) as Ui(`). Moreover U and Û have
the same dimension vector. It remains to show that dimOU < dimOÛ .

In the terminology of words the representation Ui(i− j+ `+ k) corresponds to
w1w2w3 and Uj(j − i) corresponds to w2. We can assume that the word w1w2w3
has not more than N letters because there have to exist wi(`) = w1w2 and wj(k) =
w2w3 such that this is satisfied. Without such words it would not be possible that
the dimension vector of U is homogeneous and that all words corresponding to it
have at most N letters.

Following Theorem 3.12 the orbit of U degenerates to the orbit of Û . Hence
we get OU ⊂ OÛ and dimOU < dimOÛ . This degeneration might not be minimal
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but here it is not of interest to find minimal degenerations. Thus we do not have
to satisfy the restrictions on the words in the theorem.

Since all the vector spaces Ui for i ∈ Zn corresponding to the subrepre-
sentation U are equidimensional we can apply this procedure starting from any
U ∈ Gr∆n

e (X ⊕ Y ) until we arrive at an Û ∈ Gr∆n
e (X ⊕ Y ) with S(Û) = ∅. Thus

we obtain
dim Hom∆n

(
U,U

)
> dim Hom∆n

(
X,X

)
for every U ∈ Gr∆n

e (X ⊕ Y ) with S(U) 6= ∅. �

For the proof it is crucial that the dimension vector of the subrepresentations is
homogeneous and that the length of the cycle divides the length of the indecompos-
able projective and injective representations. This is guaranteed by the condition
N = ωn. Otherwise we can not assure that the gluing procedure of the words ends
in a representation with S(U) = ∅. In this setting it is not possible to control
the minimal codimension of the orbits which could be obtained as explained in
Example A.2 and Example A.3.

3.3. Irreducible Components of the Quiver Grassmannian for N = ω · n

For the remainder of this chapter we restrict us to the case N = ωn. The
bounded projective and injective representations in repk(∆n, Iωn) will be denoted
by Pωi and Iωj . From the proof of Proposition 3.21 it follows not only that all
subrepresentations in Gr∆n

e (X ⊕Y ) have bigger or equal codimension than X. We
even get a characterisation of the subrepresentations with the same codimension
as X. Namely they are parametrised by the condition S(U) = ∅. Based on this
observation we can determine the dimension and the irreducible components of the
quiver Grassmannian which we already know to be equidimensional. The dimension
of the quiver Grassmannian is given by the dimension of the stratum of Xω and is
computed below.

Lemma 3.22. Let

Xω :=
⊕
i∈Zn

Pωi ⊗ kxi and Yω :=
⊕
j∈Zn

Iωj ⊗ kyj

and set eω := dimXω, where xi, yj ∈ N for all i, j ∈ Zn . The dimension of the
quiver Grassmannian is computed as

dim Gr∆n
eω (Xω ⊕ Yω) = ωk(m− k),

where k :=
∑
i∈Zn xi and m :=

∑
i∈Zn xi + yi.

Proof. From Proposition 3.21 and Proposition 3.20 and Lemma 1.3 it follows
that

dimSU ≤ dimSXω
holds for every U ∈ Gr∆n

eω (Xω ⊕ Yω). This inequality does not hold for arbitrary
N as Example A.2 and Example A.3 show.

It remains to compute the dimension of the stratum of Xω which is given by

dimSXω = dim Hom∆n

(
Xω, Xω ⊕ Yω

)
− dim Hom∆n

(
Xω, Xω

)
= dim Hom∆n

(
Xω, Yω

)
.



3.3. IRREDUCIBLE COMPONENTS OF THE QUIVER GRASSMANNIAN FOR N = ω · n 49

Applying Proposition 3.20 we obtain
dim Hom∆n

(
Ui(ωn), Uj(ωn)

)
=
(
dimUi(ωn)

)
j+ωn−1 = ω

for all i, j ∈ Zn and compute the dimension of the stratum explicitly as

dim Hom∆n

(
Xω, Yω

)
=
∑
i∈Zn

∑
j∈Zn

dim Hom∆n

(
Pωi ⊗ kxi , Iωj ⊗ kyj

)
=
∑
i∈Zn

xi
∑
j∈Zn

yj dim Hom∆n

(
Pωi , I

ω
j

)
=
∑
i∈Zn

xi
∑
j∈Zn

yj · ω

=
∑
i∈Zn

xi · ω · (m− k) = ω · k(m− k)

where Pωi ∼= Ui(ωn) and Iωj ∼= Uj−ωn+1(ωn). �

Based on the characterisation of the strata with the same codimension as the
stratum of Xω from the previous section we obtain the subsequent parametrisation
of the irreducible components of the quiver Grassmannians.

Lemma 3.23. The irreducible components of Gr∆n
eω (Xω ⊕ Yω) are in bijection

with the set

Ck(d) :=
{

p ∈ Zn≥0 : pi ≤ di for all i ∈ Zn,
∑
i∈Zn

pi = k
}
,

where di := yi + xi+1 and they all have dimension ωk(m− k).

Remark. In particular, the number of irreducible components is independent
of the winding number ω.

Proof. We use the interpretation of the Grassmannian as framed moduli
space

Gr∆n
eω (Xω ⊕ Yω) ∼= Rs

eω,d(∆n, Iωn)/GLeω .

Here the entiries of d are given by the multiplicities of the injective representations
Iωj as summand of Xω ⊕ Yω and these numbers are independent of the winding
number ω. We can apply Theorem 2.3 to this setting such that the irreducible
components of Gr∆n

eω (Xω ⊕ Yω) which are given by the closures of some strata
are in bijection with the maximal elements of R(d)

eω (∆n, Iωn)/GLeω with respect
to the partial order induced by the inclusion of orbit closures as introduced in
Section 3.1.1.

In the proof of Proposition 3.21 we have seen that the maximal elements for
this order are given by the U ∈ Gr∆n

eω (Xω ⊕ Yω) such that S(U) = ∅, i.e. all
summands of U have the same dimension vector and are of the form Ui(ωn) for
some i ∈ Zn. The set of all such subrepresentations of Xω ⊕ Yω with dimension
vector eω is parametrised by the set Ck(d). For every tuple p ∈ Ck(d) define the
representation

U(p) :=
⊕
i∈Zn

Ui+1(N)⊗ kpi .

We get i + 1 as index since di is the multiplicity of Ii which is isomorphic to
Ui−N+1(N) = Ui+1(N) for N = ω · n. The assumption on the summation∑

i∈Zn

pi = k
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ensures that the dimension vector of U(p) is e. The restriction
pi ∈ {0, 1, . . . , di} for all i ∈ Zn

guarantees that the representation U(p) corresponding to the tuple p embeds into
Xω ⊕ Yω. The dimension of the irreducible components is computed in the same
way as done for the stratum SXω in Lemma 3.22. �

For arbitrary N we would have di := yi + xi−N+1 but for N = ω · n the shift
by N does not change the index because it is considered as a number in Zn. The
number of irreducible components is bounded by

(
n+k−1

k

)
since

Ck(d) ⊆ Ck :=
{

p ∈ Zn≥0 : pi ≤ k for all i ∈ Zn,
∑
i∈Zn

pi = k
}
.

The set Ck contains all partitions of the number k into at most n parts. This is
equivalent to choosing n − 1 points out of n + k − 1 points to be the separators
between the n parts of a partition of the remaining k points. The number of these
choices is given by the binomial coefficient

|Ck| =
(
n+ k − 1
n− 1

)
=
(
n+ k − 1

k

)
.

For the case N = n, this parametrisation of the irreducible components together
with a precise count is proven in the thesis of N. Haupt [41, Proposition 3.6.16].
Because we have discovered above that the number of irreducible components is
independent of the winding number ω we can use his formula for the case ω = 1 to
compute the number of irreducible components of the quiver Grassmannian

Gr∆n
eω
(
Xω ⊕ Yω

)
for arbitrary winding numbers ω.

3.4. Geometric Properties of the Quiver Grassmannian

Back in the setting where the indecomposable summands of X and Y have
arbitrary but all the same length N we do not have a parametrisation of the
irreducible components but nevertheless we get the subsequent properties.

Lemma 3.24. The irreducible components of Gr∆n
e (X⊕Y ) are normal, Cohen-

Macaulay and have rational singularities.

Proof. In her thesis G. Kempken shows that the orbit closures inside Re(∆n)
are normal, Cohen-Macaulay and have rational singularities (compare Theorem 3.5
combined with Theorem 3.4). Her result holds for arbitrary representations of ∆n.
We can apply it to orbit closures of nilpotent representations in Re(∆n, IN ) because
by Proposition 3.10 there are no non-nilpotent representations inside these orbit
closures. Combining this with Theorem 2.3 by K. Bongartz we get that the closures
of the strata in the quiver Grassmannian have rational singularities which again
combined with Theorem 3.4 yields that they are normal and Cohen-Macaulay.
Applying it to the highest dimensional strata we obtain the desired result. �

Moreover G. Kempken gives a description of the types of singularities which
can occur and we recall it in Section 3.1.2. She also describes the structure of
the orbit closures and the codimension of the minimal degenerations of orbits as
summarised in Section 3.1.1.
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3.5. Image in the Variety of Quiver Representations

For any set of relations IN as defined in the beginning of Chapter 3, we have seen
that every projective bounded representation of ∆n is isomorphic to an injective
bounded representation. Hence the class of quiver Grassmannians we introduced
in Chapter 3 satisfies the assumptions of Theorem 2.3 such that the image of the
projection

pr : Rs
e,d(∆n, IN )→ Re(∆n, IN )

which is denoted by R(d)
e (∆n, IN ) carries all information about the structure of the

stratification of the quiver Grassmannian

Gr∆n
e
(
J
)

with
J :=

⊕
i∈Zn

U(i;N)⊗ Cdi .

In this section we describe two different possibilities to parametrise this image
explicitly. One arises from the special shape of the bounding relations and the
criteria for non-emptiness of the framed moduli space. The other is based on
the C∗-action on the quiver representation and the resulting characterisation of
subrepresentations as successor closed subquivers.

3.5.1. Parametrisation by Relations and Morphisms. By Corollary 2.26
we know that there exists an embedding of a quiver representation U into the rep-
resentation J if and only if

dim Hom∆n

(
Si, U

)
≤ di for all i ∈ Zn.

For the description of the image the subsequent formulation is more suitable.

Proposition 3.25. Let U be a nilpotent representation of the equioriented
cycle ∆n. Then

dim Hom∆n

(
Si, U

)
≤ di for all i ∈ Zn

if and only if
dim kerUαi ≤ di for all i ∈ Zn.

Proof. Every nilpotent representation of ∆n is isomorphic to a direct sum
of indecomposable nilpotent representations U(j; `) of the cycle. The dimension
of the space of homomorphisms from a simple representation Si ∈ rep(∆n) to an
indecomposable nilpotent representation U(j; `) is given as

Hom∆n

(
Si, U(j; `)

)
= δi,j .

Hence
dim Hom∆n

(
Si, U

)
≤ di for all i ∈ Zn

is satisfied if and only if U contains at most di indecomposable summands U(i; `)
ending at the vertex i. This is independent of the lengths ` of the summands. The
map along the arrow αi : i→ i+ 1 corresponding to the representation U(i; `) has
a one-dimensional kernel and the kernel is zero for the all maps along the other
maps of the quiver. Hence the dimension of the kernel of the map Uαi matches the
number of summands of U ending at the vertex i. �
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For a linear map, the dimension of the kernel equals the co-rank of the matrix
Uαi . Thus we arrive at the equivalent condition

corankUαi ≤ di for all i ∈ Zn.

A representation of ∆n satisfies all relations in IN if and only if it satisfies the
generating relations, i.e.

U◦Nαi := Uαi+N ◦ Uαi+N−1 ◦ · · · ◦ Uαi+2 ◦ Uαi+1 ◦ Uαi ≡ 0 for all i ∈ Zn.

Combining both we obtain the subsequent parametrisation of the image.

Proposition 3.26. For the quiver Grassmannian

Gr∆n
e
(
J
)

the image in the variety of quiver representations is parametrised as

R(d)
e (∆n, IN ) =

{
U ∈ Re(∆n) : U◦Nαi ≡ 0 and corankUαi ≤ di for all i ∈ Zn

}
.

The orbit structure of this variety can be studied using the methods from the
thesis by G. Kempken as sumariesed in Section 3.1.

3.5.2. Parametrisation by Indecomposable Representations. Every quiver
representation U ∈ repC(∆n, IN ) is conjugated to a direct sum of indecomposable
nilpotent representations, i.e.

U ∼=
⊕
i∈Zn

N⊕
`i=1

U(i; `i)⊗ Cdi,`i

where di,`i ∈ Z≥0 for all i ∈ Zn and `i ∈ [N ]. For the space of homomorphisms we
obtain

dim Hom∆n

(
Si, U

)
=
∑
j∈Zn

N∑
`j=1

dj,`j dim Hom∆n

(
Si, U(j; `j)

)
=

N∑
`i=1

di,`i .

Hence for every U ∈ R(d)
e (∆n, IN ) we can rewrite the direct sum of indecomposable

representations as

U ∼=
⊕
i∈Zn

di⊕
k=1

U(i; `i,k) =: U(l)

where `i,k ∈ {0, 1, 2, . . . , N} =: [N ]0 for all i ∈ Zn and all k ∈ [di]. Here the
restriction k ∈ [di] is obtained from Corollary 2.26 with the same arguments as in
Section 3.5.1. For ` = 0 the representation U(i; 0) is the zero representation which
is independent of the index i. We arrive at the subsequent description.

Proposition 3.27. The Ge-orbits in the variety of quiver representations
Re(∆n, IN ) which correspond to strata of the quiver Grassmannian

Gr∆n
e
(
J
)

are parametrised by the set

S(d)
e
(
∆n, IN

)
:=
{

l := (`i,k) ∈
⊕
i∈Zn

di⊕
k=1

[N ]0 : dimU(l) = e and `i,k ≥ `i,k+1

}
.
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This set is finite and can be used for the computational study of the structure
of the stratification for quiver Grassmannians of the equioriented cycle. Using the
result about the dimension of the space of homomorphisms from Proposition 3.16
we can define functions to compute the dimensions of orbits or strata and determine
the irreducible components of the quiver Grassmannians computationally.





CHAPTER 4

Torus Action on the Quiver Grassmannian

In this chapter we introduce an action of the torus C∗ on the quiver Grassman-
nians for the equioriented cycle. This allows us to compute cellular decopositions,
Euler-Poincaré characteristics and Poincaré polynomials of these quiver Grassman-
nians. But first we want to recall the general definitions and methods we are using.

4.1. Property (S) and (C)

Definition 4.1. A finite partition (Xi)i∈[m] of a complex algebraic variety X
is said to be an α-partition if⋃

i∈[k]

Xi is closed in X for all k ∈ [m].

Definition 4.2. A cellular decomposition or affine paving of X is an
α-partition into parts Xi which are isomorphic to affine spaces.

We say X has property (C) if X admits a cellular decomposition. For a com-
plex variety X, the Borel-Moore homology with integer coefficients of X equipped
with the analytic topology is denoted by

Hi(X) := HBM
i

(
X(C);Z

)
.

Equivalent definitions of the Borel-Moore homology can be found in the book by
N. Chris and V. Ginzburg [22, Chapter 2.6]. If X is an algebraic variety, the group
generated by k-dimensional irreducible subvarieties modulo rational equivalence is
denoted by Ak(X). There exists a canonical homomorphism

ϕi : Ai(X)→ H2i(X)
which is called cycle map by W. Fulton [34].

Definition 4.3. The variety X has property (S) if
(1) numerical and rational equivalence on X coincide,
(2) Hi(X) = 0 for i odd and
(3) the cycle map ϕi : Ai(X)→ H2i(X) is an isomorphism for all i.

The concept of property (S) was introduced by C. De Concini, G. Lusztig and
C. Procesi in [25] in order to replace the notion of cellular decompositions. Indeed
we have the following implication. The converse is not true in general.

Lemma 4.4. X has property (S) if X admits a cellular decomposition.

Proof. C. De Concini, G. Lusztig and C. Procesi showed that X has property
(S) if it admits an α-partition into pieces having property (S) [25, Lemma 1.8].
Moreover they proved that for a vector bundle E → X, E has property (S) if X
has property (S) [25, Lemma 1.9]. Since X admits a cellular decomposition, we

55
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have an α-partition of X into affine spaces (Xi)i∈[m]. Hence we can view X as
vector bundle over

Y := {pi : i ∈ [m]}
where pi is some point in Xi. Points have property (S) and Y admits an α-partition
into the sets Yi := {pi}. By [25, Lemma 1.8] Y has property (S) and it follows by
[25, Lemma 1.9] that X as vector bundle over Y has property (S). �

In general it is a open question which class of quiver Grassmannians admit
cellular decompositions. It was conjectured that quiver Grassmannians for rigid
representations of acyclic quivers have property (C). This question is still open but
it is shown by G. Cerulli Irelli, F. Esposito, H. Franzen and M. Reineke in [18] that
quiver Grassmannians for Dynkin quivers have property (C) and if M is a rigid
representation of an arbitrary quiver the corresponding quiver Grassmannians have
property (S). In Section 4.4 we show that certain quiver Grassmannians for the
equioriented cycle have property (C) and hence also property (S). This will allow
us to use the combinatorics of the coefficient quiver in order to study properties
of the corresponding quiver Grassmannians. In Chapter 5 and Chapter 6 this is
applied to examine approximations of the affine Grassmannian and the affine flag
variety.

4.2. About C∗-Actions

Let X be a complex projective variety with an algebraic C∗-action
C∗ ×X → X

(z, x) 7→ z.x.

Let S be the set of fixed points (stable points) of the C∗-action on X, i.e.
S :=

{
x ∈ X : z.x = x for all z ∈ C∗

}
.

For p ∈ S the attracting set Xp is defined as
Xp :=

{
x ∈ X : lim

z→0
z.x = p

}
.

If this action has finitely many fixed points, the variety X admits a decomposition
into their attracting sets. For smooth varieties this is stated by N. Chris and
V. Ginzburg in [22, Theorem 2.4.3]. The formulation we gibe below is based on
the article by R. Gonzales [38, Theorem 4.3]. The original version of this theorem
is stated in the article by A. Bialynicki-Birula [6].

Theorem 4.5. Let X be a normal projective variety with a C∗-action and a
finite number of fixed points. The attracting sets of the fixed points form a disjunct
decomposition

X =
⋃
p∈S

Xp

and this decomposition is an α-partition.

Sometimes decompositions of this from are refered to as Bialynicki-Birula-
decompositions or BB-decompositions because they first appeared in the article by
A. Bialynicki-Birula [5].

Corollary 4.6. If the attracting sets Xp are affine varieties, a C∗-action on
X with finitely many fixed points implies that X admits a cellular decomposition.
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For any topological space X the i-th Betti number bi is defined as the rank of
the i-th singular homology group with integer coefficients Hi(X,Z), if this group
is finitely generated [70, p.176]. The Euler-Poincaré characteristic of X is defined
as the alternating sum

χ(X) :=
∑
i

(−1)ibi,

if there are only finitly many non-zero Betti numbers. If the topological space X
admits a finite cellular decomposition the Euler-Poincaré characteristic of X equals
the alternating sum

χ(X) =
∑
k

(−1)kck,

where ck is the number of k-dimensional cells over the ground field R [40, Chapter
2.2.2]. Let The Poincaré series of X is the generating function of the Betti numbers
of X. If X has a cellular decomposition it equals the sum

pX(t) =
∞∑
k=0

ckt
k

and the coefficients of tk with k odd are equal to zero since X has property (S).
In our setting X is a finite dimensional variety over C and we denote by bk :=

bk(X) the number of cells in X with complex dimension k. We set q := t2, d :=
dimX and call

pX(q) :=
d∑
k=0

bkq
k

the Poincaré polynomial of the variety X. Sometimes we also refer to bk as the k-th
Betti number. The Euler Poincaré characteristic of X is given by χ(X) = pX(1).

In Section 4.4 we define a C∗-action on certain quiver Grassmannians for the
equioriented cycle and show that it has finitely many fixed points and that the
attracting sets are affine spaces. This implies by the above corollary that these
quiver Grassmannians have property (C) and (S). Moreover by a result of G. Cerulli
Irelli the Euler-Poincaré characteristic of these quiver Grassmannians equals their
number of torus fixed points [16, Theorem 1]. Computing the dimension of the
attracting sets of the fixed points we obtain the Poincaré polynomial of these quiver
Grassmannians.

4.3. C∗-Action on Quiver Grassmannians

In the rest of this chapter we use torus fixed points to compute the Euler-
Poincaré characteristic, the Poincaré polynomial and a cellular decomposition of
quiver Grassmannians for ∆n. First we recall two important results by G. Cerulli
Irelli which are the foundation for these computations. For certain quiver represen-
tations the subsequent theorem shows that the quiver Grassmannians correspond-
ing to these representations have non-negative Euler-Poincaré characteristic.

Theorem 4.7 ( [16] Theorem 1 ). Let M be a Q-representation, m := dimM
its dimension vector and χe(M) the Euler-Poincaré characteristic of the quiver
Grassmannian GrQe (M). For every i ∈ Q0 let Bi be a linear basis of kmi such that
for every arrow α : i → j of Q and every element b ∈ Bi there exists an element
b′ ∈ Bj and λ ∈ k (possibly zero) such that

Mαb = λb′.



58 4. TORUS ACTION ON THE QUIVER GRASSMANNIAN

Suppose that each v ∈ Bi and all its multiples λv for λ ∈ k∗ is assigned a degree
d(λv) = d(v) ∈ Z such that:

(D1) for all i ∈ Q0 all vectors from Bi have different degrees;
(D2) for every arrow α : i→ j of Q, whenever b1 6= b2 are elements of Bi

such that Mαb1 and Mαb2 are non-zero we have:

d(Mαb1)− d(Mαb2) = d(b1)− d(b2).

Then
χe(M) =

∣∣{N ∈ GrQe (M) : N(i) is spanned by a part of Bi
}∣∣.

Subrepresentations with the properties as assumed for the set in the last line
are called coordinate subrepresentations since their vector spaces are spanned by
subbasis of the basis of the surrounding representation. The proof of this theorem
is based on the fact that if there is a C∗-action on a complex projective variety with
finitely many fixed points, the Euler-Poincaré characteristic of the variety equals
the number of fixed points. Constructing a C∗-action on the quiver Grassmannian
which has the coordinate subrepresentations as fixed points yields the statement
of the theorem.

Let M be a representation in Rm(Q) and B• a collection of basis Bi of the
vector spaces kmi belonging to the representation M .

Definition 4.8. The coefficient quiver Γ(M,B•) is a quiver whose vertices
are identified with the elements of B• and the arrows are determined as follows:
For every arrow α : i → j of Q and every element b ∈ Bi we expand Mαb in the
basis Bj and draw an arrow from b ∈ Bi to b′ ∈ Bj if the coefficient of b′ in this
expansion is non-zero.

By T−→⊂Γ(M,B•) we denote a successor closed subquiver T of Γ(M,B•), i.e.
a subquiver T where α : i→ j is an arrow of T when ever it is an arrow of Q and
i ∈ T0 is a vertex of T .

Proposition 4.9 ( [16] Proposition 1). LetM be aQ-representation satisfying
the hypotheses of Theorem 4.7. Then

χe(M) =
∣∣{T−→⊂Γ(M,B•) : |T0 ∩ Bi| = ei, for all i ∈ Q0

}∣∣
where T0 denotes the vertices of T . In particular χe(M) is positive.

Once we established a torus action suiting the requirements of Theorem 4.7,
we can use this proposition to determine the Euler-Poincaré characteristic of quiver
Grassmannians for ∆n combinatorially. We have a closer look at coefficient quivers
and some examples in Section 4.5.

4.4. Cellular Decomposition

In this section we want to define a torus action on the quiver Grassmannians
for ∆n satisfying the conditions of Theorem 4.7. For this purpose we need the
realisation of the quiver Grassmannian coming from the universal Grassmannian.
In the previous chapters we worked over an algebraically closed field of character-
istic zero. From now on we restrict us to the case k = C because this is required
for the computation of the cellular decomposition and some of the results in later
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chapters are based on the existence of the cellular decomposition. We consider
quiver Grassmannians for the representation

M := U(d) :=
⊕
i∈Zn

Ui(N)⊗ Cdi

and denote its dimension vector by m := dimM . This is the same class of quiver
representations as introduced in Chapter 3 but for this section it is more conve-
nient if we do not distinguish between projective and injective representations. A
subrepresentation of M is viewed as a collection of vector spaces

V :=
(
Vi
)
i∈Zn

∈
∏
i∈Q0

Grei(Cmi) = Gre(m)

which are compatible with the mapsMα corresponding to the quiver representation
M , i.e

Mi(Vi) ⊆ Vi+1 for all i ∈ Zn.

Following Theorem 4.7, we can assume by rescaling that there is a basis

Bi =
{
v

(i)
k

}
k∈[mi]

of the space Cmi for all i ∈ Zn such that Miv
(i)
k is equal to zero or given by a

basis vector v(i+1)
` ∈ Bi+1. This basis B• is called standard basis of M . Now we

renumber the basis elements such that

Miv
(i)
k = v

(i+1)
k+di+1

holds for all i ∈ Zn whenever it is non-zero. Here di is the multiplicity of Ui(N) as
summand of M . This order is well defined and unique up to changing the order of
the copies of Ui(N). It induces the grading

d
(
v

(i)
k

)
:= k

which satisfies the conditions of Theorem 4.7.
A segment of M is a maximal collection of vectors {v(i)

k } ⊆ B• such that
there is a unique starting point v(i)

k0
and every other element v(j)

k′ of the collection
can be computed by applying a sequence of maps Mα to the starting point which
corresponds to a path starting in i and ending in j (possibly going around the
cycle more than once). The segments of M correspond to the indecomposable
representations Ui(N).

Using this grading, we can define a torus action on the quiver Grassmannian
where an element λ of the torus T := C∗ acts on M as

λ.b := λd(b)b

for every element b ∈ B•. By linearity this action extends to all elements of M and
also to the quiver Grassmannian [16, Lemma 1.1].

For a torus fixed point L ∈ Gr∆n
e (M)T its attracting set is defined as

C(L) :=
{
V ∈ Gr∆n

e (M) : lim
λ→0

λ.V = L
}

Following the approach in Section 6.4 of [19] we obtain the subsequent result.
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Theorem 4.10. For every L ∈ Gr∆n
e (M)T , the subset C(L) ⊆ Gr∆n

e (M) is an
affine space and the quiver Grassmannian admits a cellular decomposition

Gr∆n
e (M) =

∐
L∈Gr∆n

e (M)T

C(L).

Proof. We use the action of the torus T on the quiver Grassmannian Gr∆n
e (M)

introduced above to define a cell decomposition of the product of classical Grass-
mannians Gre(m). Considering the torus fixed point L as a collection of subspaces
L ∈ Gre(m) we define the cells

C(Li) :=
{
V ∈ Grei(mi) : lim

λ→0
λ.Vi = Li

}
for every i ∈ Zn. This induces a decomposition of the classical Grassmannians

Grei(mi) =
∐

L∈Grei (mi)T
C(Li).

For a representation N in an attracting set of a torus fixed point L we have

V ∈ C(L)⇔ V ∈ Gr∆n
e (M) and lim

λ→0
λ.V = L

⇔ V ∈ Gr∆n
e (M) and lim

λ→0
λ.Vi = Li for all i ∈ Zn

⇔ V ∈ Gr∆n
e (M) ∩

∏
i∈Zn

C(Li).

Hence the cell decomposition of the classical Grassmannians is compatible with the
structure of the quiver representations, i.e.

C(L) = Gr∆n
e (M) ∩

∏
i∈Zn

C(Li)

and we have the desired cell decomposition of the quiver Grassmannian. It remains
to show that the cells in the quiver Grassmannian are affine spaces.

First we show that the cells C(Li) are affine spaces. The space Li ∈ Grei(mi)
is spanned by the vectors {

v
(i)
k1
, v

(i)
k2
, . . . , v

(i)
kei

}
for some index set Ki := {k1 < k2 < · · · < kei}. Here ei is the i-th entry of the
dimension vector e of the subrepresentations in the quiver Grassmannian. Thus a
point Vi ∈ C(Li) is spanned by vectors{

w
(i)
1 , w

(i)
2 , . . . , w(i)

ei

}
of the form

w(i)
s = v

(i)
ks

+
∑

j>ks,j /∈Ki

µ
(i)
j,sv

(i)
j

with coefficients µ(i)
j,s ∈ C because these vectors parametrise all spaces Vi with limit

Li. Hence the cells C(Li) are affine spaces for all i ∈ Zn.
In order to prove that the cells in the quiver Grassmannian are affine we have

to describe the coordinates in the intersection of the cells in the classical Grass-
mannians with the quiver Grassmannian. Let V ∈ C(L) be a point in the some
cell. Like above it corresponds to a collection of spaces V with Vi ∈ C(Li) which is
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parametrised by the collection of coefficients {µ(i)
j,s}. The conditions MαVsα ⊆ Vtα

for all arrows α of ∆n translate to Miw
(i)
s being included in the span of{

w
(i+1)
1 , w

(i+1)
2 , . . . , w(i+1)

ei+1

}
.

If Miw
(i)
s is non-zero, this leads to the equation

Miw
(i)
s = Miv

(i)
ks

+
∑

j>ks,j /∈Ki

µ
(i)
j,sMiv

(i)
j

= v
(i+1)
ks+di+1

+
∑

j>ks,j /∈Ki,Miv
(i)
j
6=0

µ
(i)
j,sv

(i+1)
j+di+1

where v(i+1)
ks+di+1

∈ Li+1 because L is a subrepresentation of M .
This vector is included in Vi+1 if it lives in the span of{

w
(i+1)
1 , w

(i+1)
2 , . . . , w(i+1)

ei+1

}
and this is satisfied if and only if

Miw
(i)
s = w

(i+1)
s+di+1

= v
(i+1)
ks+di+1

+
∑

j>ks+di+1,j /∈Ki+1

µ
(i+1)
j,s v

(i+1)
j

= v
(i+1)
ks+di+1

+
∑

j>ks,j+di+1 /∈Ki+1

µ
(i+1)
j+di+1,s

v
(i+1)
j+di+1

which leads to the subsequent equality of coefficients

µ
(i+1)
j+di+1,s

= µ
(i)
j,s whenever Miv

(i)
j 6= 0

showing that the cells in the quiver Grassmannian are affine spaces. �

Corollary 4.11. The cellular decomposition of the quiver Grassmannian in-
troduces a cellular decomposition of the strata

SN =
∐

L∈Gr∆n
e (M)T :L∼=N

C(L).

Proof. The stratum of N contains all U ∈ Gr∆n
e (M) which are isomorphic

to N . Thus we have to show that every point U ∈ Gr∆n
e (M) is isomorphic to

the torus fixed point L attracting it. We show that up to choice of basis U and
L have the same image in R(d)

e (∆n, IN ). For this we need the parametrisation of
subrepresentations via tuples of subspaces in the vectorspaces over the vertices of
∆n.

Let {
v

(i)
k1
, v

(i)
k2
, . . . , v

(i)
kei

}
be the basis for the vectorspaces over the vertices of ∆n for the torus fixed point
L which is obtained as a subbasis of the basis for the vectorspaces corresponding
to the representation M .

Isomorphism classes of representations in Re(∆n, IN ) and orbits of the group
GLe in Re(∆n, IN ) coincide. For an element U of the attracting set C(L) let{

w
(i)
1 , w

(i)
2 , . . . , w(i)

ei

}
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be the basis for its vectorspaces over the vertices. By Theorem 4.10 we know that
the coefficients expressing this basis in the basis of L are subject to the conditions

µ
(i+1)
j+di+1,s

= µ
(i)
j,s whenever Miv

(i)
j 6= 0.

These equations together with the parametrisation

w(i)
s = v

(i)
ks

+
∑

j>ks,j /∈Ki

µ
(i)
j,sv

(i)
j

yield that the maps Mi act on both basis in the same way, i.e.

Miv
(i)
k

(i)
j

= v
(i+1)
k

(i)
j

+1
if and only if Miw

(i)
j = w

(i+1)
j+1 .

Accordingly the restrictions of the maps Mi for i ∈ Zn to the basis of the
subspaces coincide for the representations U and L. Hence both subrepresentations
are isomorphic and the strata decompose into the attracting sets of torus fixed
points. �

Corollary 4.12. The possible types of subrepresentations in Gr∆n
e (M) are

given by the fixed points of the torus action.

Proof. The subrepresentation types are given by the strata. In Section 3.5.2
we computed that the strata in the quiver Grassmannian are parametrised as

S(d)
e
(
∆n, IN

)
=
{

l := (`i,k) ∈
⊕
i∈Zn

di⊕
k=1

[N ]0 : dimU(l) = e and `i,k ≥ `i,k+1

}
.

From this information we can directly construct one successor closed subquiver in
the the coefficient quiver of M which has this subrepresentation type. The other
way around we take the length of the segments of a successor closed subquiver
and rearrange them such that they satisfy `i,k ≥ `i,k+1 for all i ∈ Zn and all
k ∈ [di − 1]. The resulting tuple is contained in the set above and parametrises a
subrepresentation type of M . �

This corollary will be helpful to deduce information about the structure of the
stratification from the torus fixed points as done in Section 4.7. Moreover it allows
us to prove Proposition 3.19.

Proof of Proposition 3.19. The subrepresentations of a quiver represen-
tationM are determined by the successor closed subquivers in the coefficient quiver
ofM . There exists an embedding Ui(`) ↪→ Uj(k) if and only if i+` = j+k and k ≥ `.
This is equivalent to the segment of Ui(`) being a successor closed subsegment of
the segment corresponding to Uj(k). Thus the embedding of a representation into
M can be decomposed into the embeddings of the subsegments which are of the
form

Ui(`) ↪→ Ui−k(`+ k).

�
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4.5. Coefficient Quivers

In this subsection, we want to give some examples of coefficient quivers and
their use before we turn our attention to formulas for the Euler characteristics and
the Poincaré polynomials.

Example 4.13. Let n = N = 3 and define X := U1(3)⊕U2(3) and Y := U3(3).
We compute the dimension of Gr∆n

e (X⊕Y ) and its Poincaré polynomial using the
coefficient quiver. Following the order of the vector space basis we defined above,
the coefficient quiver of X ⊕ Y is given by

In this coefficient quiver we mark the subquivers using black vertices. The
following list contains all successor closed subquivers T of this quiver satisfying
|T0 ∩ Bi| = ei = 2 for all i ∈ Z3.

The dimensions of the cells could be directly read of from the picture. We have to
count the white vertices between each starting point of a segment and the center
of the picture. For simplicity we will refer to this as below a point. The dimension
of the cell is given by the sum of these numbers.

Accordingly the first cell is zero-dimensional. The next three cells are one-
dimensional since there is only one white vertex below one of the three starting
points of the segments in each picture. For the last three pictures we have one
white vertex below two of the three starting points and the dimension of these cells
sums up to two.

Collecting this information the Poincaré polynomial of Gr∆n
e (X ⊕ Y ) is given

by
pe,X⊕Y (t) = 3t2 + 3t+ 1.

Hence the dimension of the Grassmannian is 2 and its Euler characteristic is 7.

Remark. The approach to compute the cell dimension as described above
works in the full generality of Theorem 4.10.



64 4. TORUS ACTION ON THE QUIVER GRASSMANNIAN

Proof. The points in the cells are described by the coefficients{
µ

(i)
j,s : i ∈ Zn, s ∈ [ei], j > ks and j /∈ Ki

}
which are subject to the relations

µ
(i+1)
j+di+1,s

= µ
(i)
j,s whenever Miv

(i)
j 6= 0.

The number of free parameters in this set is equal to the dimension of the corre-
sponding cell. By the order of the vector space basis it is clear that the number of
parameters µ(i)

j,s in the set above is the biggest for the vector corresponding to the
starting point of a segment.

The parameters for the later points of a segment are all determined by these
starting parameters since they have to satisfy the relations above. Hence the num-
ber of free parameters is given as the sum of parameters for the vectors correspond-
ing to the starting points of the segments. By the restrictions j > ks and j /∈ Ki

these numbers are given by the number of holes below the starting points of the
the segments. �

4.6. Euler Characteristics and Poincaré Polynomials

We use the C∗-action defined above to compute the Euler characteristic and
the Poincaré polynomial of quiver Grassmannians for the equioriented cycle.

Remark. The parametrisation of the strata in the quiver Grassmannians as
introduced in Section 3.5.2 is also suitable to compute the cell structure of the
quiver Grassmannians since cells are in bijection with successor closed subquivers
and for the equioriented cycle these subquivers are parametrised by the set

C(d)
e
(
∆n, IN

)
:=
{

l := (`i,k) ∈
⊕
i∈Zn

[N ]di0 : dimU(l) = e
}
.

Introducing a new dimension function arising from the coefficient quivers we can
use this set to compute the Poincaré series of the quiver Grassmannian

Gr∆n
e
(
J
)

and the cardinality of this set equals the Euler Poincaré characteristic of the quiver
Grassmannian. The code for a program to compute Poincaré polynomials for ap-
proximations of the affine flag variety and the affine Grassmannian which is based
on this parametrisation is presented in Appendix B. Some of the results of the
computations are presented in the Appendix C.

Despite this computational description for the Euler characteristic and the
Poicaré polynomial we want to have closed formulas for this data. In the rest of
this section we examine some cases where it is possible to constract such formulas
from the coefficient quiver parametrisation of the cells.

Proposition 4.14. Let M :=
⊕

i∈Zn Ui(n), e := dimUi(n) and denote the
Euler characteristic of the corresponding quiver Grassmannian by χe(M) and let
pe,M (q) denote its Poicaré polynomial. Then

(i) dim Gr∆n
e (M) = n− 1

(ii) χe(M) = 2n − 1
(iii) pe,M (q) = (q + 1)n − qn.
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Proof. Part (i): From Lemma 3.22 we know

dim Gr∆n
e (M) = k(m− k) = 1(n− 1) = n− 1

where in this setting k = ei = 1 and m is the sum over the multiplicities of the
Ui(n) as summand of M which is given by n.

Part (iii): For every k ∈ {0, 1, . . . , n − 1} we have to determine the succes-
sor closed subquivers of the coefficient quiver of M corresponding to the cells of
dimension k. Since e = (1, . . . , 1), we have to partition Zn into at most n non-
overlapping intervals in order to find a subrepresentation of M with dimension
vector e = (1, . . . , 1). All Ui(n) occur as summand of M with multiplicity one.
Hence the number of cells is equal to the number of subrepresentations and both
are in bijection with the partitions of Zn.

The dimension of a cell depends only on the length of the intervals in the cor-
responding partition because the segments are non-overlapping and the dimension
of a cell could be read of from the subquiver of the coefficient quiver corresponding
to the cell by counting the number of free points below the starting points of the
segments as shown in Section 4.5.

Namely in this setting the dimension of a cell is given by the sum of the length
of a segment over all segments belonging to the cell, where the length of a segment is
given by the number of arrows from the coefficient quiver contained in the segment.
This number is the same as n minus the number of segments corresponding to the
cell.

Accordingly for k = 0 we have to partition Zn into n segments of length zero
and there is only one possibility to do this. For k = n − 1, we have to take one
segment of length n and there are n possibilities to do this.

In general there is a unique partition of Zn into ` segments for every choice of
` starting points of the segments and this gives all partitions into ` segments. The
dimension of the corresponding cell is n− ` and there are

(
n
`

)
=
(
n
n−`
)
possibilities

to choose the starting points of the intervals. Summing them up we obtain the
formula

pe,M (q) =
n−1∑
k=0

(
n

k

)
qk.

Finally we show
n∑
k=0

(
n

k

)
qk = (q + 1)n

by induction and plug it into the formula.
Part (ii): By Theorem 4.7 the Euler characteristic equals the number of torus

fixed points. Hence we get χe(M) = pe,M (1) which leads to

χe(M) = pe,M (1) =
n∑
k=0

(
n

k

)
1k −

(
n

n

)
1n = (1 + 1)n − 1 = 2n − 1.

�
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Lemma 4.15. Let M :=
⊕

i∈Zn Ui(n) ⊗ kdi , m :=
∑
i∈Zn di, e := dimUi(n).

Then

(i) dim Gr∆n
e (M) =

∑
i∈Zn

di − 1

(ii) χe(M) =
∏
i∈Zn

(di + 1)− 1

(iii) pe,M (q) =
∏
i∈Zn

qdi+1 − 1
q − 1 − qm.

Proof. Part (i) follows from Lemma 3.22 again.
Part (ii): We prove this statement by induction over the di’s. The beginning

of the induction is the result from Proposition 4.14. Without loss of generality we
assume that we get d′ from d by increasing the i-th entry by one. Then

χe(M ′) = χe(M) +
∣∣{cells using the new Ui(n)

}∣∣
where the set above contains alls cells with a segment in the new part of the
coefficient quiver. Now we have to determine the cardinality of this set.

For every I ⊆ Zn we can define a unique representation with dimension vector
e = (1, . . . , 1) corresponding to the set I as we did in the proof of Proposition 4.14.
In the quiver Grassmannian Gr∆n

e (M) for

M =
⊕
i∈Zn

Ui(n)⊗ kdi

there are
∏
i∈I di cells corresponding to this representation.

For a fixed i ∈ Zn with di > 0 we consider Ui+n−`(`) for arbitrary `. There are
2n−1 possibilities to find an I ⊆ Zn with i ∈ I and to every I we can assign a unique
representation. The number of all cells corresponding to these representations is
given by ∏

j∈Zn,j 6=i
(dj + 1).

Applying the induction hypothesis we obtain

χe(M ′) =
∏
j∈Zn

(dj + 1)− 1 +
∏

j∈Zn,j 6=i
(dj + 1)

= (di + 2)
∏

j∈Zn,j 6=i
(d′j + 1)− 1 =

∏
j∈Zn

(d′j + 1)− 1.

Part (iii): In this case the number of free points below the starting points of
the segments depends on the length of the segments and the index ki ∈ {1, . . . , di}
of the copy of Ui(n) we embed it in. As seen before the length is determined by
the starting points and thus the cells are in bijection with tuples of the ki’s. By
this correspondence every cell is in bijection with one factor in the product∏

i∈Zn

( di∑
k=0

qk
)

where we take the power di−ki whenever a segment embedded into the ki-th copy
of Ui(n) belongs to the cell and otherwise the power will be di. Then the cell
dimension is equal to the exponent of q and in the polynomial its coefficient counts
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the number of cells with this dimension. Hence the only factor in this product
which is not in bijection with the cells is

q

∑
i∈Zn

di

which we have to subtract. The formula follows by writing the sums as fractions,
i.e.

di∑
k=0

qk = qdi+1 − 1
q − 1 .

�

Yet we are only able to give closed formulas for the Poincaré polynomial if
every entry of the dimension vector e is equal to one. For other dimension vectors
e we would have to consider partitions of multiples of n if we still assume it to be
homogeneous. In the case that e is not homogeneous it is not possible to control
the cells using partitions.

Furthermore this proof relies on the fact that for every i at most one segment is
embedded into the copies of Ui(N) which is not true for the entries of the dimension
vector e being larger than one. But in the more general setting there are still some
symmetries.

Proposition 4.16. Consider the representation M :=
⊕

i∈Zn Ui(n)⊗ kdi , the
dimension vector of subrepresentations e := dimUi(n)⊗ kq and set m := dimM .
Then

pe,M (q) = pm−e,M (q).

Proof. The quiver ∆n is self dual and every cell in the coefficient quiver of
M with dimension vector e corresponds to a cell with dimension vector m− e for
the dual of M which is isomorphic to M . �

Moreover the Poincaré polynomial can not detect permutations of the di’s. But
this equality does not have to come from an isomorphism of the quiver Grassman-
nians.

Example 4.17. Let N = n = 4 and consider the tuples of multiplicities of
indecomposable nilpotent representations d := t(1, 2, 1, 2), d̂ := t(1, 1, 2, 2) and
the dimension vector e := t(2, 2, 2, 2). Then we have an equality of Poincaré
polynomials
pe,U(d)(q) = pe,U(d̂)(q) = 8q8 + 24q7 + 43q6 + 48q5 + 40q4 + 24q3 + 12q2 + 4q + 1

for the quiver Grassmannians Gr∆n
e
(
U(d)

)
and Gr∆n

e
(
U(d̂)

)
. The quiver Grass-

mannian for d decomposes into 66 strata whereas for d̂ we get a decomposition
into 65 strata. Hence the structures of the Grassmannians are different and there
is no isomorphism between them.

We are not able to give an explanation in the general setting but can show that
two Grassmannians with the same Poincaré polynomial share the same motive using
the Cut and Paste property and isomorphisms at the level of cells which are affine
spaces by Theorem 4.10. For definitions and more detail on this see the articles by
T. Beke [4] and M. Larsen and V. Lunts [57]. There are even quiver Grassmannians
for ∆n with the same Poincaré polynomial and the same stratification which are
still non-isomorphic.
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Example 4.18. Let N = n = 4, d := t(1, 2, 3, 2), d̂ := t(1, 3, 2, 2) and take
the dimension vector e := t(2, 2, 2, 2). Then

pe,U(d)(q) = pe,U(d̂)(t) = 9q12 + 31q11 + 71q10 + 112q9 + 142q8 + 143q7 + 123q6

+ 8q5 + 56q4 + 29q3 + 13q2 + 4q + 1.

Moreover the quiver Grassmannians Gr∆n
e
(
U(d)

)
and Gr∆n

e
(
U(d̂)

)
have the same

stratification. But there is no isomorphism between the quiver Grassmannians
since it is not possible to match the structure of the stratifications and the cellular
decompositions, i.e. there are strata with the same representative but different
cellular decompositions in the different quiver Grassmannians.

4.7. Application to Stratification

In this section we use the coefficient quiver combinatorics to deduce information
about the stratification of the quiver Grassmannians.

Lemma 4.19. In every Grassmannian Gr∆n
e (M) there is a unique stratum of

smallest dimension which is included in the closure of every other stratum. A
representative Be can be found taking the subrepresentation of M corresponding to
the ei inner points of the coefficient quiver at every vertex i ∈ Zn.

In the following, we refer to Be as base of the stratification. The cell of
this stratum as obtained in the proof of Lemma 4.19 is zero-dimensional. With
the base of the stratification we are able to compute the full stratification of the
quiver Grassmannian using the methods concerning degenerations of orbits and
singularities as developed in the thesis of G. Kempken and recalled in Section 3.1.

Example 4.20. Let n = 4, N = 5, X := U3(5) ⊕ U4(5), Y := U1(5) ⊕ U1(5)
and

e := dimX = t(1, 1, 2, 1) + t(1, 1, 1, 2) = t(2, 2, 3, 3).

The successor closed subquiver in the coefficient quiver of X ⊕ Y corresponding to
the stratum of smallest dimension is given as

1

2

3

4
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This gives the representative

Be = U2(3)⊕ U3(3)⊕ U2(2)⊕ U4(2)

and its stratum is one-dimensional. The dimension of the stratum is obtained as
the maximum over the dimension of all cells with this representative.

Proof of Lemma 4.19. Define the tuple q component wise as

qi := min{di, ei}

and consider the representation

Sq :=
⊕
i∈Zn

Si ⊗ kqi .

This representation is unique by construction and its orbit OSq in the variety of
quiver representations is zero-dimensional. If q = e, this finishes the proof because
Sq is contained in the orbit closure of every representation in Rq(∆n, IN ) and the
end points of the segments in the coefficient quiver of M are the inner points over
the vertices.

Now assume that q 6= e and that there is at least one index i ∈ Zn such that
qi < ei. Starting at one i ∈ Zn with qi < ei and qi+1 > 0 enlarge the shortest
segment of B := Sq ending at i + 1 ∈ Zn by one. If there is no unique segment
with this property, enlarge the lowest one of the shortest segments in the coefficient
quiver.

We order the elements j ∈ Zn by the length the shortest path from j to i. The
largest element in this order is i and the second largest is i − 1. We do the same
enlargement as above for the next biggest j < i with qj < ej . Here qj+1 > 0 is not
required since we take the largest j. We repeat this procedure until dimB = e. It
is clear that this method terminates in a subrepresentation of M with the desired
dimension vector but it might be necessary to go around the circle more than once
until there are no more i ∈ Zn with qi < ei.

This algorithm gives the same representative Be as the approach using the
coefficient quiver because each step in the algorithm corresponds to taking the
next lowest point in the coefficient quiver of M .

By construction, the representation Be is unique up to permutation of the
summands and the words corresponding to the summands are as short as possible
for a subrepresentation of M with dimension vector e. The orbit OBe is included
in the orbit closure inside Re(∆n, IN ) for any U ∈ Gr∆n

e (M) by Proposition 3.10.
Hence its dimension has to be minimal among all elements of the quiver Grass-
mannian and the same holds for the stratification of the Grassmannian because of
Theorem 2.3. �

Let y be a n-tuple of multiplicities of injective nilpotent representations Ij
and let x be a tuple of multiplicities of projective nilpotent representations Pi. By
Corollary 3.3 we obtain

Pi ∼= Ui(N) and Ij ∼= Uj−N+1(N)

for Pi, Ij ∈ repk(∆n, IN ). We define

Id :=
⊕
i∈Zn

Ui−N+1(N)⊗ kdi
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where di := yi + xi−N+1 for all i ∈ Zn. For the tuple x we set

Px :=
⊕
i∈Zn

Ui(N)⊗ kxi .

The tuple of multiplicities q is defined entry wise as
qi := min{di, ei}

where ei is the i-th entry of the dimension vector e := dimPx. Observe that
Si := Ui(1) ↪→ Ui−N+1(N) and hence Se ∈ Gr∆n

e (Ie) where

Se :=
⊕
i∈Zn

Si ⊗ kei .

Lemma 4.21. The images of the projections from the quiver Grassmannians
Gr∆n

e
(
Id
)
and Gr∆n

e (Iq) to the variety of quiver representations coincide, i.e.

R(d)
e
(
∆n, IN

) ∼= R(q)
e
(
∆n, IN

)
.

Proof. The types of subrepresentations obtained from torus fixed points are
the same in both quiver Grassmannians. �

Remark. This Lemma proves that the two quiver Grassmannians in Exam-
ple 4.18 have the same stratification.

Hence for a fixed dimension vector e the stratification of the quiver Grass-
mannian Gr∆n

e
(
Id
)
stays the same if we increase entries of d which are already

bigger than the corresponding entry of e whereas the number of torus fixed points
of this Grassmannian grows exponentially fast. Moreover for a fixed e there are
only finitely many d’s leading to different stratifications of Gr∆n

e
(
Id
)
.

It is possible to classify these d’s using the property above and the fact that
the structure of the quiver Grassmannian Gr∆n

e
(
Id
)
does not change with cyclic

permutations of the entries in e and d.



CHAPTER 5

The Affine Grassmannian and the Loop Quiver

The loop quiver is an equioriented cycle for n = 1. In this chapter we want
to apply the theory developed for the quiver Grassmannians for the equioriented
cycle in Chapter 3 to study finite approximations of the affine Grassmannian. We
define linear degenerations of the affine Grassmannian and study the finite approx-
imations of the partial degenerations based on the same approach. For the Feigin
degeneration of the affine Grassmannian, these approximations were developed and
studied by E. Feigin, M. Finkelberg and M. Reineke in [30].

The constructions and methods used in this chapter are similar to what is
needed for the study of the affine flag variety in Chapter 6. Both chapters are in-
dependent of each other but in this chapter the notation is less complicated. Hence
it can be viewed as motivation or preparation to the more general constructions
given in the chapter about the affine flag variety.

5.1. The Loop Quiver

The loop is a special case of an equioriented cycle and some of the results about
quiver Grassmannians for the cycle can be sharpened or simplified in notation for
the loop quiver. In this section we modify the constructions for the equioriented
cycle ∆n as introduced in Chapter 3 to the special case of the loop quiver

∆1 =

α

1

The loop has only one arrow such that all paths consist of concatenations of
this arrow. Hence the path algebra C∆1 is isomorphic to the polynomial ring in
one variable C[t]. The generating paths of the ideal IN boil down to the single path

p(N) := ( 1 | αN | 1 ).

Accordingly the bounded path algebra is isomorphic to the truncated polynomial
ring, i.e.

AN := C∆1/IN ∼= C[t]/(tN ).

The indecomposable nilpotent representations as determined by Proposition 3.2
are denoted by U` and have coefficient quivers of the shape

b1 b2 b3
. . .

b`−1 b`

71
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They are all isomorphic to a truncated polynomial ring, i.e.
U` ∼= C[t]/(t`) ∼= A`.

Moreover the projective and injective representations in rep(∆1, IN ) are isomorphic
and there is exactly one indecomposable projective/injective bounded representa-
tion since the loop has only one vertex, i.e. P (N)

1
∼= I

(N)
1 .

For the loop quiver, the class of quiver Grassmannians we introduced in Chap-
ter 3 for the equioriented cycle reads as

GrANxN
(
AN ⊗ Cx+y)

where x, y ∈ N. It is possible to apply the results from Chapter 2 since AN is an
injective representation of the loop quiver.

5.1.1. Homomorphisms of Representations of the Loop Quiver and
Words. The alphabet (i.e. the set of vertices) for the words corresponding to inde-
composable representations of the loop quiver only consist of one letter. Hence the
dimension of the space of homomorphisms between indecomposable representations
of the loop is given by the length of the shorter word.

Proposition 5.1. For two indecomposable representations U` and Uk of the
loop quiver, the dimension of the space of morphisms from U` to Uk is given by

dim Hom∆1

(
U`, Uk

)
= min

{
`, k
}
.

Proof. The loop quiver is an equioriented cycle with only one vertex. The
words corresponding to the indecomposable representation are repetitions of the
same letter. Adapting Proposition 3.16 to this setting yields the claimed formula.

�

This statement can also be proven by a direct computation using the shape of
the maps belonging to the quiver representations U` and Uk and the commutativity
relations defining morphisms of quiver representations.

5.1.2. Geometry of Quiver Grassmannians for the Loop Quiver. The
formula for the dimension of the space of homomorphisms allows us to compute
the dimension of this special class of quiver Grassmannians.

Proposition 5.2. Let N ∈ N and x, y ∈ N. Then the dimension of the quiver
Grassmannian for the loop quiver computes as

dim GrANxN
(
AN ⊗ Cx+y) = Nxy.

Proof. Since the loop quiver has only one vertex, we can apply Proposi-
tion 3.21 to every N and obtain

dim Hom∆1

(
U,U

)
≥ dim Hom∆1

(
AN ⊗ Cx, AN ⊗ Cx

)
for all U ∈ GrANxN

(
AN ⊗ Cx+y). Accordingly the dimension of the quiver Grass-

mannian computes as
dim GrANxN

(
AN ⊗ Cx+y)

= dim Hom∆1

(
AN ⊗ Cx, AN ⊗ Cx+y)− dim Hom∆1

(
AN ⊗ Cx, AN ⊗ Cx

)
= dim Hom∆1

(
AN ⊗ Cx, AN ⊗ Cy

)
= dim Hom∆1

(
AN , AN

)
xy

= Nxy.
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Here the last equality follows by Proposition 5.1 and the linearity of the space of
homomorphisms yields the other equalities. �

Proposition 5.3. The quiver Grassmannian

GrANxN
(
AN ⊗ Cx+y)

is irreducible, normal, Cohen-Macaulay and has rational singularities.

Proof. By Lemma 3.24, we know that the irreducible components of this
quiver Grassmannian satisfy these properties because the loop quiver is an oriented
cycle with one vertex. The parametrising set of the irreducible components as
determined in Lemma 3.23 is given as

Cx(x+ y) :=
{
p ∈ Z≥0 : p ≤ x+ y, p = x

}
.

It contains only the element p = x. �

5.1.3. Parametrisation of the Image in the Variety of Quiver Repre-
sentations and the Orbits therein. The parametrisation of the image of the
quiver Grassmannian for the loop quiver in the variety of quiver representations
by relations and morphisms is given in the subsequent proposition.

Proposition 5.4. For m := x+ y, the image of the quiver Grassmannian

GrANxN
(
AN ⊗ Cm

)
in the variety of quiver representations is parametrised as

R(m)
xN (∆1, IN ) =

{
U ∈ RxN (∆1) : UNα ≡ 0 and corankUα ≤ m

}
.

Proof. For the loop quiver there is only one generating relation of IN be-
cause there is only one arrow. The computations in Section 3.5.1 concerning the
dimension of the space of morphisms are true for an arbitrary number of vertices
in the cycle. Hence we obtain a similar description of representations embedding
into AN ⊗ Cm based on the rank of the map Uα. �

For the parametrisation of the orbits based on the decomposition into inde-
composable representations we obtain the following result.

Proposition 5.5. The GLxN -orbits in the variety of quiver representations
RxN (∆1, IN ) which correspond to strata of the quiver Grassmannian

GrANxN
(
AN ⊗ Cm

)
are parametrised by the set

S(m)
xN

(
∆1, IN

)
:=
{

l ∈ [N ]m0 :
m∑
k=1

`k = xN and `k ≥ `k+1

}
.

Proof. The dimension vectors for representations of the loop quiver have only
one entry. We obtain that the dimension vector of a indecomposable representation
is equal to the length of the word corresponding to the representation. Hence the
condition about the dimension vector of the subrepresentation can be replaced by
a summation of the length of its direct summands. The other simplifications also
come with setting n = 1. �
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5.1.4. C∗-Action and Cellular Decomposition of Quiver Grassmanni-
ans for the Loop Quiver. Define MN := AN ⊗Cx+y. The vector space V of the
quiver representation MN over the single vertex of the loop quiver has dimension
mN where m := x+ y. We label the standard basis of the vector space V by

B := {v1, v2, . . . vmN−1, vmN}.
The grading

d(vk) := k

of the basis B satisfies the assumptions of Theorem 4.7. Hence the Euler Poincaré
characteristic of the Grassmannian GrANxN (MN ) is given by the number of torus
fixed points in this Grassmannian for the action

C∗ × V → V ; (λ, b) 7→ λ.b := λd(b)b.

Restricting the number of vertices to one we derive the subsequent statement from
Theorem 4.10. The proof of the special case works analogous to the general version.

Proposition 5.6. For every torus fixed point L ∈ GrANxN (MN )T , the attracting
set C(L) ⊆ GrANxN (MN ) is an affine space and the quiver Grassmannian admits a
cellular decomposition

GrANxN (MN ) =
∐

L∈GrAN
xN

(MN )T

C(L).

By Proposition 4.9 we know that we can count successor closed subquivers in
the coefficient quiver of MN in order to determine the number of torus fixed points
of the quiver Grassmannian.

The coefficient quiver of the representation MN can be drawn as follows

...

...

...

...

...

In each block we have m dots corresponding to the m indecomposable representa-
tions MN consists of. There are N blocks and the i-th point in the k-th block has
one outgoing arrow to the i-th point in the k+ 1-th block. For better visibility we
decide to draw no complete arrows. Otherwise we would have very long or a lot of
crossing arrows in the planar picture.
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The successor closed subquivers described by Proposition 4.9 contain xN of the
mN points in the coefficient quiver of MN . Each subsegment in the m segments
has to be successor closed. Hence it is uniquely described by its length which can
vary between zero and N . Collection the length of all subsegments in the segments
of MN is sufficient to describe the corresponding successor closed subquiver. This
yields the subsequent parametrisation of the cells.

Proposition 5.7. The cells of the quiver Grassmannians for the loop are
parametrised by the set

C(m)
xN

(
∆1, IN

)
:=
{

l ∈ [N ]m0 :
m∑
k=1

`k = xN
}
.

The cardinality of this set is equal to the Euler Poincaré characteristic of these
Grassmannians. In Section 5.8 we compute the cardinality of this set for the special
case x = y. We can also use this set to compute the Poincaré polynomial for the
quiver Grassmannian by defining a function computing the dimension of the cells
which is based on this parametrisation.

5.1.5. Poincaré polynomials of Quiver Grassmannians for the Loop
Quiver. This section is devoted to the description of the Poincaré polynomial for
the quiver Grassmannian

GrANxN
(
AN ⊗ Cm

)
.

In Chapter 4, we have seen that the dimension of a cell equals the number of holes
(i.e. white dots) below the starting points of the segments in the successor closed
subquiver corresponding to the cell. Now we describe how to compute this number
directly from the length of the segments.

Proposition 5.8. The function
h : C(m)

xN

(
∆1, IN

)
→Z

p 7−→h(p) :=
∑
j∈[m]

hj(p)

where
hj(p) := max

{
0, (m− 1)pj − j + 1

}
−
( ∑

i>j

min{pi, pj}+
∑
i<j

min
{
pi,max{pj − 1, 0}

} )
computes the dimension of the corresponding cells in the quiver Grassmannian

GrANxN
(
AN ⊗ Cm

)
.

Proof. It remains to show that the function hj(p) counts the number of holes
below the starting point of the j-th segment in the coefficient quiver. The length
of this segment is given by the number pj . Accordingly

max
{

0,m− j + (m− 1)(pj − 1)
}

= max
{

0, (m− 1)pj − j + 1
}

is the number of points below the starting point of the j-th segment which do not
belong to the segment itself. From this we have to subtract all points which belong
to other segments. For this we have to distinguish segments with endpoints above
the endpoint of the j-th segment and segments with endpoints below the endpoint
of the j-th segment. This corresponds to the cases i < j and i > j. For i > j, the
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number of points from the i-th segments which are below the starting point of the
j-th segment is given by

min{pi, pj}.
For i < j, the starting point of the i-th segment is above the starting point of the
j-th segments if both segments have the same length. Hence the number of points
from the i-th segment which are below the starting point of the j-th segment is
given by

min
{
pi,max{pj − 1, 0}

}
.

�

Combining this dimension function h with the parametrisation of the set of
cells C(x+y)

xN we obtain the subsequent description of the Poincaré polynomials.

Proposition 5.9. The Poincaré polynomial px,y,N (t) for the quiver Grass-
mannian

GrANxN
(
AN ⊗ Cx+y)

is given by
px,y,N (t) =

∑
p∈C(x+y)

xN

th(p).

Remark. The parametrisation of the cells and the function to compute their
dimension we have introduced in this section is suitable to be implemented as
a computer program as done in Appendix B.2. With a program following this
approach we computed all the examples for Poincaré polynomials in this chapter
and more examples are given in Appendix C.2.

5.2. The Affine Grassmannian

Definition 5.10. Let Ĝ be the Kac-Moody group corresponding to the affine
Kac-Moody Lie algebra ĝ. For the maximal parahoric subgroup P = P0 of Ĝ the
affine Grassmannian is defined as

Gr
(
ĝ
)

:= Ĝ/P0.

In this chapter we study the affine Grassmannian for the affine Kac-Moody
Lie algebra ĝln and refer to it as the affine Grassmannian. In order to identify its
approximations with quiver Grassmannians we need a different description of the
affine Grassmannian which is closer to the subspace interpretation of the classical
Grassmannian. It is possbile to identify the affine Grassmannian with the set of
lattices as shown for example in the survey by U. Görtz [37]. But there is an other
approach which realises the affine Grassmannian by a construction which is even
closer to the classical interpretation. This is based on the embedding ĝln ⊂ gl∞
and is described in the article by V. Kac and D. Peterson [45].

Let V be an infinite dimensional vector space over C with basis vectors vi for
i ∈ Z and consider the subspaces

V` := span
(
v`, v`−1, v`−2, . . .

)
which are infinite in the direction of the negative indices.

The Sato Grassmannian SGrm is defined as

SGrm :=
{
U ⊂ V : There exists a ` < m s.t. V` ⊂ U and dimU/V` = m− `

}
.
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The points in this Grassmannian are vector subspaces of V which are infinite in
the direction of negative indices. But for each space there exists a number ` such
that the part of the vector space living above the vector v` is finite dimensional.
More precisely every point in SGrm can be described as

U = span
({
vi : i ≤ `

}
∪
{
wk : k ∈ I

})
where |I| = m− ` and the wk are linear independent combinations of the vi’s with
i > `. For example

Vm and span
({
vi : i ≤ m− 3

}
∪
{
vm+1, vm+5, vm+13

})
describe points in the Sato Grassmannian SGrm.

There exists an alternative parametrisation of the affine Grassmannian as a
subset in the Sato Grassmannian SGr0. Let

sn : V → V ; vi 7→ vi+n

be a shift of indices by n.

Proposition 5.11. As a subset of the Sato Grassmannian SGr0 the affine
Grassmannian is described as

Gr
(
ĝln
) ∼= {U ∈ SGr0 : U ⊂ snU

}
.

Proof. In [30] E. Feigin, M. Finkelberg and M. Reineke introduce the affine
Grassmannian as

Gr
(
ĝln
) ∼= {U ∈ SGr0 : U ⊂ t−1U

}
.

This description goes back to V. Kac and D. Peterson who studied representations
of ĝln and gl∞ in [45]. The infinite dimensional vectorspace V is identified with
Cn ⊗ C[t, t−1] via

vn(k−1)+j = ej ⊗ t−k

where {ei : i ∈ [n]} is the standard basis of Cn. With this identification of vec-
torspaces the multiplication by t−1 in Cn ⊗ C[t, t−1] corresponds to an index shift
by n in the basis of V . �

5.3. Finite Approximations by Quiver Grassmannians for the Loop

In this section we define the Feigin-degenerate affine Grassmannians Gra
(
ĝln
)

and approximate them by quiver Grassmannians for the loop quiver. This con-
struction was introduced by E. Feigin, M. Finkelberg and M. Reineke in [30].

On V we define the projection

prk : V → V ; vi 7→
{ 0 if i = k
vi otherwise.

Definition 5.12. The degenerate affine Grassmannian is defined as

Gra
(
ĝln
)

:=
{
U ∈ SGr0 : pr U ⊂ snU

}
where

pr := pr1 ◦ pr2 ◦ · · · ◦ prn.



78 5. THE AFFINE GRASSMANNIAN AND THE LOOP QUIVER

We refer to this degeneration as the Feigin degeneration of the affine Grass-
mannian if we have to distinguish between different degenerations because it is
defined analogous to the interpretation of the Feigin degeneration of the classical
flag variety by E. Feigin [29, Theorem 0.1].

For a parameter N ∈ N the finite approximation of the degenerate affine
Grassmannian is defined as

GraN
(
ĝln
)

:=
{
U ∈ Gra

(
ĝln
)

: V−nN ⊂ U ⊂ VnN
}
.

Remark. In [30, Definition 2.2] the approximations are defined by the condi-
tion

Cn ⊗ tNC[t] ⊂ U ⊂ Cn ⊗ t−NC[t].
This is equivalent to our description because of the identification of basis we made
above. Namely the basis vector vnN corresponds to en ⊗ t−N since

n(N − 1) + n = nN.

This is the biggest possible index in the basis of V which the basis elements of
Cn ⊗ t−NC[t] can have. The basis vector v−nN corresponds to en ⊗ tN because

n(−N − 1) + n = −nN.
This is the biggest possible index for the basis elements of Cn ⊗ tNC[t].

Finite approximations of Sato Grassmannians are the same as classical Grass-
mannians.

Proposition 5.13. For ` ∈ N and m ≤ ` the approximation

SGrm,` :=
{
U ∈ SGrm : V−` ⊂ U ⊂ V`

}
of the Sato Grassmannian SGrm is isomorphic to the classical Grassmannian

Grm+`(2`) =
{
U ⊂ C2` : dimU = m+ `

}
.

Proof. Let U be a point in the classical Grassmannian Grm+`(2`). It is of
the form

U = span
(
w1, w2, . . . , wm+`

)
where the wj ’s are linear independent linear combinations of the standard basis
vectors ei of C2`. Namely every wj is of the form

wj =
2∑̀
i=1

λi ei

with λi ∈ C. The vectors

w̃j :=
2∑̀
i=1

λi v`+1−i =
∑̀

i=−`+1
λ`+1−i vi

are linearly independent in V . We define

Ũ := span
({
vi : i ≤ −`

}
∪
{
w̃1, w̃2, . . . , w̃m+`

})
which describes a point in the approximation SGrm,`. For a different choice of
the basis of U we obtain the same point Ũ in the approximation of the Sato
Grassmannian. Moreover this map

φ : Grm+`(2`)→ SGrm,`; U 7→ Ũ
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is injective.
Let Ũ be a point in SGrm,`. By definition we have V−` ⊂ U ⊆ V` and

dimU/V−` = m+ `. This means that we can write it as

Ũ = span
({
vi : i ≤ −`

}
∪
{
ũ1, ũ2, . . . , ũm+`

})
where the ũj ’s are linear independent linear combinations of the basis vectors vi of
V with −` < i ≤ `. Hence every ũj is of the form

ũj =
∑̀

i=−`+1
µivi.

Accordingly the vectors

uj :=
∑̀

i=−`+1
µie`+1−i =

2∑̀
i=1

µ`+1−iei

are linearly independent in C2` and

U := span
(
u1, u2, . . . , um+`

)
describes a point in the classical Grassmannian Grm+`(2`). This is again indepen-
dent of the choice of the basis for Ũ . The map

ψ : SGrm,` → Grm+`(2`); Ũ → U

is injective and inverse to the map φ. �

This observation about the shape of approximations of Sato Grassmannians
allows to identify approximations of the affine Grassmannian with quiver Grass-
mannians for the loop quiver.

Proposition 5.14. For every N ∈ N the approximation GraN (ĝln) of the de-
generate affine Grassmannian is isomorphic to the quiver Grassmannian

GrANNn
(
AN ⊗ C2n)

where AN = C[t]/(tN ) is the truncated path algebra for the loop quiver with paths
of length at most N .

For the loop quiver there is exactly one indecomposable bounded injective and
one indecomposable bounded projective representation. Both are isomorphic to
the truncated path algebra AN of the loop quiver.

Proof. The vector space R corresponding to the quiver representation AN ⊗
C2n is 2nN -dimensional. We label its standard basis vectors by ri for i ∈ [2nN ].
The map Mα : R→ R which corresponds to this quiver representation is given by

Mα : ri 7→
{ 0 if i+ n > 2nN

0 if i ∈ {nN, nN − 1, . . . , nN − n+ 1}
ri+n otherwise

In other words
Mα = sn ◦ prnN ◦ prnN−1 ◦ · · · ◦ prnN−n+1.
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This description of the map Mα is obtained as follows. AN is isomorphic to
the bounded projective representation P (N)

1 and bounded injective representation
I

(N)
1 of the loop quiver. Hence we can view AN ⊗ C2n as

I
(N)
1 ⊗ Cn ⊕ P (N)

1 ⊗ Cn

which is analogous to the general case studied in the section about the quiver
Grassmannians for the equioriented cycle. In the coefficient quiver of this repre-
sentation we arrange the segments corresponding to the injective summands above
the segments of the projective summands, i.e.

1

...
n

n + 1

...
2n

...
n(N − 1) + 1

...
nN

nN + 1

...
nN + n

nN + n + 1

...
nN + 2n

...
2n(N − 1) + 1

...
2nN

In this picture the arrows go from i to i + n if both indices are smaller than nN
or both are strictly bigger than nN . From this picture we obtain the map Mα as
introduced above.
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The points in the quiver Grassmannian can be identified with points U in the
classical Grassmannian GrnN (R) such that Mα(U) ⊂ U . By the identification of
points in Sato Grassmannians and classical Grassmannians as above, this corre-
sponds to the points Ũ in the approximation SGr0,nN such that

s−n ◦ pr Ũ ⊂ Ũ .

This condition is equivalent to the description of the approximation of the affine
Grassmannian as subset of the Sato Grassmannian SGr0. �

5.4. Linear Degenerations

In this section we describe linear degenerations of the affine Grassmannian fol-
lowing the degeneration approach by G. Cerulli Irelli, X. Fang, E. Feigin, G. Fourier
and M. Reineke as introduced in [19]. For a map f : V → V define the f -
degenerate affine Grassmannian as

Grf
(
ĝln
)

:=
{
U ∈ SGr0 : f(U) ⊂ sn U

}
.

If f is a linear map, the degeneration is called linear. The degenerations we study
here are choosen such that the quiver Grassmannians approximating them can be
studied using the methods developed in this thesis. Even for this small class of
maps the degenerations behave very different from the linear degenerations of the
classical flag variety studied in [19]. For this reason we do not consider a more
general class of degenerations here.

For
f = pr1 ◦ pr2 ◦ · · · ◦ prn =: pr

we obtain the Feigin degeneration of the affine Grassmannian

Gra
(
ĝln
)

:=
{
U ∈ SGr0 : pr U ⊂ sn U

}
as studied in [30].

The goal of this section is the characterisation of the intermediate degenerations
between the Feigin degeneration and the affine Grassmannian. For integers n and
k the set of k-element subsets of [n] := {1, 2, . . . , n} is defined as(

[n]
k

)
:=
{
I ⊂ [n] : |I| = k and ip 6= iq for all p, q ∈ [k] with p 6= q

}
.

Take an index set I ∈
([n]
k

)
with I = {i1, . . . , ik} and define the function

prI := pri1 ◦ pri2 ◦ · · · ◦ prik .

Let I = [k] for k ∈ [n] and define

Grk
(
ĝln
)

:= GrprI
(
ĝln
)

which is called the standard partial degeneration to the parameter k.

Lemma 5.15. For every linear map f : V → V with corank f = k there is an
isomorphism of degenerate affine Grassmannians

Grf
(
ĝln
) ∼= Grk

(
ĝln
)
.
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The proof of this Lemma will be divided into several parts. At first we want
to construct approximations of the standard partial degeneration to the param-
eter k. Later we prove that all partial degenerate affine Grassmannians admit
approximations by quiver Grassmannians for the loop quiver and identify their
approximations with the approximations of the standard partial degeneration.

The approximations by quiver Grassmannians for the loop quiver exist for a
much bigger class of degenerations than introduced above. But the examination
of the degenerations we introduce here shows that already for this class we lose
some properties of the corresponding quiver Grassmannians which were used in
the previous chapters. Namely we can not describe the approximations by quiver
Grassmannians containing subrepresentations of representations which only consist
of injective representations of the loop. Hence we can not apply Theorem 2.3 and
can not study the variety of quiver representations to understand the geometric
properties of the quiver Grassmannian.

For this reason we restrict our further study to the linear degenerations of the
affine Grassmannian between the Feigin degeneration and the non-degenerate affine
Grassmannian. Some of the results about the geometric properties of the corre-
sponding quiver Grassmannians as introduced in the first section of this chapter
are generalised to this setting later.

Lemma 5.16. For every N ∈ N the approximation GrkN (ĝln) of the degenerate
affine Grassmannian is isomorphic to the quiver Grassmannian

GrA2N
Nn

(
AN ⊗ C2k ⊕A2N ⊗ Cn−k

)
.

Proof. The vectorspace R corresponding to the quiver representation

Mk
N := AN ⊗ C2k ⊕A2N ⊗ Cn−k

is 2nN -dimensional. It is possible to arrange the segments in the coefficient quiver
of Mk

N such that the map Mα corresponding to this representation is given by

Mα = sn ◦ prnN ◦ prnN−1 ◦ · · · ◦ prnN−k+1.

The nN -dimensional subrepresentations of Mk
N are described by the points U in

the Grassmannian GrnN (2nN) satisfying Mα(U) ⊂ U . This Grassmannian is iso-
morphic to the approximation SGr0,N of the Sato Grassmannian SGr0. Following
the isomorphism of Grassmannians the map Mα corresponds to the map

M̃α = s−n ◦ pr1 ◦ pr2 ◦ · · · ◦ prk : V → V

which parametrises the points in the approximation of the affine Grassmannian by
the condition M̃α(U) ⊂ U for U ∈ SGr0,N . �

With the same methods we can construct the approximations of the other
degenerations where the linear map is projection.

Proposition 5.17. Let I, J ∈
([n]
k

)
, then

GrprI
(
ĝln
) ∼= GrprJ

(
ĝln
)
.

Proof. Without loss of generality we can assume that I = [k]. For N ≥ 1 let
V (N) be the subspace of V which is spanned by the basis vectors{

vi : −nN < i ≤ nN
}
.
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The maps
s−n ◦ pr1 ◦ pr2 ◦ · · · ◦ prk : V (N) → V (N)

and
s−n ◦ pri1 ◦ pri2 ◦ · · · ◦ prik : V (N) → V (N)

can be realised by different arrangements of the segments of the quiver representa-
tion

Mk
N := AN ⊗ C2k ⊕A2N ⊗ Cn−k

hence the quiver Grassmannians providing the approximations of the partial degen-
erate affine Grassmannians are isomorphic and the isomorphism for N = 1 extends
to the isomorphism for all bigger approximations. �

In the same way we prove the isomorphism for the other partial degenerations
of the affine Grassmannian.

Proof of Lemma 5.15. Let N ∈ N be the smallest number such that the
corank of f as endomorphism of V is the same as the corank of f as an endomor-
phism of V (N). Then there exists a matrix g ∈ GL2nN (C) such that

gfg−1 = pr1 ◦ pr2 ◦ · · · ◦ prk.
Hence the quiver representations whose quiver Grassmannians provide the approx-
imations of

GrkN
(
ĝln
)

and GrfN
(
ĝln
)

are isomorphic. This isomorphism extends to an isomorphism for all bigger ap-
proximations. �

From now on we will restrict our study to the degenerations Grk
(
ĝln
)
because

their properties translate to all other degenerations in the corresponding isomor-
phism class of partial degenerate affine Grassmannians.

5.5. Ind-Variety Structure

The affine Grassmannian and its linear approximations are in contrast to the
classical case not finite dimensional. Hence we have to give some structure to
their finite dimensional approximation in order to lift geometric properties from
the finite approximations to the infinite dimensional object.

Definition 5.18. A set X is called ind-variety if there is a filtration of finite
dimensional varieties X0 ⊆ X1 ⊆ X2 . . . such that

(1)
⋃
i≥0Xi = X,

(2) Xi ↪→ Xi+1 is a closed embedding for all i ∈ Z≥0.

In this section we construct closed embeddings

ΦkN : GrA2N
Nn

(
AN ⊗C2k⊕A2N ⊗Cn−k

)
→ GrA2N+2

(N+1)n
(
AN+1⊗C2k⊕A2N+2⊗Cn−k

)
.

These maps provide the ind-variety structure for the finite approximations of
the partial degenerate affine Grassmannian by quiver Grassmannians for the loop
quiver. For the affine Grassmannian and the Feigin degeneration these maps pre-
serve the dimension of the cells in the quiver Grassmannians. This implies that
the ind-topology and the Zariski topology on the ind-variety coincide [71, Propo-
sition 7].
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5.5.1. Ind-Variety Structure of the Feigin Degeneration of the Affine
Grassmannian. Before we introduce the construction of this map in the general
setting, we consider it for the special case of the Feigin degeneration, i.e.

ΦaN : GrANNn
(
AN ⊗ C2n)→ GrAN+1

(N+1)n
(
AN+1 ⊗ C2n)

For the definition of this map we need an explicit description for the coordinates
of the points in the quiver Grassmannians. The vector space V corresponding to
the quiver representation MN := AN ⊗C2n is 2nN -dimensional and we denote its
basis by

B := {v1, v2, . . . , v2nN}
following the notation in Section 5.1.4.

Each point p in the quiver Grassmannian corresponds to a nN -dimensional
subspace of V which is compatible with the map Mα corresponding to the quiver
representation MN . It can be written as

p = Span
{
w1, . . . , wnN

}
with wk ∈ C2nN . Below we work out an explicit description of the vectors wk
following the construction in the proof of Theorem 4.10.

Proposition 5.19. The cells of the quiver Grassmannian
GrANNn

(
AN ⊗ C2n)

are in bijection with the set
InN (2nN) :=

{
I ⊂ [2nN ] : |I| = nN and k + 2n ∈ I if k ∈ I

}
.

Proof. The cells are in bijection with successor closed subquivers on nN
points in the coefficient quiver of AN ⊗ C2n. By definition, every point in the
coefficient quiver is labelled by some basis vector vk. Hence, any full subquiver in
the coefficient quiver of MN can be described by a subset I ⊆ [2nN ]. The arrows
in the coefficient quiver of MN are going form the point labelled by vk to the point
labelled by vk+2n. Accordingly a subquiver is successor closed if and only if k ∈ I
implies that k + 2n ∈ I if the second number is not bigger than 2nN . The correct
dimension of the subrepresentations in the quiver Grassmannian above is obtained
with the condition |I| = nN . �

To an index set I ∈ InN (2nN) we assign the torus fixed point
pI := Span{vk : k ∈ I}.

Following the computation in the proof of Theorem 4.10 we obtain that the
points in the attracting set of pI can be described as Span{w1, . . . , wnN} where

ws = vks +
∑

j>ks,j /∈I

λj,svj

with λj+2n,t = λj,s ∈ C whenever Mα maps vks to vkt .
The dimension of the cell c(pI) is obtained as the number of independent

parameters in the set {
λj,s : ks ∈ I and j > ks, j /∈ I

}
.

This number equals the number of holes below the starting points of the segments
corresponding to I in the coefficient quiver of MN .
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The coefficients describing a point in the quiver Grassmannian are collected in
a matrix

M(λ) ∈M2nN,nN (C)
where the s-th column of the matrix has the entries λj,s from the description of
the points as above. We set λj,s = 0 if the vector vj does not turn up in the above
sum. Then entry λks,s is set to one because vks turns up with coefficient one in
the above summation.

We define the map
ΨN : M2nN,nN (C)→M2n(N+1),n(N+1)(C)

where the matrix M̃ := ΨN (M) is defined by

m̃p,q :=
{
mp−n,q if n < p ≤ 2nN + n and q ∈ [nN ]

1 if q > nN and p− 2nN = q − nN
0 otherwise.

This matrix has a block structure of the following shape

M̃ =

 0n,nN 0n,n
M 0nN,n
0n,nN idn


where 0p,q is a p × q matrix with all entries equal to zero and idn is the n × n
identity matrix.

Using this map we define the closed embeddings for the ind-variety structure
on the affine Grassmannian. Therefore it needs to send points of the smaller quiver
Grassmannian to points in the bigger quiver Grassmannian.

Proposition 5.20. Let M := M(λ) ∈ M2nN,nN (C) describe a point in the
quiver Grassmannian

GrANnN
(
AN ⊗ C2n).

Then ΨN (M) describes a point in the quiver Grassmannian

GrAN+1
n(N+1)

(
AN+1 ⊗ C2n).

Proof. Each point in the quiver Grassmannian
GrANNn

(
AN ⊗ C2n).

is contained in some cell which is corresponding to an index set I ∈ InN (2nN).
Hence the point can be described as Span{w1, . . . , wnN} where

ws = vks +
∑

j>ks,j /∈I

λj,svj

with λj+2n,t = λj,s ∈ C whenever Mα maps vks to vkt .
Let

B̃ :=
{
ṽ1, ṽ2, . . . , ṽ2n(N+1)

}
be a basis of the vector space Ṽ which corresponds to the quiver representation
MN+1. The image of the vector ws under the map ΨN is given by

w̃s := ΨN (ws) = ṽks+n +
∑

j>ks,j /∈I

λj,sṽj+n

with λj+2n,t = λj,s if Mα sends vks to vkt . For k ∈ [n(N + 1)] \ [nN ], the map ΨN

generates the additional vectors w̃k = ṽn(N+1)+k.
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Accordingly the image of Span{w1, . . . , wnN} under ΨN is given as
Span

{
w̃1, . . . , w̃nN , ṽ2nN+n+1, . . . , ṽ2n(N+1)

}
.

We define the index set Ĩ ⊂ [2n(N + 1)] which contains the indices of the first
non-zero coefficient in the rows of the matrix ΨN (M(λ)). By the shape of the map
ΨN we know that the set Ĩ is obtained from the index set I as

Ĩ = {k + n : k ∈ I} ∪ {2nN + n+ 1, 2nN + n+ 2, . . . , 2n(N + 1)}.
Now we check that

Ĩ ∈ In(N+1)
(
2n(N + 1)

)
,

i.e. the index set Ĩ describes a cell in the quiver Grassmannian

GrAN+1
n(N+1)

(
AN+1 ⊗ C2n).

By definition we know that Ĩ has the right cardinality. The index set I satisfies
that k + 2n ∈ I if k ∈ I. Thus for every k ∈ I there exists an ` ∈ N such that
k+2n` ∈ I and k+2n` ∈ [2nN ]\ [2n(N−1)]. This means that k+2n(`+1) > 2nN
such that we do not have to consider this repetition for the index set I ⊂ [2nN ].

In the index set Ĩ this corresponds to k + n + 2n(` + 1) > 2nN + n. By
construction this element is contained in the index set Ĩ because it contains all
indices bigger than 2nN + n. Moreover it is the largest element which has to be
contained in Ĩ since k + n+ 2n(`+ 2) > 2n(N + 1).

For smaller ` the index k+2n` is included in Ĩ if k is included in Ĩ because this
part of the index set Ĩ is obtained as a shift of I by n and I satisfies this condition.
Accordingly the index set Ĩ satisfies the requirements to be included in

In(N+1)
(
2n(N + 1)

)
.

It remains to show that the point Span{w̃1, w̃2, . . . , w̃n(N+1)} is included in the
attracting set of the fixed point

pĨ := Span
{
ṽk : k ∈ Ĩ

}
.

The points q in the cell of pĨ are of the form q = Span{ũ1, ũ2, . . . , ũn(N+1)}
where

ũs = ṽk̃s +
∑

j̃>k̃s,j̃ /∈Ĩ

λ̃j̃,sṽj̃ .

For k̃s > 2nN + n there are no indices j̃ > k̃s with j̃ /∈ Ĩ because the index set Ĩ
contains all indices bigger than 2nN + n. Thus we have ũs = ṽk̃s for these indices
and there are n-many of them. This matches the generators

w̃nN+1, w̃nN+2, . . . , w̃n(N+1)

of the image of the point from the smaller quiver Grassmannian.
The other k̃s ∈ Ĩ are obtained as ks + n for ks ∈ I. Hence the condition

j̃ > k̃s, j̃ /∈ Ĩ
is equivalent to

j > ks, j /∈ I
for j = j̃ − n. With this index shift we can rewrite the vectors as

ũs = ṽks+n +
∑

j>ks,j /∈I

λ̃j+n,sṽj+n.



5.5. IND-VARIETY STRUCTURE 87

By setting λ̃j+n,s = λj,s we obtain that the remaining w̃s are of this form. Therefore
the point

Span
{
w̃1, w̃2, . . . , w̃n(N+1)

}
is contained in the attracting set of the torus fixed point pĨ . �

It remains to show that this map preserves the dimension of the cells in the
approximations.

Proposition 5.21. The cell in the approximation GraN (ĝln) of the Feigin-
degenerate affine Grassmannian which is parametrised by the index set I is of the
same dimension as the cell in GraN+1(ĝln) which corresponds to the index set Ĩ.

Proof. In the proposition above we have seen that both index sets corre-
spond to cells in certain quiver Grassmannians for the loop quiver. Because of the
C∗-action the cells of these quiver Grassmannians are in bijection with successor
closed subquivers in the coefficient quiver of the representation AN⊗C2n respective
AN+1 ⊗ C2n. The coefficient quiver of AN ⊗ C2n has 2nN points. We can assign
subquiver to an index set I ∈ InN (2nN) by colouring the points corresponding
to the indices k ∈ I black and the remaining ones white. The properties of the
index sets in InN (2nN) guarantee that this subquiver is successor closed. This
correspondence is bijective as described earlier in this section.

In the coefficient quiver parametrisation we can compute the dimension of cells
by counting the holes below the starting points of the subsegments. The way how
we obtain Ĩ from the index set I guaranties that the number of holes below each
segment stays the same by passing from I to Ĩ. More precisely we shift all the
segments corresponding to I by n and add only black dots below the lowest hole
of the subquiver corresponding to I. �

In the subsequent example we study the shape of the map between the approxi-
mations in the parametrisation using coefficient quivers. There exists an equivalent
characterisation of the index sets I ∈ InN (2nN) which helps to compute them.

Proposition 5.22. The cells of the quiver Grassmannian
GrANnN

(
AN ⊗ C2n)

are parametrised by the set

IN,nN (2n) :=
{
I = (I`)`∈[N ] : I1 ⊆ I2 ⊆ · · · ⊆ IN ⊆ [2n] and

N∑
`=1
|I`| = nN

}
.

Proof. The cells of this quiver Grassmannian are parametrised by the set
InN (2nN). To a tuple I = (I`)N`=1 we assign the index set

J :=
⋃
`∈[N ]

{
k + 2n(`− 1) : k ∈ I`

}
which is contained in InN (2nN) because the shifts of the indices do not change the
amount of all indices and the index sets satisfy I` ⊆ I`+1 for all ` ∈ [N − 1].

Starting with an index set J ∈ InN (2nN) we define

I` :=
{
k − 2n(`− 1) : k ∈ J and k − 2n(`− 1) ∈ [2n]

}
.

The elements of the set J satisfy that k + 2n ∈ J if k ∈ J . This yields k ∈ I`+1 if
k ∈ I`. Again the number of indices is not changed by this map. Accordingly the
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resulting tuple I = (I`)N`=1 is included in the claimed set. This proves the bijection
since both maps are inverse to each other. �

Example 5.23. Let n = 3 and N = 2. In the approximation Gra2(ĝl3) we have
a cell which parametrised by the pair of index sets

I =
(
I1 = {1, 4}, I2 = {1, 3, 4, 6}

)
.

The corresponding index set J ∈ I6(12) is given by
J = {1, 4, 7, 9, 10, 12} = {1, 4, 1 + 6, 3 + 6, 4 + 6, 6 + 6}.

The index set J̃ ∈ I9(18) which is computed using the map above is given by

J̃ = {4, 7, 10, 12, 13, 15, 16, 17, 18} = {1+3, 4+3, 7+3, 9+3, 10+3, 12+3}∪{16, 17, 18}.
For the successor closed subquivers, the mapping is of the form

5.5.2. Ind-Variety Structure of the Affine Grassmannian. In this sec-
tion we use the properties of the approximations of the Feigin-degenerate affine
Grassmannian and the maps between them to introduce the maps for the ind-
variety structure of the non-degenerate affine Grassmannian.

For this purpose we need an alternative description of the cells in the quiver
Grassmannian arising from the successor closed subquivers in the coefficient quiver
of A2N ⊗ Cn. Analogous to approximations of the Feigin degeneration we prove
the following statement.

Proposition 5.24. The cells of the quiver Grassmannian
GrA2N

Nn

(
A2N ⊗ Cn

)
are in bijection with the set

I0
nN (2nN) :=

{
I ⊂ [2nN ] : |I| = nN and k + n ∈ I if k ∈ I

}
.
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Again there exists an alternative characterisation using tuples of index sets.
For the proof of the subsequent proposition we have to replace N by 2N and 2n
by n in the proof of the analogous statement for the approximations of the Feigin
degenerations.

Proposition 5.25. The cells of the quiver Grassmannian
GrA2N

nN

(
A2N ⊗ Cn

)
are parametrised by the set

I2N,nN (n) :=
{
I = (I`)`∈[2N ] : I1 ⊆ I2 ⊆ · · · ⊆ I2N ⊆ [n] and

2N∑
`=1
|I`| = nN

}
.

We can use the same map ΨN as above to introduce the ind-variety structure
of the non-degenerate affine Grassmannian. The proof that the image of a point p
in the quiver Grassmannian

GrA2N
nN

(
A2N ⊗ Cn

)
is a point p̃ in the quiver Grassmannian

GrA2(N+1)
n(N+1)

(
A2(N+1) ⊗ Cn

)
is similar to the proof for the approximations of the Feigin degeneration. We
describe the points explicitly as the span of certain ws which have the same shape
as above. Only the parametrising index sets for the cells have changed. All steps
in the proof work in the same way. Hence we arrive at an closed embedding

ΦN : GrA2N
nN

(
A2N ⊗ Cn

)
→ GrA2(N+1)

n(N+1)
(
A2(N+1) ⊗ Cn

)
which preserves the dimension of the cells.

Remark. For the parametrisation of the cells by the index tuples in I2N,nN (n)
the map between the approximations has a simpler description than for I0

nN (2nN).
Namely let I be an index tuple in I2N,nN (n) then the image of I under the map
ΦN is given by the tuple Ĩ ∈ I2N+2,n(N+1)(n) where

Ĩ1 = ∅, Ĩ`+1 = I` for ` ∈ [2N ] and ĨnN+2 = [n].
On the level of cells we study the maps between the approximations for the

different parametrisations in the subsequent example.
Example 5.26. For n = 5 and N = 1, the pair of index sets

I =
(
I1 = {1, 4}, I2 = {1, 2, 4}

)
which is included in I2,5(5) describes a cell in the approximation Gr1(ĝl5). Its
image in I4,10(5) under the map ΦN is given by

Ĩ =
(
I1 = ∅, I2 = {1, 4}, I3 = {1, 2, 4}, I4 = [n]

)
.

In the parametrisation by one index set, I corresponds to
J = {1, 4, 6, 7, 9} = {1, 4, 1 + 5, 2 + 5, 4 + 5} ∈ I0

5 (10)
and the image of J in I0

10(20) is given by
J̃ = {6, 9, 11, 12, 14, 16, 17, 18, 19, 20}

= {1 + 5, 4 + 5, 6 + 5, 7 + 5, 9 + 5} ∪ {16, 17, 18, 19, 20}.
For the successor closed subquiver interpretation the map is given by
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5.5.3. Ind-Variety Structure of Partial Degenerations of the Affine
Grassmannian. The parametrisations of the cells in the approximations of the
affine Grassmannian and the Feigin-degenerate affine Grassmannian using index
sets or tuples of index sets as studied above are more complicated for the inter-
mediate degenerations. This is the case because in the coefficient quiver of the
representation

Mk
N := AN ⊗ C2k ⊕A2N ⊗ Cn−k

the segments do not all have the same length.
Hence it is not possible to describe the maps between the approximations

via the index shift ΨN which was used for the Feigin degeneration and the non-
degenerate affine Grassmannian. Nevertheless there exists a universal approach to
compute the assignment of basis vectors in all approximations. It specialises to the
cases studied above.

For the definition of this map we choose the successor closed subquiver parametri-
sation of the cells in order to visualise where the difference in the assignment arises.
In both cases of the map between the approximations that we have studied so far
the number of points in the coefficient quiver grows by 2n. We add n points be-
low and n points above the points of Mk

N . Then we extend the segments of Mk
N

to the new points matching the structure of Mk
N+1. This is the step where the

intermediate degenerations behave different from the Feigin degeneration and the
non-degenerate affine Grassmannian.

Example 5.27. We study the map between the coefficient quivers of Mk
N and

Mr
N+1k for n = 3, N = 2 and k = 2. The map between the coefficient quivers of

M2
2 := A2 ⊗ C4 ⊕A4 ⊗ C1 and M2

3 := A3 ⊗ C4 ⊕A6 ⊗ C1
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is given by

where we coloured the vertices corresponding to the long segment in gray.
The part of the coefficient quiver of Mk

N corresponding to the segments of
AN ⊗ Cn+k is embedded into the coefficient quiver of Mk

N+1. The long segment
and the two upper short segments are extended to the three new vertices below the
embedded quiver. This is analogous to the previously studied embeddings.

But on top of the embedded quiver we have to change the assignment in order
to match the structure of Mk

N+1. Namely the other two short segments have
to be extended here such that their starting points are below the other vertices
corresponding to the long segment which is also extended by one point at the top.

In general the image of the coefficient quiver of AN ⊗ Cn+k inside the coef-
ficient quiver of Mk

N+1 determines how the new arrows of this coefficient quiver
have to be drawn. Only for the two special cases studied above they have the
nice interpretation in terms of the index shift. For the intermediate degeneration
the index shift applies only to points in cells whose corresponding subquivers live
completely inside of the coefficient quiver of AN ⊗ Cn+k. For the other cells it is
more complicated to describe the mapping of the index sets describing the cells.

Based on the method described above it is possible to define polynomial maps

ΦkN : GrA2N
Nn

(
AN ⊗C2k⊕A2N ⊗Cn−k

)
→ GrA2N+2

(N+1)n
(
AN+1⊗C2k⊕A2N+2⊗Cn−k

)
for every k ∈ {0, 1, 2, . . . , n} such that the image in the bigger approximation is
closed.

Moreover this map sends cells to cells and it preserves the dimension of the
cells if the cell we start with is representable by a subquiver in the coefficient quiver
of AN⊗Cn+k. This follows with the same arguments as for the Feigin degeneration
of the affine Grassmannian.
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5.6. The Action of the Automorphism Groups in the Limit

In this section we examine the action of the automorphism groups Aut∆1(Mk
N )

on the quiver Grassmannians
GrANNn

(
Mk
N

)
for the special case k ∈ {0, n} and if there exists an embedding of automorphism
groups

ϕkN : Aut∆1(Mk
N )→ Aut∆1(Mk

N+1)
which is compatible with the maps

ΦkN : GrA2N
Nn

(
Mk
N

)
→ GrA2N+2

(N+1)n
(
Mk
N+1

)
.

Before we study the the automorphism groups Aut∆1(MN ) and Aut∆1(Ma
N )

we work out the explicit shape of the endomorphisms
End∆1

(
AN
)

= Hom∆1

(
AN , AN

)
for the indecomposable nilpotent representation AN of the loop quiver.

This quiver representation is of the form

AN =
(
CN , s1

)
where the map s1 : CN → CN acts on the basis vectors ei as

s1ei =
{ ei+1 if i < N

0 otherwise.

For a vector v ∈ CN this corresponds to left multiplication with the matrix
H1 ∈ MN (C) with entries hi,j := δi−1,j for i, j ∈ [N ]. The endomorphisms of
the representation AN are all linear maps ρ : CN → CN such that

ρ ◦H1 = H1 ◦ ρ.
The entries of ρ ◦H1 are given by(

ρ ◦H1
)
i,j

=
N∑
k=1

ρi,kHk,j =
N∑
k=1

ρi,kδk−1,j =
{
ρi,j+1 if j < N
0 otherwise.

For H1 ◦ ρ we obtain the entries(
H1 ◦ ρ)i,j =

N∑
k=1

Hi,kρk,j =
N∑
k=1

δi−1,kρk,j =
{ ρi−1,j if i > 1

0 otherwise.

Accordingly we obtain ρi−1,j = ρi,j+1 for i > 1 and j < N which is equivalent to
ρi,j = ρi+1,j+1 for i, j < N . Moreover we have ρ1,j = 0 for j > 1 and ρi,n = 0 for
i < N . This yields that all entries of ρ above the main diagonal are equal to zero
and that the entries are constant on the remaining N diagonals.

Hence the matrix ρ is described completely by the values of the entries ρi,1 for
i ∈ [N ] and these entries are independent of each other. This implies that the space
of endomorphisms of AN is N -dimensional. The automorphisms of AN are the
endomorphisms such that ρ1,1 is invertible since this implies that the corresponding
matrix ρ is invertible.

Given a tuple (λk)k∈[N ] with entries λk ∈ C we define the entries of the lower
triangular matrix A(λ) ∈MN (C) by

ai,j :=
{ λk if k = i− j + 1

0 otherwise.
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This matrix is an element of the automorphism group Aut∆1(AN ) if λ1 6= 0 and all
elements of the automorphism group can be described in this way. For this reason
the automorphism group is also N -dimensional.

It acts on the quiver Grassmannian by multiplication from the left with the
vectors spanning a point in the quiver Grassmannian. This description of the
points in the quiver Grassmannians is introduced in the section about the ind-
variety structure and the image of the action is independent of the choice of vectors
spanning the point.

The quiver representation MN = A2N ⊗ Cn corresponds to the map

sn : C2nN → C2nN

and analogous we compute the endomorphisms of MN as the matrices in M2nN (C)
which commute with the matrix Hn ∈M2nN (C). These matrices can be described
as follows. For a tuple

λ :=
(
λ

(i,j)
k

)
with k ∈ [2N ] and i, j ∈ [n]

let Mk(λ) be the matrix with entries λ(i,j)
k for i, j ∈ [n]. Define the 2N × 2N block

matrix Aλ ∈M2nN (C) with the blocks

Ap,q :=
{ Mk(λ) if k = p− q + 1

0n,n otherwise.

Independent of the choice of λ this describes an endomorphism of MN and all
endomorphisms are obtained in this way. If we additionally require that the matrix
M1(λ) ∈Mn(C) is invertible it is sufficient to describe the automorphisms of MN .
Hence the group Aut∆1(MN ) is 2Nn2-dimensional.

Based on this description of the automorphism groups we define the embedding

ϕN : Aut∆1(MN )→ Aut∆1(MN+1)

by ϕN (Aλ) := Aλ̂ where λ̂ is obtained from λ as

λ̂
(i,j)
k :=

{
λ

(i,j)
k if k < 2N

0 otherwise.

This embedding is compatible with the actions of the automorphism groups on the
quiver Grassmannians.

Proposition 5.28. Let A ∈ Aut∆1(MN ) be an automorphism of the quiver
Grassmannian

GrA2N
Nn

(
MN

) ∼= GrN
(
ĝln
)
.

Then the diagram

GrN
(
ĝln
)

GrN+1
(
ĝln
)

GrN
(
ĝln
)

GrN+1
(
ĝln
)ΦN

A

ΦN

ϕN (A)

≡

commutes.



94 5. THE AFFINE GRASSMANNIAN AND THE LOOP QUIVER

Proof. From the section about the ind-variety structure of the affine Grass-
mannian we know that the points p in the approximations are described as

p = Span{w1, . . . , wnN}

where
wt = vkt +

∑
j>kt,j /∈I

λj,tvj

and I ∈ I0
nN (2nN) is a index set parametrising some fixed point. In this parametri-

sation the action of an element A of the automorphism group of the representation
MN on the point p is defined as A.p := Span{Aw1, . . . , AwnN}. The image of the
point p under the map

ΦN : GrN
(
ĝln
)
→ GrN+1

(
ĝln
)

is computed as

ΦN (p) = Span
({
snwt : t ∈ [nN ]

}
∪
{
v2nN+n+i : i ∈ [n]

})
.

On the vectors {
v2nN+i : i ∈ [n]

}
an element Aλ ∈ Aut∆1(MN ) acts with the block M1(λ) which is invertible. Hence
we obtain

Span
{
v2nN+n+i : i ∈ [n]

}
= Span

{
Aλv2nN+n+i : i ∈ [n]

}
.

On a basis vector vnk+j ∈ C2nN the automorphism Aλ acts with the blocks M`(λ)
for ` ∈ [2N − k + 1]. On the image snvnk+j = vnk+j+n ∈ C2n(N+1) the auto-
morphism ϕN (Aλ) acts with the blocks M`(λ) for ` ∈ [2N + 2 − k]. This means
that there is an additional action of the block M2N−k+2(λ). The image of this
additional action lives on the new basis vectors vj with j > 2nN +n. For the other
blocks the action on the shift of wt lives over the shift of the basis vectors it was
living over for the unshifted version of wj , i.e.

Awt = s−nφN (A)snwt.

It is not important what happens over the basis vectors vj with j > 2nN+n because
these basis vectors are all included in the generating set of the span and changes
of these entries for the other generators do not affect the span of all generators.
Accordingly we obtain

ΦN (A.p) = ϕN (A).ΦN (p).
�

Now we want to study the case k = n where we have automorphisms of the
representation

Ma
N = AN ⊗ C2n

which corresponds to the map

s2n : C2nN → C2nN .

Based on the description of the automorphisms of AN we compute that the elements
of the group Aut∆1(Ma

N ) are parametrised as follows. Let µ be the tuple

µ :=
(
µ(i,j)) with k ∈ [N ] and i, j ∈ [2n]
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and Mk(µ) be the matrix with entries µ(i,j)
k for i, j ∈ [2n]. Define the N ×N block

matrix Aµ ∈M2nN (C) with the blocks

Ap,q :=
{ Mk(µ) if k = p− q + 1

02n,2n otherwise.

The matrix Aµ is an element of the automorphism group Aut∆1(Ma
N ) if and only

if detA1,1 6= 0 and this group is 4Nn2-dimensional. We define the embedding

ϕaN : Aut∆1(Ma
N )→ Aut∆1(Ma

N+1)

by ϕaN (Aµ) := Aµ̂ where µ̂ is obtained from µ as

µ̂
(i,j)
k :=

{
µ

(i,j)
k if k < N

0 otherwise.

Remark. This embedding is not compatible with the map

ΦaN : GraN
(
ĝln
)
→ GraN+1

(
ĝln
)

because for ΦaN we have an index shift of the vectors spanning the points in the
Grassmannians by n but the blocks in the elements of the automorphism group
have size 2n.

Moreover it is not possible to define an embedding of the automorphism groups
such that the action is equivariant for the map ΦaN . We would have to split the
blocks of size 2n into smaller blocks of size n to be compatible with the index shit
by n. This shift would require a flip of the n × n subblocks on the diagonal of
the 2n× 2n blocks in order to have the same blocks acting on a vector before and
after the embedding ΦaN . But the upper right n× n subblock of M1(µ) cannot be
embedded into an automorphism of Ma

N+1 in order to match its action on Ma
N .

It would have to be located in a block above the diagonal and this is not possible
since these blocks are zero for elements of the automorphism group Aut∆1(Ma

N+1).

If we apply ΦaN+1 ◦ ΦaN we have an index shift of 2n and this is compatible
with the embedding ϕaN+1 ◦ ϕaN of the automorphism group. It is checked in the
same way as for the non-degenerate affine Grassmannian that the square in the
subsequent proposition commutes.

Proposition 5.29. Let A ∈ Aut∆1(Ma
N ) be an automorphism of the quiver

Grassmannian
GrANNn

(
Ma
N

) ∼= GraN
(
ĝln
)
.

Then the diagram

GraN
(
ĝln
)

GraN+2
(
ĝln
)

GraN
(
ĝln
)

GraN+2
(
ĝln
)ΦaN+1 ◦ ΦaN

A

ΦaN+1 ◦ ΦaN

ϕaN+1 ◦ ϕaN (A)

≡

commutes.
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5.7. Geometric Properties

In this section we examine the geometric properties of the partial degenerations
of the affine Grassmannian and their approximations which arise from the study
of the corresponding quiver Grassmannians.

The subsequent corollary is an immediate consequence of the results concerning
the quiver Grassmannians for the loop quiver as studied in the first section of this
chapter.

Corollary 5.30. GraN (ĝln) is an projective variety of dimension Nn2. It is
irreducible, normal, Cohen-Macaulay and has rational singularities.

Proof. The first part of the statement follows from Proposition 5.2 by set-
ting x = y = n. Irreducibility and the geometric properties are obtained from
Proposition 5.3. �

For the non-degenerate affine Grassmannian there is an analogous result.

Corollary 5.31. GrN (ĝln) is an projective variety of dimension 2Nbn/2cdn/2e.
It is irreducible, normal, Cohen-Macaulay and has rational singularities.

Proof. By Lemma 5.16 we know that the finite approximations of the affine
Grassmannian are given by

GrA2N
Nn

(
A2N ⊗ Cn

)
.

For even n we can apply Lemma 3.22 to compute the dimension of the approxima-
tions. We set

X2N := Y2N := A2N ⊗ Cn/2

and obtain

dim GrA2N
Nn

(
A2N ⊗ Cn

)
= 2N(n− n/2)n/2

which matches the claimed formula since n is even. The irreducible components are
parametrised by the set described in Lemma 3.23 which contains only one element
since the loop quiver has only one vertex. The geometric properties are again
obtained from Proposition 5.3.

For odd n we can apply Theorem 2.3 since A2N is a bounded injective repre-
sentation of the loop quiver. This allows us to study orbits in the variety of quiver
representations in order to find the irreducible components of the quiver Grassman-
nian providing the approximation. As in the proof of Proposition 3.21 we know
that increasing the length of the words parametrising an orbit also increases the
dimension of the orbit. Since we only have one letter, it is possible to glue all words
as long as the length of the glued word is not longer than 2N . Hence

U := A2N ⊗ Cbn/2c ⊕AN

is a representative of the highest dimensional orbit in the bounded variety of quiver
representations and all other orbits have strictly smaller dimension. It remains to
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compute the dimension of the stratum of U . By Lemma 1.3 we obtain

dim GrA2N
Nn

(
M
)

= dim HomQ(U,M)− dim EndQ(U)
= 2Nbn/2cn+Nn−

(
2Nbn/2cbn/2c+ 2Nbn/2c+N

)
= 2Nbn/2c

(
n− bn/2c

)
+Nn−

(
2Nbn/2c+N

)
= 2Nbn/2cdn/2e+Nn−

(
N(n− 1) +N

)
= 2Nbn/2cdn/2e.

�

Remark. For the Feigin-degenerate affine Grassmannian and the non-degenerate
affine Grassmannian we have show in Section 5.5 that the closed embeddings of the
finite approximations preserve the cell structure and additionally the dimension of
the cells. Hence the ind-topology and the Zariski topology on Gra(ĝln) coincide by
a result of I. Stampfli [71].

Conjecture 5.32. The approximation to the parameter N of the k-linear
degenerate affine Grassmannian is a projective variety of dimension

dim GrkN
(
ĝln
)

= N
(
nk + 2

(
n− k −

⌊n− k
2

⌋)⌊n− k
2

⌋)
.

It is irreducible if k ∈ {0, n} or n−k is even. If n−k is odd it has N+1 irreducible
components.

The proof of this statement requires a completely different approach since the
direct summands of the quiver representation used for the approximation do not
have the same length and hence can not be all bounded injective representations.
This means that looking at the variety of quiver representations does not help to
find the irreducible components of the quiver Grassmannian since Theorem 2.3
does not hold in this setting.

Hence there is no closure preserving bijection between orbits in the variety of
quiver representations and strata in the quiver Grassmannian. So far we have no
methods to compute tight upper bounds for the dimension of the strata in the
quiver Grassmannian directly without using the inclusion relations of the orbits in
the variety of quiver representations.

For all computations in the appendix, the above formulas give exactly the
dimension of the Grassmannian and the number of irreducible components. Based
on the methods introduced in this thesis we are only able to show that this formula
gives a lower bound for the dimension of the finite approximations.

Proposition 5.33. The approximation to the parameter N of the k-linear
degenerate affine Grassmannian is a projective variety of dimension

dim GrkN
(
ĝln
)
≥ N

(
nk + 2

(
n− k −

⌊n− k
2

⌋)⌊n− k
2

⌋)
.

Proof. By Lemma 5.16 the finite approximations are isomorphic to the quiver
Grassmannians

GrA2N
Nn

(
Mk

)
where

Mk := A2N ⊗ Cn−k ⊕AN ⊗ C2k.
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For the computation of the lower bound on the dimension of these quiver Grass-
mannians take the subrepresentation

Uk := A2N ⊗ Cb
n−k

2 c ⊕AN ⊗ Cn−2bn−k2 c

and compute

dim GrA2N
Nn

(
Mk

)
≥ dim HomQ

(
Uk,Mk

)
− dim EndQ

(
Uk
)
.

The space of homomorphisms has dimension

dim HomQ

(
Uk,Mk

)
= 2N

⌊n− k
2

⌋(
n− k

)
+N

⌊n− k
2

⌋
2k

+N
(
n− 2

⌊n− k
2

⌋)(
n− k

)
+N

(
n− 2

⌊n− k
2

⌋)
2k

= 2N
⌊n− k

2

⌋
n+N

(
n− 2

⌊n− k
2

⌋)(
n− k

)
+ 2N

(
n− 2

⌊n− k
2

⌋)
k

and the space of endomorphisms has dimension

dim EndQ
(
Uk
)

= 2N
⌊n− k

2

⌋⌊n− k
2

⌋
+N

⌊n− k
2

⌋(
n− 2

⌊n− k
2

⌋)
+N

(
n− 2

⌊n− k
2

⌋)⌊n− k
2

⌋
+N

(
n− 2

⌊n− k
2

⌋)2

= 2N
⌊n− k

2

⌋(
n−

⌊n− k
2

⌋)
+N

(
n− 2

⌊n− k
2

⌋)2
.

Hence we obtain
dim GrA2N

Nn

(
Mk

)
≥ dim HomQ

(
Uk,Mk

)
− dim EndQ

(
Uk
)

= 2N
⌊n− k

2

⌋
n+N

(
n− 2

⌊n− k
2

⌋)(
n− k

)
+ 2N

(
n− 2

⌊n− k
2

⌋)
k

− 2N
⌊n− k

2

⌋(
n−

⌊n− k
2

⌋)
−N

(
n− 2

⌊n− k
2

⌋)2

= 2N
⌊n− k

2

⌋⌊n− k
2

⌋
+N

(
n− 2

⌊n− k
2

⌋)(
n− k

)
+ 2N

(
n− 2

⌊n− k
2

⌋)
k −N

(
n− 2

⌊n− k
2

⌋)2

= N
(

2
⌊n− k

2

⌋2
+ n2 − nk − 2n

⌊n− k
2

⌋
+ 2k

⌊n− k
2

⌋
+ 2nk

− 4k
⌊n− k

2

⌋
− n2 − 4

⌊n− k
2

⌋2
+ 4n

⌊n− k
2

⌋)
= N

(
nk + 2

(
n− k

)⌊n− k
2

⌋
− 2
⌊n− k

2

⌋2)
= N

(
nk + 2

(
n− k −

⌊n− k
2

⌋)⌊n− k
2

⌋)
.

�

Remark. For k = 0 and k = n we rediscover the formulas for the dimension
of the approximations as computed above. This suggests that the bound is also
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sharp for the approximations of the intermediate degenerations of the affine Grass-
mannian. Moreover the bound is sharp in all examples which were checked using
the computer program.

For the proof that equality holds we need different methods to compute the
strata of highest dimension. A first step in this direction is the generalisation of
the result about the cellular decomposition of the quiver Grassmannians to the
class of Grassmannians which is needed for the approximations of the intermediate
degenerations.

Proposition 5.34. For every L ∈ GrANnN (Mk
N )T , the subset C(L) ⊆ GrANnN (Mk

N )
is an affine space and the quiver Grassmannian admits a cellular decomposition

GrANnN (Mk
N ) =

∐
L∈GrAN

nN
(Mk

N
)T

C(L).

For k = 0 and k = n this result follows from Proposition 5.6. But for the
intermediate degenerations not all summands of Mk

N are of the same length such
that the torus action on the quiver Grassmannian has to be defined in a different
way.

Proof. We arrange the segments in the coefficient quiver of Mk
N as in Sec-

tion 5.5. The assumption d(α) := n + k induces a grading of the vertices in the
coefficient quiver which satisfies the assumption of Theorem 4.7. Hence by Propo-
sition 4.9 the number successor closed subquivers on nN vertices in the coefficient
quiver of Mk

N equals the Euler Poincaré characteristic of these quiver Grassmanni-
ans.

Analogous to the proof of Theorem 4.10 we show that the attracting sets of
the torus fixed points are affine spaces and describe a cellular decomposition of the
quiver Grassmannian. �

Using the shape of the coefficient quiver of Mk
N and the fact that the strata in

the quiver Grassmannians are parametrised by certain successor closed subquivers
therein we might help prove that the lower bound on the dimension of the quiver
Grassmannians as introduced above is also an upper bound. We need a construction
proving that there can not be successor closed subquivers with more than the
desired amount of holes below the starting points. This could be done by looking
at the inclusion relations of the cells. But these relations are more complicated
as in the case where all indecomposable summands have the same length and the
proof for the upper bound will not be part of this thesis.

5.8. Cellular Decomposition and Poincaré Series

In this section we study the Euler Poincaré characteristic of the approximations
and the Poincaré series of the partial degenerate affine Grassmannians. For the
Feigin-degenerate affine Grassmannian we have the following description of the
Euler Poincaré characteristic of the approximations.

Lemma 5.35. The Euler Poincaré characteristic χn,N of the finite approxima-
tion GraN (ĝln) is given by

χn,N =
n−1∑
k=0

(−1)k
(

2n
k

)(
(n− k)(N + 1) + n− 1

2n− 1

)
.
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Proof. The finite approximations of the Feigin-degenerate affine Grassman-
nian are given by the quiver Grassmannians GrNn(AN ⊗C2n) for the loop quiver.
The Euler Poincaré characteristic of this quiver Grassmannian equals the number
of fixed points of the C∗-action on this quiver Grassmannian.

The torus fixed points are in bijection with successor closed subquivers in the
coefficient quiver of AN ⊗C2n with Nn many marked points. These subquivers are
parametrised by the length of the segments embedded into the 2n copies of AN ,
i.e.

χn,N :=
∣∣∣C(2n)
nN

(
∆1, IN

)∣∣∣ =
∣∣∣{p ∈ Z2n : 0 ≤ pi ≤ N,

∑
i∈[2n]

pi = Nn
}∣∣∣.

where the description of the set of cells was obtained in the first section of this
chapter. Setting ai = pi and bi = N − pn+i for i ∈ [n] we obtain the equality

χn,N =
∣∣∣{(a,b) ∈ Zn × Zn : 0 ≤ ai, bi ≤ N,

∑
i∈[n]

ai =
∑
i∈[n]

bi

}∣∣∣.
The cardinality of this set is given in the article of M. Nathanson [61, p. 8]. �

Remark. For the intermediate degenerations of the affine Grassmannian it
is more complicated to find a formula for the Euler Poincaré characteristic of the
finite approximations since the length of the segments parametrising a cell is not
bounded by one parameter but two.

The maps introducing an ind-variety structure on the approximations by quiver
Grassmannians allow us to compute the limit of the Poincaré polynomials for the
approximations. First we want to compute this limit for the Feigin degeneration
and then we study it for the partial degenerations where the proof works analogous
to the method developed in the Feigin setting.

Theorem 5.36. The limit of the Poincaré polynomials pn,N (q) of the finite
approximations GraN (ĝln) is given by

lim
N→∞

pn,N (q) = pn(q) :=
2n−1∏
k=1

(1− qk)−1.

The prove of this theorem is based on the observation that the number of
k-dimensional cells stabilises for N big enough.

Proposition 5.37. Let b(N)
k be the number of k-dimensional cells in the finite

approximation GraN (ĝln). Then

(i) b
(N)
k ≤ b

(N+1)
k for all N ≥ 1 and

(ii) b
(N)
k = b

(Nk)
k for all N ≥ Nk where Nk := dk/ne.

Proof. We start with the first part. In the previous section we have seen
that the map ΦN between the finite approximations preserves the dimensions of
the cells. In Proposition 5.21 we have shown that the image of a k-dimensional
cell in GraN (ĝln) is a k-dimensional cell in GraN+1(ĝln). Thus the number of k-
dimensional cells in the bigger approximation can not be smaller than the number
of k-dimensional cells in the smaller approximation, i.e.

b
(N+1)
k ≥ b

(N)
k
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for every N ≥ 1 and every k ∈ Z≥0.
To prove the second part, we have to modify the description of the cells. It

is also possible to describe the length of the segments in the coefficient quiver
relatively to the shortest segment. This parametrisation is independent of the
approximation wherein we consider the cell.

For a fixed dimension k, the biggest difference between the shortest and longest
segment in a cell is achieved if all k holes in the coefficient quiver are below the start-
ing point of one long segment and above the starting points of all other segments.
If this k-dimensional cell is contained in an approximation to the parameter N , all
other possible k-dimensional cells are contained in this approximation. Hence b(N)

k

is already maximal for this approximation and Part (ii) of the proposition follows.
It remains to determine the minimal number Nk such that the cell of this

type is contained in the approximation to the parameter Nk. Equivalently we
can compute the maximal k such that the special k-dimensional cell as introduced
above is contained in the finite approximation GraN (ĝln).

We set the longest segment to N and have to distribute to remaining length
of N(n− 1) to the remaining 2n− 1 segments such that all starting points are as
low as possible. If

N(n− 1)
2n− 1

is an integer we set the length of all remaining segments to this number. For the
computation of an upper bound to k we can set the starting point of the long
segment as high as possible. The number of holes in the coefficient quiver which
are below this starting point computes as

(2n− 1)
(
N − N(n− 1)

2n− 1

)
= N(2n− 1)−N(n− 1) = Nn.

By construction there are no holes below the ohter starting points such that this
is also the dimension of the corresponding cell.

In the setting that the fraction above is no integer we define

` :=
⌊N(n− 1)

2n− 1

⌋
and q := N(n− 1)− (2n− 1)` ≤ 2n− 1.

We set the length of the q lower segments to `+1 and the 2n−1−q segments above
them get the length `. The highest segment again has length N . This describes a
cell in the approximation to the parameter N because

(2n− 1− q)`+ q(`+ 1) = (2n− 1)`− q`+ q`+ q = (2n− 1)`+ q

= (2n− 1)`+N(n− 1)− (2n− 1)` = N(n− 1).
By counting the holes below the starting points of the segments, the dimension of
the corresponding cell C computes as

dimC = (2n− 1)
(
N − (`+ 1)

)
+ 2n− 1− q

= (2n− 1)
(
N − (`+ 1)

)
+ 2n− 1−

(
N(n− 1)− (2n− 1)`

)
= (2n− 1)N − (2n− 1)`+ (2n− 1)`− (2n− 1) + (2n− 1)−N(n− 1)
= (2n− 1)N −N(n− 1) = Nn.

Here the number in the first row counts the holes below the starting points of the
long segment. There are no holes below the other starting points by construction
of this cell.
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Accordingly all k-dimensional cells are contained in the approximation to the
parameter N if and only if k ≤ nN . This proves that the number of k-dimensional
cells in the approximation to the parameter N is constant for

N ≥ Nk := dk/ne.

�

This enables us to compute the number of k-dimensional cells in the degenerate
affine Grassmannian by counting the k-dimensional cells of its finite approximation
to the parameter Nk. For this approach it is essential that the embeddings of the
quiver Grassmannians which provide the maps for the ind-variety structure of the
degenerate affine Grassmannian preserve the structure and the dimension of the
cells in the approximations. Accordingly there is a one to one correspondence be-
tween k-dimensional cells of the degenerate affine Grassmannian and k-dimensional
cells in the approximation to the parameter N ≥ Nk.

Proof of Theorem 5.36. Every Poincaré polynomial pn,N (q) of a finite ap-
proximation can be written as

pn,N (q) =
Nn2∑
k=0

b
(N)
k qk

where b(N)
k is the number of k-dimensional cells in the approximation GraN (ĝln).

By Proposition 5.37 we know that there exists an integer Nk such that the
number b(N)

k does not change for any N ≥ Nk. We define bk := b
(Nk)
k and obtain

that the Poincaré series of the affine Grassmannian is given by

pn(q) =
∑
k≥0

bkq
k.

It remains to show that every bk is equal to the number of partitions of k
into at most 2n − 1 pieces. For this purpose we construct maps between cells of
dimension k and partitions of k into at most 2n − 1 pieces. Then we check that
this correspondence is bijective.

As shown above the cells are parametrised by the length of the 2n subsegments
in the coefficient quiver of MN . Their dimension is given by the number of holes
below the starting points in the coefficient quiver. For the j-th segment this number
is given by the function hj which was determined in Proposition 5.8.

We can associate a partition of k to every cell of dimension k with parts given
by the number of holes below every starting point. Going from the highest to the
lowest starting point the size of the parts is descending. This partition is obtain
by computing the numbers of holes hj for all segments and ordering them from big
to small.

At least the part of one of the 2n subsegments has to be zero. If there is a
segment of length zero, there is nothing to show. If a cell corresponds to a tuple
of non-zero subsegments in all 2n segments of AN ⊗C2n, there can not be any free
point below the starting point of the shortest segment. This follows from the shape
of the coefficient quiver of AN ⊗C2n. Let i be the index of this segment and let pj
denote the length of the segment. For all i ∈ [2n] we know that pi ≥ pj since the
j-th segment was assumed to be the shortest.
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Accordingly the function hj(p) which counts the holes below the starting point
of the j-segment computes as

hj(p) = max
{

0, (2n− 1)pj − j + 1
}

−
( ∑

i>j

min{pi, pj}+
∑
i<j

min
{
pi,max{pj − 1, 0}

} )
= (2n− 1)pj − j + 1−

( ∑
i>j

pj +
∑
i<j

(pj − 1)
)

= 0

because ∑
i>j

pj +
∑
i<j

(pj − 1) = (2n− j)pj + (j − 1)(pj − 1)

= (2n− 1)pj − (j − 1)pj + (j − 1)(pj − 1)
= (2n− 1)pj − j + 1.

Hence we can associate a partition of k into at most 2n − 1 parts to every cell.
Moreover this computation shows that hj = 0 for all shortest segments and not
only for the one with the lowest starting point.

Given two distinct cells in the same approximation the hole sequences have to
vary at some point because the number of holes below the starting points deter-
mine the relative position of the starting points. If we assume that the segments
correspond to cells in the same approximation the overall length of the segments
is fixed and the relative positions of the starting points are sufficient to determine
the whole cell. Thus we have an injective map from cells to partitions. For a given
partition we now want to reconstruct its cell. This is based on the relative positions
of the starting points as determined by the hole sequence.

Let p = (p1, . . . , ps) with p1 ≥ p2 ≥ · · · ≥ ps be a partition of k in to s ≤ 2n−1
pieces. From this data we construct a cell descending from the highest point in the
coefficient quiver. Below this point we leave p1− p2 holes before the starting point
of the next longest segment is inserted in the picture.

If p1 − p2 ≥ 2n − 1 there is a marked point in between corresponding to the
segment we just started coming trough the sequence of holes. Below the second
marked point we leave p2−p3 holes and now have to keep record of the two segments
we started which could possibly interrupt the sequence of holes.

In the same way we continue up to the starting point of the segment with ps
holes below it. After the last holes we mark the number of points missing to get
a cell in the Grassmannian with Nn marked points. Every step in this process is
well defined and there can not be two partitions which lead to the same cell under
this process.

This establishes the bijection since we have two injective maps between cells
and partitions which are inverse to each other. The generating function for parti-
tions of k into at most 2n− 1 pieces is known to be

2n−1∏
k=1

(1− qk)−1.

�
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Remark. The parametrisation of the cells by certain partitions should allow
to describe the Poincaré polynomials of the finite approximations explicitly. Unfor-
tunately we have not found any polynomial condition to decide whether a partition
belongs to the approximation for the parameter N or not. So far we only have a
condition which is based on the algorithm in the proof above. This method is
discussed in the next section where we also apply the algorithm in some examples.

Theorem 5.38. The Euler Poincaré series pkn(q) of the partial degenerate affine
Grassmannian

Grk
(
ĝln
)

is given by

pkn(q) :=
n+k−1∏
r=1

(1− qr)−1.

Proof. Similar as above we obtain a stabilising condition of the coefficients in
the Poincaré polynomials of the approximations because the map ΦkN preserves the
dimension of cells whose segments are not longer than N . We can use the functions
hj with m = n + k to compute the dimension of these cells. For every dimension
r there exists an N such that all r-dimensional cells in the approximation to the
parameter N are expressible using segments of length at most N .

In this setting the computation of br and the inverse map from partitions
back to cells is analogous to the special case as described above. All steps in the
proof work similar and we can identify the cells in the partial degenerations with
partitions of the cell dimension into n+ k − 1 parts.

The singular homology commutes with direct limits [53, p. 399]. The Betti
numbers of the finite dimensional approximations are computed following [33, §B.3
Lemma 6] and [70, Chapter 5, §5]. �

For the affine Grassmannian we recover the same formula for the Poincaré
series as with the classical computation based on the length of the elements in the
affine Weyl group [7].

Remark. The quiver Grassmannian

GrA2N
2Nn

(
A2N ⊗ C2n)

provides the finite approximations

GrN
(
ĝl2n

)
and Gra2N

(
ĝln
)

such that both approximations have the same Poincaré polynomial. But the iden-
tifications of the quiver Grassmannian with the approximations are different such
that one limit is the affine Grassmannian and the other is the Feigin-degenerate
affine Grassmannian.

5.9. Partitions and Cells in the Quiver Grassmannians

In this section we develop a method to decide whether a partition corresponds
to a cell in the approximation to the parameter N or not. Let P2n−1(k) be the set
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of all partitions of k into at most 2n− 1 pieces. The map ψ is defined as

ψ : C(2n)
nN

(
∆1, IN

)
→

Nn2⋃
k=0

P2n−1(k)

p 7−→λ(p)

where λ(p) is the partition which is obtained by ordering the numbers hj(p) for
j ∈ [2n]. The goal of this section is to describe the image

PN2n−1(k) := ψ
(
C(2n)
nN

)
∩ P2n−1(k)

explicitly. With these sets the Poincaré polynomial of the approximation computes
as

pn,N (q) =
Nn2∑
k=0

∣∣PN2n−1(k)
∣∣qk.

The maps between cells and partitions generalise to the class of quiver Grassman-
nians we introduced in the beginning of this chapter. Hence we can compute the
Poincaré polynomial of them as well.

Starting with a partition λ ∈ Px+y−1(k) we start to compute the corresponding
cell following the algorithm described in the proof of Theorem 5.36. After we have
drawn the first black dot below the last hole, we count the number of black dots
above the lowest hole and denote this number by λ∗1.

This is the only way to compute this number that we have found so far. It is
desirable to find a direct computation for this number which is independent of the
algorithm to compute cells from partitions.

Theorem 5.39. The Poincaré polynomial px,y,N (q) of the quiver Grassman-
nian

GrANxN
(
AN ⊗ Cx+y)

is given by

px,y,N (q) =
Nxy∑
k=0

∣∣PNx,y(k)
∣∣qk.

where
PNx,y(k) :=

{
λ ∈ Px+y−1(k) : λ1 ≤ yN, λ∗1 ≤ xN

}
.

Proof. For a cell p in C(x+y)
xN the complement p∗ is defined by setting
p∗j := N − px+y+1−j

for all j ∈ [x+ y]. Hence the complement p∗ lies in C(x+y)
yN . If we apply the map ψ

to the cell p∗, the first part in the partition λ(p∗) is given by the λ∗1 as constructed
above. The map ψ in this setting is defined analogous to the special case x = y.

A cell p in C(x+y)
xN consists of xN marked points and yN unmarked points in

the coefficient quiver of AN ⊗ Cx+y. Thus under each starting point of a segment
there can be at most yN unmarked points such that we obtain λ1 ≤ yN . For
the complementary cell p∗ in C(x+y)

yN we obtain λ∗1 ≤ xN in the same manner.
Accordingly we have a necessary condition to describe the image, i.e.

ψ
(
C(x+y)
xN

)
∩ Px+y−1(k) ⊆ PNx,y(k).
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Given the information that for a partition λ it is enough to take at most xN
many marked points to cover the k many holes below the highest starting point,
we can add the remaining marked points below the lowest hole and the remaining
unmarked points above the highest starting point. What we obtain is a cell with
exactly xN marked points and yN unmarked points. This cell is contained in the
set C(x+y)

xN . Hence the condition we imposed is sufficient, i.e.

ψ
(
C(x+y)
xN

)
∩ Px+y−1(k) = PNx,y(k).

�

Example 5.40. In the set P3(5) we have the partition λ := (3, 1, 1). Now we
describe the steps in the algorithm to compute the corresponding cell. Here we
draw the intermediate steps horizontal in order to reduce the space we need for the
pictures. We start with one marked box and 3− 1 holes, i.e.:

After 4 = 2n dots we draw a horizontal line to indicate that we are at the next
length level of the coefficient quiver and that we have to take track of the points
which have been marked already. These have to be repeated now with a period
of 2n. The next box is marked again. Then we draw the first separator and keep
track of the first repetition. Then we draw the last starting point:

7−→ 7−→
Then we draw the last starting point and add the final hole:

7−→
The next dot would have to be black again but we do not have to add it. The
current diagram has 4 marked and 3 unmarked points. By Theorem 5.39 we know
that it can be turned into a cell for N = 2. We move the separator one to the left
and add a white dot on the left.

7−→
The resulting diagram corresponds to a 5-dimensional cell in the quiver Grassman-
nian

GrA2
4
(
A2 ⊗ C4)

since it has 4 marked and 4 unmarked points and 5 = 3 + 1 + 1 holes below the
starting points of the segments.

The partition λ = (3, 2, 1) is contained in the set P3(6). The steps in the
algorithm to compute the corresponding cell are as follows. We start with one
black dot followed by 3 − 2 white dots. Then we have a black dot again which is
followed by 2− 1 white dots:

7−→ 7−→ 7−→
We arrived at 4 dots so we have to draw the first separator, keep track of repetitions
and add the last starting point:

7−→ 7−→
Then there is the next repetition before we can add the last hole:

7−→
In this diagram we have 5 marked and 3 unmarked points. By Theorem 5.39 we
know that it is not possible to turn this diagram into a cell for the parameter
N = 2. To make it a cell for the parameter N = 3 we have to add one black dot
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on the right and three white dots on the left. Finally we move the separators in
the right positions:

This diagram corresponds to a 6-dimensional cell in the quiver Grassmannian
GrA3

6
(
A3 ⊗ C4)

because there are 6 marked and 6 unmarked points and 6 = 3 + 2 + 1 holes below
the starting points of the segments.





CHAPTER 6

The Degenerate Affine Flag Variety

In this chapter we define affine flag varieties and describe the link between
affine flag varieties and quiver Grassmannians. For more details about the general
construction of affine flags see Chapter XIII in the book by S. Kumar [53].

Definition 6.1. Let Ĝ be the Kac-Moody group corresponding to the affine
Kac-Moody Lie algebra ĝ. For a parahoric subgroup P of Ĝ with I ⊂ P where I
is the standard Iwahori subgroup of Ĝ the affine flag variety is defined as

F lP
(
ĝ
)

:= Ĝ/P.

If the parahoric subgroup is equal to the standard Iwahori subgroup, we sim-
ply write F l

(
ĝ
)
and refer to this flag variety as (standard) flag variety. For the

affine Lie algebras ĝln and ŝln it is possbile to identify their flag varieties with
the set of full periodic lattice chains and the set of special lattice chains respec-
tive. This is shown for example in the survey by U. Görtz [37] and the articles by
A. Beauville and Y. Laszlo [3] and U. Görtz [36]. V. Kac and D. Peterson described
representations of these groups using Sato Grassmannians [45]. This leads to the
subsequent parametrisation of the affine flag variety and is related to the lattice
chain description.

For ` ∈ Z let V` be the vectorspace

V` := span(v`, v`−1, v`−2, . . . )

which is a subspace of the infinite dimensional C-vectorspace V with basis vectors
vi for i ∈ Z. The Sato Grassmannian for m ∈ Z is defined as

SGrm :=
{
U ⊂ V : There exists a ` < m s.t. V` ⊂ U and dimU/V` = m− `

}
.

Remark. For an n-dimensional vector space W over C with basis w1, . . . , wn
we can identify the space W ⊗ C[t, t−1] with V by

vn(k−1)+j = wj ⊗ t−k.

This gives an embedding ĝln ⊂ gl∞ and allows to describe the affine flag variety
of type gln inside the full infinite flag variety of type A∞. For more details on this
construction see [30] and [45].

Here we give an equivalent description for the affine flag variety which is in-
dependent of this identification of the basis. It is shown in Section 5.2 that both
parametrisations are equivalent for the affine Grassmannian. The equivalence for
the affine flag variety is shown in the same way.

109



110 6. THE DEGENERATE AFFINE FLAG VARIETY

Proposition 6.2. The affine flag variety F l
(
ĝln
)
as subset in the product

of Sato Grassmannians is parametrised as

F l
(
ĝln
) ∼= {(Uk)n−1

k=0 ∈
n−1∏
k=0

SGrk : U0 ⊂ U1 ⊂ . . . ⊂ Un−1 ⊂ snU0

}
.

It is shown by E. Feigin in [29] that the degeneration of the classical flag variety
he introduced in [28] admits a description via vector space chains where the spaces
are related by projections instead of inclusions. This construction is used to identify
the classical flag variety and its degenerations with quiver Grassmannians for an
equioriented quiver of type A by G. Cerulli Irelli, E. Feigin and M. Reineke in
[20]. The observation that the Feigin degeneration of the flag variety admits a
description where the inclusion relations of the vectorspaces are relaxed gives rise
to more general degenerations where arbitrary linear maps are allowed between
the vector spaces. These degenerations of the flag variety are called linear and are
studied in [19]. Here we want to follow the same approach and degenerate the affine
flag variety by replacing the inclusion relations for the chains of vector spaces with
projections. In later sections of this chapter we discuss a more general approach
to degenerate this flag variety. We show that some of the methods to study the
degenerate flag variety of this section still apply in the more general setting.

Definition 6.3. The degenerate affine flag variety F la
(
ĝln
)
is defined as

F la
(
ĝln
)

:=
{(
Uk
)n−1
k=0 ∈

n−1∏
k=0

SGrk : prk+1Uk ⊂ Uk+1, prnUn−1 ⊂ snU0

}
.

Here pri is the projection of vi to zero which corresponds to the projection of
wi ⊗ 1 to zero by the identification of the basis we make above. This degeneration
can also be called the Feigin-degenerate affine flag variety since its definition is
motivated by the definition for the linearly oriented type A quiver which can be used
to define quiver Grassmannians which are isomorphic to the Feigin degeneration of
the classical flag varieties [28, 29].

6.1. Finite Approximation by Quiver Grassmannians

For a positive integer ω we define the finite approximation of the degenerate
affine flag variety as

F laω
(
ĝln
)

:=
{(
Ui
)n
i=0 ∈ F l

a
(
ĝln
)

: V−ωn ⊆ U0 ⊆ Vωn
}
.

Analogous we define F lω
(
ĝln
)
for the non-degenerate affine flag variety.

Theorem 6.4. Let ω ∈ N be given, take the nilpotent quiver representations
Xω := Yω :=

⊕
i∈Zn Ui(ωn) and let eω denote the dimension vector of Xω, i.e.

eω := dimXω. Then
F laω

(
ĝln
) ∼= Gr∆n

eω (Xω ⊕ Yω).

Remark. This identification allows us to use all the theory and the results
developed for quiver Grassmannians in order to study the Feigin-degenerate affine
flag variety. The rest of this Chapter will deal with the proof of this theorem and
the consequences from applying the theory developed for quiver Grassmannians
and varieties of quiver representations in Chapter 3 and Chapter 4.
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For the proof of the theorem we need a different labelling of the basis elements
for the vector spaces over the vertices of the representation Xω ⊕ Yω than the one
we introduce in Section 4.4. This leads to a different arrangement of the segments
in the coefficient quiver which captures the structure of the maps between the
elements of the Sato Grassmannians.

Proposition 6.5. The quiver representation Xω ⊕ Yω is isomorphic to the
quiver representation

Mω :=
(
Mαi := s1 ◦ prωn

)
i∈Zn

.

Proof. The vertices of ∆n are in bijection with the set Zn and we choose
the representatives 0, 1, . . . , n− 1. For the representation Xω ⊕ Yω the vectorspace
over each vertex i ∈ Zn has dimension 2ωn. For the arrangement of the segments
in the coefficient quiver corresponding to the summands Ui(ωn) of Xω ⊕ Yω as in
Section 4.4 we obtain the maps s2 : C2ωn → C2ωn along the arrows of ∆n since
there are starting two segments of length ωn over each vertex.

Now we rearrange the segments. Over each vertex let one segment start in the
first basis vector and map to the second basis vector over the next vertex. For a
segment starting over the vertex i ∈ Zn in the k-th step of the segment the arrow
in the coefficient quiver goes from the k-th basis element over the vertex i+ k − 1
to the k+ 1-th basis element over the vertex i+ k. The segment ends in the ωn-th
basis vector over the vertex i + n = i − 1. The second segment over each vertex
starts in the basis vector ωn + 1. For the vertex i ∈ Zn in the k-th step of this
segment the arrow in the coefficient quiver goes from the ωn+ k-th basis element
over the vertex i+k−1 to the ωn+k+1-th basis element over the vertex i+k. The
segment ends in the 2ωn-th basis vector over the vertex i + n = i − 1. The maps
between the copies of C2ωn over the vertices corresponding to this arrangement of
the segments are given by s1 ◦ prωn. �

Example 6.6. For n = 4 and ω = 1 the coefficient quiver of Mω
∼= Xω ⊕ Yω is

of the form

s1 ◦ pr4

s1 ◦ pr4s1 ◦ pr4

s1 ◦ pr4

8 7 6 5 4 3 2 1

8

7

6

5

4

3

2

1

87654321

8

7

6

5

4

3

2

1
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The dashed arrows in the picture indicate where the segments grow if we increase
the value of ω.

Now we want to change the indices of the basis vectors over the vertices k ∈
∆n in order to match the indices of the basis vectors for the spaces in the Sato
Grassmannians SGrk. We keep the structure of the arrows between the vertices
in the coefficient quiver as introduced above and just change the labelling of the
points in the coefficient quiver. For the vertex k ∈ ∆n we label the first point in the
coefficient quiver over k by ωn+k the second point gets the label ωn+k−1 and the
last one will have the label −ωn+k+1 since there are 2ωn points over each vertex
of ∆n. With this labelling the maps along the arrows of ∆n for k ∈ {0, 1, . . . , n−1}
are given by prk+1. For k = n we obtain the map s−n ◦ prn. This is computed
from the index shift of the points over each vertex in the coefficient quiver.

Example 6.7. Before we turn attention to the proof of the theorem we consider
the coefficient quiver of Mω

∼= Xω ⊕ Yω for n = 4 and ω = 1 where we used the
new labelling of the points in the coefficient quiver.

pr1

pr2pr3

s−n ◦ pr4

−2 −1 0 1 2 3 4 5

−3

−2

−1

0

1

2

3

4

01234567

−1

0

1

2

3

4

5

6

Again the dashed arrows in the picture indicate where the segments grow if we
increase the value of ω.
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Proof of Theorem 6.4. In the coefficient quiver of Mω := Xω ⊕ Yω we
arrange the segments corresponding to projective and injective summands as in
the example above. Hence the maps between the vector spaces over the vertices
coincide with the maps between the spaces in the degenerate affine flag variety.

To finish the proof we have to identify the spaces in the finite approximations
of the Sato Grassmannians which correspond to points in the degenerate affine
flag variety with the vector spaces corresponding to the elements of the quiver
Grassmannian. In Proposition 5.13 we have identified the approximation SGrm,`
of the Sato Grassmannian SGrm with the classical Grassmannian Grm+`(2`). For
the Sato Grassmannian SGr0 and ` = ωn we obtain the isomorphism SGr0,ωn ∼=
Grωn(2ωn). This identifies the vector space over the first vertex of the quiver ∆n

for a representation in the quiver Grassmannian with the first space in the tuple of
vector spaces parametrising a point in the approximation of the degenerate affine
flag variety.

The cyclic relations of the vector spaces describing a point (Ui)i∈Zn in the
degenerate affine flag variety induce the following restrictions for the approximation
to the parameter ω

V−nω+i ⊂ Ui ⊂ Vnω+i for Ui ∈ SGri.

Accordingly the corresponding approximations of the Sato Grassmannians SGri
are also isomorphic to the classical Grassmannian Grωn(2ωn). The points in the
approximation

F laω
(
ĝln
)

are described by tuples consisting of vector spaces Ui ∈ SGri which are subject
to the above bounding condition and are compatible with the maps pri+1 and
s−n ◦ prn. Hence they are in bijection with points in the quiver Grassmannian

Gr∆n
eω (Xω ⊕ Yω)

because the points in the quiver Grassmannian are described as tuples of vec-
torspaces Vi ∈ Grωn(2ωn) for i ∈ Zn which are compatible with the maps s1 ◦prωn.
The isomorphism of the approximations of the Sato Grassmannians and the classi-
cal Grassmannian induce the correspondence of these maps with the maps between
the Sato Grassmannians as used for the definition of the degenerate affine flag va-
riety. Here the explicit coordinate description of this isomorphism is obtained as
in the examples above. �

In the rest of the chapter we apply the results about quiver Grassmannians to
the approximations of the affine flag variety and its degenerations.

Corollary 6.8. F laω
(
ĝln
)
is a projective variety of dimension ω · n2.

Proof. Let k :=
∑
i∈Zn xi where xi is the multiplicity of Ui(ωn) as summand

ofX andm := k+
∑
i∈Zn yi where yi is the multiplicity of Ui−ωn+1(ωn) as summand

of Y . From Lemma 3.22 we obtain

dim Gr∆n
eω (Xω ⊕ Yω) = ωk(m− k).

In this special case we have k = m− k = n and thus dimF laω
(
ĝln
)

= ω · n2. It is a
projective variety because all quiver Grassmannians for nilpotent representations
of ∆n are projective varieties. �
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6.2. Irreducible Components and Grand Motzkin Paths

In this section we use the formula for the irreducible components of the quiver
Grassmannians as developed in Lemma 3.23 to describe the irreducible components
of the approximations of the degenerate affine flag variety.

A grand Motzkin path of length n is a path on the grid Z2 from (0, 0) to
(n, 0) where the allowed steps are (1, 0), (1, 1), (1,−1). Is possible to reconstruct a
path from the n-tuple consisting of the second entries of the steps it takes.

Example 6.9. For n = 4 there are 19 grand Motzkin paths

which are in bijection with the tuples
(0, 0, 0, 0),

(1,−1, 0, 0), (0, 1,−1, 0), (0, 0, 1,−1), (−1, 1, 0, 0), (0,−1, 1, 0), (0, 0,−1, 1),
(1, 0,−1, 0), (1, 0, 0,−1), (0, 1, 0,−1), (−1, 0, 1, 0), (−1, 0, 0, 1), (0,−1, 0, 1),

(1, 1,−1,−1), (1,−1, 1,−1), (−1, 1,−1, 1), (−1,−1, 1, 1),
(1,−1,−1, 1), (−1, 1, 1,−1).

The sum over the entries in the tuples has to equal zero to satisfy that the path
comes back to the first axis.

Normal Motzkin paths are not allowed to go below the line between (0, 0) and
(n, 0) (first axis). In this example they can be found on the left side of the list
above except from the last row. The paths in the last row can not be derived from
the normal Motzkin paths by reflecting the path at the first axis. The first case
where these mixed paths appear is n = 4.

Lemma 6.10. The irreducible components of F laω
(
ĝln
)
are in bijection with the

set of grand Motzkin paths of length n.
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Proof. By Lemma 3.23 we know that the irreducible components of the quiver
Grassmannian in this setting are parametrised by{

p ∈ {0, 1, 2}n :
∑
i∈Zn

pi = n
}
.

We obtain a bijection with grand Motzkin paths by sending a tuple p describing
an irreducible component to the tuple (pi − 1)i∈Zn .

This tuple describes a grand Motzkin path since the sum over all entries is
equal to zero and the entries take values −1, 0 and 1. Starting with the tuple
parametrising a grand Motzkin path we add one to every entry and obtain a tuple
corresponding to an irreducible component because all entries are 0, 1 or 2 and the
sum of the entries is equal to n. �

Thus the number of irreducible components is independent of ω whereas the
number of strata is growing with ω.

Example 6.11. The grand Motzkin paths from the previous example corre-
spond to the following list

(1, 1, 1, 1),
(2, 0, 1, 1), (1, 2, 0, 1), (1, 1, 2, 0), (0, 2, 1, 1), (1, 0, 2, 1), (1, 1, 0, 2),
(2, 1, 1, 0), (2, 1, 0, 1), (1, 2, 1, 0), (0, 1, 2, 1), (1, 0, 1, 2), (0, 1, 1, 2),

(2, 2, 0, 0), (2, 0, 2, 0), (0, 2, 0, 2), (0, 0, 2, 2),
(2, 0, 0, 2), (0, 2, 2, 0).

with tuples of multiplicities for the indecomposable representations Ui(ωn) describ-
ing the irreducible components. Here (1, 1, 1, 1) corresponds to the component of
Xω.

6.3. Cellular Decomposition

The finite dimensional approximations of the Feigin-degenerate affine flag va-
riety admit a cellular decomposition as described in Theorem 4.10 in the chapter
about the torus action on the quiver Grassmannians. In this section we examine
how this decomposition changes by increasing the value of ω. The representation
Mω := Xω ⊕ Yω contains exactly two copies of every indecomposable representa-
tion Ui(ωn) and thus there are 2n possibilities to embed Xω into Mω. Hence the
stratum of Xω decomposes into 2n cells.

This is also the highest number of cells any stratum could have since it is only
possible to have two distinct sub-segments embedded into the two segments of the
coefficient quiver corresponding to the two copies of Ui(ωn). If in a stratum the
segments are the same for some i, the number of cells in this stratum is strictly
smaller. Given any stratum in the finite approximation it is possible to determine
all of its cells and their dimension.

Proposition 6.12. The base in the stratification of the finite approximation
for ω ∈ N is given by

Beω =
⊕
i∈Zn

U
(
i; bω · n/2c

)
⊕ U

(
i; dω · n/2e

)
.

Proof. Here we need the labelling of the basis elements for the vector spaces
over the vertices of the quiver ∆n corresponding to the representation Xω ⊕ Yω as
introduced in Chapter 4.
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For every choice of ω, there are two segments in the coefficient quiver ofXω⊕Y ω
ending at each vertex i ∈ Zn. The i-th entry of the dimension vector eω := dimXω

is given by ωn. Thus taking the ei inner points over the vertex i ∈ Zn corresponds
to taking bω/2c points in every segment of the coefficient quiver and one additional
point in the inner segment corresponding to some summand Uj(ωn) if ω is not even.
These j’s are obtained from the i’s by some shift of indices.

Since e is homogeneous and we do it for every vertex i ∈ Zn the exact value of
the shift does not matter. We only obtain that one of the segments of Beω ending
at vertex i is longer by one if ω is odd and they are the same if ω is even.

The length of the short segments corresponding to a summand of Beω is given
by bωn/2c. For the injective labelling of the indecomposable representations this
corresponds to a summand

U
(
i; bω · n/2c

)
= Ui−bω·n/2c+1

(
bω · n/2c

)
and we obtain them for every i ∈ Zn. Thus the long segments correspond to
summands

U
(
i; dω · n/2e

)
for every i ∈ Zn. �

Remark. For N = ω · n with ω even the stratum of Beω has exactly one cell
and it is zero-dimensional. For odd ω the stratum decomposes into 2n cells and the
stratum is n-dimensional. Hence we can distinguish between odd and even limits
of the finite dimensional approximations.

Now we want to examine how the Euler Poincaré characteristic changes with
increasing ω.

Proposition 6.13. Let χω be the Euler Poincaré characteristic of F laω
(
ĝln
)
.

It is bounded as (
2dω/2e

)n ≤ χω ≤
(
ωn+ 1

)2n
.

Proof. The Euler Poincaré characteristic of F laω
(
ĝln
)
is equal to the Euler

Poincaré characteristic of the quiver Grassmannian Gr∆n
eω (Xω ⊕ Yω). The cells in

this quiver Grassmannian are in bijection with certain successor closed subquivers
in the coefficient quiver of Xω ⊕ Yω. These subquivers are parametrised by tuples
indexed by the indecomposable direct summands in Xω⊕Yω and the corresponding
entry equals the length of the segment embedded into the segment corresponding
to this summand.

Thus we obtain tuples p of non-negative integers in Z2n because Xω ⊕ Yω has
two copies of every U(i;ωn) for i ∈ Zn as summand. Let pi be the length of a
segment embedded into a copy of U(i;ωn). It has to satisfy 0 ≤ pi ≤ ωn. We set
dimU(i; 0) := 0 and define the function

fi : {0, 1, . . . , ωn} −→ Zn

pi 7−→ dimU(i; pi)

which sends pi to the dimension vector of the indecomposable representation cor-
responding to the segment it describes.
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Using these functions we can parametrise the cells of the quiver Grassmannian
by the set

Zω :=
{

p ∈ Z2n : 0 ≤ pj ≤ ωn for all j ∈ [2n] and
∑
i∈Zn

fi(pi) + fi(pn+i) = e
}
.

Forgetting the constraint by the sum of the dimension vectors we obtain

|Zω| ≤ (ωn+ 1)2n.

To compute a lower bound on the Euler characteristics, we give an explicit
description of some cells in the Grassmannian Gr∆n

eω (Xω⊕Yω) and count them. For
two integers p and q with 0 ≤ p < q ≤ ω and p+ q = ω define the representations

U(i; qn) and U(i; pn)

which both embed into U(i;ωn) by definition.
Their direct sum U(i; qn)⊕U(i; pn) has the same dimension vector as U(i;ωn).

The parameter p can be computed as p = ω − q and the pairs (p, q) satisfying the
conditions above are obtained from the q’s satisfying

bω/2c+ 1 ≤ q ≤ ω.

Hence there are dω/2e many of them. In that way we can choose one parameter qi
for every i ∈ Zn and define the representation

V (q) :=
⊕
i∈Zn

U(i; qin)⊕ U(i; (ω − qi)n)

which is by construction an element of the quiver Grassmannian Gr∆n
eω (Xω ⊕ Yω).

There are dω/2en strata corresponding to the representations V (q) and each
of them decomposes into 2n cells since pi 6= qi for every i ∈ Zn and this gives us
2n distinct possibilities to embed the segments of V (q) into the segments in the
coefficient quiver of Xω ⊕ Yω. �

This shows that with increasing ω the Euler characteristic grows at least with
ωn whereas the dimension of the approximation is growing only linearly. In Sec-
tion 6.10 we give a formula for the Poincaré polynomials of the approximations
which is based on the parametrisation of the cells by successor closed subquivers.

Remark. For n ∈ [5] we can compute the Euler characteristic χ1 and the
number of strata in the quiver Grassmannian Gr∆n

e1
(M1) using the computer pro-

gram from Appendix B.1. For bigger ω a normal computer can only handle the
data for even smaller n. In the following table we list these numbers together with
the number of irreducible components which are parametrised as in Lemma 6.10.

n 1 2 3 4 5
|Cn(d)| 1 3 7 19 51
|Strata1| 1 6 41 585 12603

χ1 2 15 226 6137 265266
χ2 3 65 3511 359313 . . .
χ3 4 175 20620 . . . . . .

These first values of χ1 indicate that the Euler characteristics for ω = 1 is growing
faster even than (2n)n with increasing n.
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6.4. Affine Dellac Configurations

For the Feigin degeneration of the classical flag variety of type An, the Poincaré
polynomial can be computed using Dellac configurations which are counted by the
median Genocchi numbers. This description was develloped by E. Feigin in [29].
The torus fixed points of the symplectic degenerated flag variety are identified with
symplectic Dellac configurations by X. Fang and G. Fourier in [26]. In this section
we introduce affine Dellac configurations which turn out to be in bijection with the
cells of the Feigin-degenerate affine flag variety. This identification is based on the
parametrisation of the cells via sucessor closed subquivers.

6.4.1. Classical Dellac Configurations. First we recall the definition of
the classical Dellac configuration and show the idea behind the identification with
the cells of the degenerate flag variety F la(sln). This will help us to find the right
analogue to classical Dellac configurations in the affine setting.

Definition 6.14. In a rectangle of 2n× n boxes a Dellac configuration D
consists of 2n marked boxes such that:

(1) each row contains exactly one marked box,
(2) each column contains exactly two marked boxes,
(3) the index (r, c) ∈ [2n]× [n] of every marked box satisfies

n+ 1− c ≤ r ≤ 2n+ 1− c.

The set of all Dellac configurations for a fixed parameter n will be denoted by
DCn and its cardinality is given by the normalised median Genocchi number hn.

Example 6.15. For n = 3 we list all Dellac configurations below.

The condition (3) in the definition of Dellac configurations ensures that the
marked boxes are not allowed to be on the left of the upper diagonal of marked
boxes in last Dellac configuration of the example above and also not on the right of
the lower diagonal of marked boxes in the same configuration. These triangles are
forbidden areas for markings in all rectangles of 2n× n boxes underlying a Dellac
configuration.

Let Q be a linearly oriented quiver of type An, i.e.

. . .
1 2 3 n− 1 n

and define A := CQ as its path algebra. The degenerate flag variety F la(sln+1) is
isomorphic to the quiver Grassmannian GrQdimA(A⊕A∗) [20, Proposition 2.7].

Now we want to look at the relation of cells and configurations for the degener-
ate flag variety F la(sl5). In this setting, the coefficient quiver of the representation
A⊕A∗ is of the from
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By Proposition 4.9 we obtain that the cells of the degenerate flag variety are in
bijection with successor closed subquivers of this coefficient quiver which have j
marked points in the j-th column. From such a subquiver we obtain a Dellac
configuration by marking the boxes corresponding to the starting points of the
segments of the subquiver and marking the only possible boxes in the first and
the last row. If a segment contains no marked point we have to mark the box
corresponding to the point to the right of the end point of this segment.

The other way around we can start with a Dellac configuration and transfer
the marked points to the coefficient quiver of A⊕A∗. Then we mark all necessary
points to make this a successor closed subquiver. Hence the cells of F la(sln+1) are
in bijection with the Dellac configurations in DCn+1 as proven in [29].

Example 6.16. For the special case of n = 4, we show this correspondence for
one successor closed subquiver in the coefficient quiver of the representation A⊕A∗
of the equioriented type A quiver on four vertices.

←→ ←→

Remark. Condition (3) in the definition of Dellac configurations is important
for the dimension vector of the corresponding quiver representation. It ensures
that the entries of the dimension vector of the quiver representation are increasing
by one along each arrow of the quiver and that the first entry is also one. For a full
flag variety and thus its degeneration, this is exactly the dimension of the vector
spaces in the flag.

Moreover by Condition (2) we obtain that over each vertex of the quiver there
are starting two segments of the coefficient quiver corresponding to a cell. The
subsequent proposition suggests that for the degenerate affine flag variety there
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should be a structure parametrising the cells which is similar to the classical Dellac
configurations.

Proposition 6.17. In a subquiver of the coefficient quiver ofMω which corre-
sponds to a cell in the degenerate affine flag variety there are exactly two segments
starting over each vertex.

Proof. In Section 3.1 we have seen that orbits of quiver representations are
parametrised by collections of words where each word corresponds to a indecom-
posable representation of the cycle. The segments in the coefficient quiver of Mω

can also be parametrised by these words. Hence cells also correspond to collections
of words. Here the order of the words matters to distinguish between different cells
corresponding to one orbit. The orbit structure of the variety of quiver represen-
tations is described by cutting and gluing words. Thus all cells can be obtained
form the unique zero-dimensional cell by the same procedure of cutting and gluing
words. Since we only move around sub-words, this procedure can not change the
number of words starting over a vertex. If we move a sub-word ending at the vertex
i, the remaining word starts at vertex i+ 1. Even if the resulting word is empty we
keep it with the notation w(i+ 1; 0) and still count its starting point. By Proposi-
tion 6.12 we know that in the coefficient quiver of the unique zero-dimensional cell
there are exactly two segments starting over each vertex. The cutting and gluing
preserves this property for all other cells if we count the starting points as discussed
above. �

6.4.2. Periodic Dellac Configurations. In the rest of this section we in-
troduce the affine Dellac configurations to suit the cell structure of the degenerate
affine flag variety. We start with the approximation

F la1
(
ĝln
) ∼= Gr∆n

e1

(
M1
)

where
M1 :=

⊕
i∈Zn

Ui(n)⊗ C2.

The coefficient quiver of M1 contains 2n segments and each of them has length
n. Thus we need at least 2n × n boxes to describe the position of the starting
points of subsegments. Passing form an oriented string to the oriented cycle we
need some cyclic structure to describe the cells. Hence we identify the long sides
of the rectangle and obtain configurations on a cylinder. Moreover we introduce a
second kind of marking using white dots to denote segments which do not belong
to the subquiver.

From Section 3.5.2, we know that the cells of the quiver Grassmannian above
are in bijection with the set

C(d)
e
(
∆n, In

)
:=
{

l := (`i,1, `i,2) ∈
⊕
i∈Zn

[n]0 × [n]0 :
(
dimU(l)

)
i

= n
}

where e = (n)i∈Zn , d = (2)i∈Zn and N = n since ω = 1.
We draw a separator in the rectangle of 2n × n boxes to mark the end of

the segments in the coefficient quiver. Hence this separator is a staircase moving
diagonally around the cylinder. In the planar picture for n = 5 this looks like
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Remark. Here we cut the cylinder such that the staircase moves from the lower
left corner to the upper right corner and splits into two parts. It is possible to cut
it at any other point. We have chosen this picture to empathise the similarities
between cyclic and classical Dellac configurations.

Namely, the top-dimensional cell of the degenerate flag variety F la(sln) and
one top-dimensional cell of the approximation of the degenerate affine flag variety
F la1(ĝln) have the same picture with this planar presentation.

Now we describe how to assign a configuration to a cell. For k = 1 and `i,k 6= 0
we go to the i-th row, move `i,k steps to the left from the seperator and put a black
dot inside the box. If `i,k = 0 we move one step from the seperator to the right
and fill the box with a white dot. For k = 2 we go to i+n-th row and do the same
as for k = 1.

Example 6.18. For n = 5 and ω = 1 the representation

U =
⊕
i∈Zn

Ui(n)

is contained in the quiver Grassmannian

Gr∆n
e1

(
M1
)
.

Its stratum corresponds to the tuple (n, 0)i∈Zn and the procedure described above
assigns the configuration

This is the image of the top-dimensional cell we mentioned in the remark about
the planar presentation.

To decide whether a given configuration encodes a cell of the quiver Grassman-
nian, we need a tool to check if the corresponding quiver representation has the
right dimension vector.
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Definition 6.19. Let D be a configuration in a rectangle of 2n×n boxes. For
each black dot we write a one into its box and all boxes on the right until we reach
the diagonal separator. The weight of a column is the sum of its entries and the
column vector with the column weights as entries is called weight vector.

We compute the weight vector for a cell in the ongoing example of this subsec-
tion. Take the tuple (

(3, 2), (3, 2), (3, 2), (3, 2), (3, 2)
)

which corresponds to the subsequent configuration

−→

1

1

1

1

1

1

1

1

1

1

−→

1 1 1

1 1 1

11 1

1 11

1 1 1

1 1

1 1

1 1

11

1 1

5 5 5 5 5

with computation of the weight vector (5, 5, 5, 5, 5).

Definition 6.20. A cyclic Dellac configuration D̃ consists of 2n black and
white dots in a rectangle of 2n× n boxes such that:

(1) each row contains exactly one dot,
(2) each column contains exactly two dots,
(3) the weight of each column is n.

By D̃Cn we denote the set of all cyclic Dellac configurations. These configu-
rations provide a combinatoric description of the cells in the quiver Grassmannian
which is isomorphic to the smallest non-trivial approximation of the degenerate
affine flag variety.

Lemma 6.21. The set of cyclic Dellac configurations D̃Cn is in bijection with
the set

C(d)
e
(
∆n, In

)
:=
{

l := (`i,1, `i,2) ∈
⊕
i∈Zn

[n]0 × [n]0 :
(
dimU(l)

)
i

= n
}
.

In particular, the set D̃Cn parametrises the cells of the quiver Grassmannian
Gr∆n

e1

(
M1
)
.

Proof. Given a tuple l ∈ C(d)
e , its entry `i,k parametrises the representation

U(i; `i,k) which corresponds to the word
w(i; `i,k) := i− `i,k + 1 i− `i,k + 2 . . . i− 2 i− 1 i

and the entries in its dimension vector are given by(
dimU(i; `i,k)

)
j

=
{ 1 if j ∈ w(i; `i,k)

0 otherwise .

From the procedure to compute the weight of a configuration we obtain this di-
mension vector as the vector in the i − th row of the configuration. Accordingly
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the dimension vector dimU(l) and the wight vector of the corresponding configu-
ration are the same. This proves that all configurations in the image of C(d)

e satisfy
property (3) in the definition of affine Dellac configurations.

The rows of the configuration are in one to one correspondence with segments
in the coefficient quiver ofMω and in each segment there is at most one subsegment
describing a successor closed subquiver. Hence there is a black dot in the i-th row
if and only if there is a subsegment in the i-th segment of the coefficient quiver of
Mω. By definition of the map we put a white dot in the i-th row if there is no
subsegment in the i-th segment of the coefficient quiver. So Property (1) is satisfied
since there is exactly one dot in every row of a configuration in the image of C(d)

e .
The starting points of the segments of a successor closed subquiver in the

coefficient quiver of Mω are in one to one correspondence with the marked boxes
of a configuration. Hence Property (2) is satisfied by Proposition 6.17.

For ω = 1 there are no distinct tuples with the same positions of the starting
points of the subsegments in the coefficient quiver. Since the configurations capture
the position of the starting points of the segments, it is clear that the map from
C(d)

e to the configurations is injective. Moreover, the configurations in the image
are cyclic Dellac configurations since they satisfy Property (1), (2) and (3).

It remains two show that every cyclic Dellac configuration arises as image of
a cell. Given a configuration D̃, we can recover the tuple l which is mapped to D̃
following the steps in the computation of the weight. We fill the boxes with 1’s as
in the definition of the weight. Define `i,1 as the sum over the i-th row and `i,2 as
the sum over the i+ n-th row.

The representation described by this tuple has the right dimension vector since
the configuration D̃ satisfies Property (3). It embeds into M1 because the tuple
describes a successor closed subquiver in the coefficient quiver of M1. Hence the
preimage of each cyclic Dellac configuration is a tuple in the set C(d)

e . �

For ω ≥ 2 it is not sufficient to distinguish between black and white dots.
Instead we take numbers k between zero and ω to label the boxes. We generalise
the notion of weights by writing k’s in the boxes where we wrote 1’s following the
original definition. In the other boxes we write max{k−1, 0}. For ω = 1 this yields
the same weight vector as the original definition.

Definition 6.22. An affine Dellac configuration D̂ to the parameter ω ∈ N
consists of 2n numbers form zero to ω in a rectangle of 2n× n boxes such that:

(1) each row contains exactly one number,
(2) each column contains exactly two numbers,
(3) the weight of each column is ωn.

The subsequent proposition is a direct consequence of the parametrisation of
the cells by the length of the subsegments in the coefficient quiver.

Proposition 6.23. The weight vector of an affine Dellac configuration is equal
to the dimension vector of a representative for the corresponding cell in the quiver
Grassmannian.

Proof. Starting with a tuple parametrising a cell of the approximation we
write d`i,ke in the corresponding box of the affine Dellac configuration. In the
computation of the weight vector we fill the other boxes in this row which are
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on the right of the starting box and on the left of the separator with the same
number. The other boxes of the line are filled with the number b`i,kc. If we
view the numbers in this row as a vector this equals the dimension vector of the
indecomposable representation U(i; `i,k). This is exactly the summand of U(l)
which is parametrised by `i,k. Hence the sum of all row vectors computed from the
`i,k’s in this way equals the dimension vector of the representation U(l). �

Recall that the approximation of the degenerate affine flag variety

F laω
(
ĝln
)

is in bijection with the quiver Grassmannian

Gr∆n
eω (Xω ⊕ Yω)

where
Xω = Yω =

⊕
i∈Zn

Ui(ωn)

and eω := dimXω = (ωn)i∈Zn .

Example 6.24. The tuple ((13, 32), (2, 33), (28, 12), (22, 18), (8, 7)) describes a
cell in

F la7
(
ĝl5
)

and the weight vector of the corresponding configuration computes as
3

1

6

5

2

7

7

3

4

2

−→

3 3 3 22

1 1 0 00

66 6 5 5

55 4 4 4

2 2 21 1

7 7 66 6

7 7 7 6 6

3 3 2 2 2

4 44 3 3

2 21 1 1

−→ ( 35 35 35 35 35 )

Theorem 6.25. The set D̂Cn(ω) containing affine Dellac configurations to the
parameter ω ∈ N is in bijection with the cells of the approximation

F laω
(
ĝln
)

of the degenerate affine flag variety.

Proof. If ω = 1 this follows from Lemma 6.21 since the approximation is
provided by the quiver Grassmannian in the lemma. For ω ≥ 2 let D̂ be a Dellac
configuration in the set D̂Cn(ω). By the steps in the computation of the weight
vector it is also possible to recover the parameters `i,k by computing the row
sums instead of the column sums. By Proposition 6.23 we know that the resulting
quiver representation U(l) has the right dimension vector. For each i ∈ Zn there
are exactly two boundaries behind the boxes in the i-th column. Hence the tuple l
can parametrise at most two direct summands of U(l) ending over the i-th vertex
of the cycle such that there exists a segment-wise embedding of U(l) into the
representation Mω.
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Given a tuple l in the set{
l := (`i,1, `i,2) ∈

⊕
i∈Zn

[ωn]0 × [ωn]0 : dimU(l) = eω
}

we know that the corresponding configuration satisfies Propety (1) in the definition
of affine Dellac configurations by construction. In Proposition 6.23 we have checked
that Property (3) is satisfied. By Proposition 6.17 we know that every successor
closed subquiver corresponding to a cell in the degenerate affine flag variety has
two starting points of segments over each i ∈ Zn. The labelled boxes capture the
position of the starting points such that Property (2) is satisfied as well.

Two tuples with the same affine Dellac configuration as image have to be equal
since the configuration allows to recover the value of each entry in the tuple as
described above. �

There is a relation between cyclic and affine Dellac configurations. Clearly it
is possible to construct a cyclic Dellac configuration from an affine one but it is
also possible to extend cyclic configurations in order to be affine.

Remark. For any ω ≥ 1 we can obtain the set of affine Dellac configurations
D̂Cn(ω) from the set of cyclic Dellac configurations D̃Cn. Given a cyclic Dellac
configuration D̃ we replace the black dots by 1’s and the white dots by 0’s. In every
column we are allowed to add a number between zero and ω to the entry if the
entry is zero. Otherwise we are allowed to add a number between zero and ω − 1.
The resulting configuration is contained in D̂Cn(ω) if the sum of the numbers we
add equals (ω − 1)n.

Proof. The entries of the wight vector of the configuration D̃ are equal to n.
Adding k to the entry in the i-th line adds k to every entry of the weight vector
and this is independent of the row index i. If the sum of numbers we add equals
(ω− 1)n the entries in the weight vector of the new configuration are equal to ωn.
Accordingly the configuration is contained in the set D̂Cn(ω). �

Corollary 6.26. The cardinalities of the sets of affine and cyclic Dellac con-
figurations satisfy the relation

#D̂Cn(ω) ≤
(

(ω − 1)n+ 2n− 1
2n− 1

)
#D̃Cn

Proof. The coefficient on the right hand side counts the possibilities to split
the number (ω − 1)n into at most 2n parts where two splittings are distinguished
if their parts have a different order. Every splitting of (ω − 1)n in the sense of the
remark above is covered by this. �

The procedure to obtain affine Dellac configurations from cyclic Dellac config-
urations is not unique. It is possible to obtain the same affine Dellac configuration
from different cyclic Dellac configurations.

Example 6.27. For n = 5 and ω = 7 we construct an affine configuration in
D̂C5(7) from two different cyclic configurations in D̃C5. Starting with a cyclic
Dellac configuration we have to add numbers with a total ammount of 30 to the
entries of the cyclic Dellac configuration.
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−→

1

1

1

1

1

0

1

1

0

1

4

2

1

3

5

1

2

3

7

2

Σ = 30

−→

5

3

2

4

6

1

3

4

7

3

The following steps describe one other possible construction of the same configu-
ration.

−→

1

1

0

1

1

1

0

1

1

1

4

2

2

3

5

0

3

3

6

2

Σ = 30

−→

5

3

2

4

6

1

3

4

7

3

Any other configuration with a different arrangement of black and white dots on the
diagonal would also provide a suitable starting point to construct the same affine
Dellac configuration. If an affine Dellac configuration can be constructed from a
cyclic Dellac configuration which has no white dots, this is the only possibility to
construct this configuration.

6.4.3. The Length of a Configuration. Property (3) in the definition of
affine Dellac configurations is necessary to get the right dimension vector for the
corresponding quiver representation. Nevertheless it is desirable to replace this
condition by something which is easier to check.

For classical Dellac configurations this condition is simply a restriction on the
areas where the dots are allowed. Unfortunately, the introduction of weights re-
quires that we at least have to control the sum of all weights given to the boxes.
The new tool to distinguish configurations is called length and will be introduced
below.

Let D̃ ∈ D̃Cn be a cyclic Dellac configuration. In every row of the configuration
D̃ we count the steps which a black dot moved from the separator to its actual
position. This number will be denoted by pj for j ∈ Z2n because it encodes the
information about the position of the dot in the j-th row. For white dots we set
pj = 0. This is compatible with the definition for black dots since the white dots



6.4. AFFINE DELLAC CONFIGURATIONS 127

can not have moved away from their starting position. For black dots we have
pj ≥ 1 and if a black dot has returned to the position of a white dot we have
pj = n.

Definition 6.28. The length of the configuration D̃ ∈ D̃Cn is defined as

len(D̃) :=
∑
j∈Z2n

pj .

We say that the configuration D̃ satisfies Property (3)′ if len(D̃) = n2.

Proposition 6.29. Any cyclic Dellac configuration D̃ ∈ D̃Cn satisfies Prop-
erty (3)′.

Proof. In the computation of the weight vector the number of 1’s we write
into the j-th row equals the number pj . The sum of the entries in the weight vector
of D̃ equals n2 since D̃ satisfies Property (3). For the weight vector we compute
column sums and the length vector

len(D̃) := (pj)j∈Z2n

contains the row sums. Hence the sum over the entries in both vectors has to be
the same, i.e.

n2 =
∑
j∈Z2n

pj = len(D̃).

�

The proof of the other direction requires a bit more work. First we describe
a different approach to define affine Dellac configurations which is based on Prop-
erty (3)′. For that we need the subsequent notion of configurations.

Definition 6.30. In a rectangle of 2n× n boxes a periodic Dellac config-
uration D consists of 2n marked boxes such that:

(1) each row contains exactly one marked box,
(2) each column contains exactly two marked boxes.

Every Dellac configuration is a periodic Dellac configuration. If we split the
cylinder of boxes at a different point, we obtain a periodic Dellac configuration
again. The set of all periodic Dellac configurations in 2n × n boxes is denoted by
DCn.

Remark. We can obtain affine Dellac configurations from periodic Dellac con-
figurations by replacing the dots by numbers from zero to ω such that Property (3)
is satisfied.

Here the entry zero is only allowed on the marked diagonal. But this restriction
is implied by Property (3). This process to obtain affine Dellac configurations is
similar to the one describe above for cyclic Dellac configurations.

The main difference is that now the underlying periodic Dellac configuration of
every affine Dellac configuration is unique. But the weight vector of the underlying
periodic Dellac configuration is not known. Its entries can vary between 2 and 2n.
These extremal entries of the weight vector are obtained with configurations of the
form
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and

Accordingly it is not clear which total amount of numbers we have to insert into
a periodic Dellac configuration in order to make it affine for the parameter ω.
From the left configuration above we know that at least inserting a total amount
of ωn+ 2n− 2 is sufficient since the configuration

D̂ :=

ω

ω

ω

ω

ω

2

2

2

1

1

has the weight vector

wt(D̂) =
(
(ω − 1)n+ 2 + (n− 2)

)
i∈Zn

=
(
ωn
)
i∈Zn

.

For arbitrary n this configuration contains n entries which are equal to ω, n − 2
entries equal to 2 and 2 times the entry one. As above we obtain an upper bound
on the cardinality of the set of affine Dellac configurations, i.e.

#D̂Cn(ω) ≤
(

(ω + 1)n+ 2n
2n

)
#DCn.

For an affine Dellac configuration D̂ ∈ D̂Cn(ω) we compute its length as
follows. Let kj be the entry in the j-th row of the configuration. We determine
the the position of this entry as defined above for the cyclic configurations and
denote it by pj := p(kj). Remember that the position of a white dot is zero. Hence
the same convention leads to p(0) = 0. The winding number rj of the j-th row is
defined as

rj := max
{
kj − 1, 0

}
and counts the full rounds around cycle which can be cut out of the corresponding
segment in the coefficient quiver without sending it to zero. For a cyclic Dellac
configuration these numbers are all equal to zero since ω = 1 and hence every
segment goes around the cycle at most once. Accordingly

len(D̂) := n
∑
j∈Z2n

rj +
∑
j∈Z2n

pj
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generalises the notion of length to affine Dellac configurations. The generalisation
of Property (3)′ is given by

len(D̂) = n
∑
j∈Z2n

rj +
∑
j∈Z2n

pj = ωn2.

The subsequent observation is a first step for the other direction in the proof of the
equivalence of Property (3) and Property (3)′.

Proposition 6.31. Let D̂ ∈ D̂Cn(ω) be an affine Dellac configuration such
that kj ≥ 1 for all j ∈ Z2n. The positions pj for j ∈ Z2n describe a periodic Dellac
configuration Dp ∈ DCn with weight vector

wt
(
D
)

=
( 1
n

∑
j∈Z2n

pj

)
.

Proof. The entries of an affine Dellac configuration satisfy Property (1),
Property (2) and Property (3). We replace every entry by a 1 or equivalently a
black dot. The resulting configuration still satisfies Property (1) and Property (2).
Hence it is periodic. The weight of this configuration is given by

wt
(
Dp
)

=
∑
j∈Z2n

pj .

For the configuration D̃, it is a homogeneous transformation of the weight vector
to decrease an entry of the configuration by some integer. Namely, decreasing any
entry kj ≥ 1 of the configuration by a number

q ≤ rj = kj − 1
decreases every entry of the weight vector by q. Accordingly the weight vector of
Dp is homogeneous and its entries are given by

wt
(
Dp
)

n
.

In particular this number is an integer. �

The following proposition is required for the generalisation of the proof that
Property (3) implies Property (3)′.

Proposition 6.32. Let D̂ ∈ D̂Cn(ω) be an affine Dellac configuration. Then

wt
(
D̂
)

= len
(
D̂
)
.

Proof. The sum of the entries in the j-th row of the diagram in the compu-
tation of the weight vector equals

`j := nmax
{
kj − 1, 0

}
+ pj .

By construction, this is the length of the segment in the coefficient quiver which is
parametrised by the j-th row of the configuration. Summation over j ∈ Z2n yields∑
j∈Z2n

(
nmax

{
kj − 1, 0

}
+ pj

)
= n

∑
j∈Z2n

max
{
kj − 1, 0

}
+
∑
j∈Z2n

pj = len
(
D̂
)
.

To compute the weight of this configuration we first compute the weight vector, i.e
the column sums over the diagram and then we sum over the entries of this vector.
Hence the weight and the length of the configuration D̂ are both obtained as the



130 6. THE DEGENERATE AFFINE FLAG VARIETY

sum over all entries in the diagram which arises in the computation of the weight
vector. �

Lemma 6.33. A periodic Dellac configuration D(k) with entries weighted by

k =
(
kj
)
j∈Z2n

∈
⊕
j∈Z2n

[ω]0

satisfies Property (3) if and only if it satisfies Property (3)′.

Proof. The Dellac configuration where we write kj instead of a dot is denoted
by D(k). Assume that this configuration satisfies Property (3), i.e.

wt
(
D(k)

)
=
(
ωn
)
i∈Zn

.

We obtain the weight
wt
(
D(k)

)
=
∑
i∈Zn

ωn = ωn2.

By Proposition 6.32 this is equal to len
(
D(k)

)
such that Property (3)′ is satisfied.

Conversely assume that D(k) satisfies Property (3)′, i.e.

len
(
D(k)

)
= ωn2.

First we consider the case that kj ≥ 1 for all j ∈ Z2n. Then by Proposition 6.31,
the underlying configuration D has the weight vector

wt
(
D
)

=
( 1
n

∑
j∈Z2n

pj

)
i∈Zn

.

In this setting, we can view the transformation from D to D(k) as adding kj − 1
to the entry in the j-th row of the configuration D. This operation increases every
entry of the weight vector by kj − 1 such that we obtain

wt
(
D(k)

)
=
( ∑

j∈Z2n

(
kj − 1

)
+ 1
n

∑
j∈Z2n

pj

)
i∈Zn

=
( ∑

j∈Z2n

(
max{kj − 1, 0}

)
+ 1
n

∑
j∈Z2n

pj

)
i∈Zn

=
( 1
n

len
(
D(k)

) )
i∈Zn

=
(
ωn
)
i∈Zn

.

Accordingly the configuration D(k) satisfies Property (3).
Now assume that we have kj = 0 for some j ∈ Z2n. For the underlying

configuration D we have pj = pj(D) = n but for the configuration D(k) we get
p(kj) = 0. The weight vector of the underlying configuration is given by

wt
(
D
)

=
( 1
n

∑
j∈Z2n

pj
(
D
) )

i∈Zn
.

For the summands we obtain the equality

pj
(
D
)

n
+ min{0, kj − 1} = p(kj)

n
.
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Replacing a black dot in the configuration D by the number kj increases the entries
of the weight vector by kj − 1 if kj ≥ 1 and it decreases the entries by 1 if kj = 0.
Thus the weight vector of D(k) computes as

wt
(
D(k)

)
=
( ∑

j∈Z2n

(
kj − 1

)
+ 1
n

∑
j∈Z2n

pj
(
D
) )

i∈Zn

=
( ∑

j∈Z2n

(
kj − 1

)
+ 1
n

∑
j∈Z2n

(
p(kj)− n ·min{0, kj − 1}

) )
i∈Zn

=
( ∑

j∈Z2n

(
(kj − 1)−min{0, kj − 1}

)
+ 1
n

∑
j∈Z2n

p(kj)
)
i∈Zn

=
( ∑

j∈Z2n

(
max{kj − 1, 0}

)
+ 1
n

∑
j∈Z2n

p(kj)
)
i∈Zn

=
(
ωn
)
i∈Zn

.

Here the last equality follows since D(k) satisfies Property (3)′. �

This proves the subsequent characterisation of affine Dellac configurations.

Theorem 6.34. An affine Dellac configuration D̂ to the parameter ω ∈ N
consists of 2n numbers form zero to ω in a rectangle of 2n× n boxes such that:

(i) each row contains exactly one number,
(ii) each column contains exactly two numbers,
(iii) the length of D̂ is given by ωn2.

With this alternative characterisation it is easier to construct affine Dellac
configurations than with the original definition. Here we only need a periodic
Dellac configuration as basis. Then we can introduce any tuple of weights to the
dots which satisfies Condition (iii) of the above theorem.

Originally we had to check Property (3) in the definition of cyclic Dellac con-
figurations and then could add tuples summing up to (ω− 1)n. So we reduced the
number of conditions by one.

Moreover we got rid of the graphical step where we had to write the dimension
vectors in the rows of the configuration. This also makes it easier to decide whether
a given configuration can be an affine Dellac configuration since we do not have to
draw this diagram any more.

The procedure of this decision will be as follows. First check Property (1) and
Property (2). If they are satisfied compute the sum∑

j∈Z2n

max{kj − 1, 0}

which has to be between ωn− 2 and (ω − 2)n. Finally add

1
n

∑
j∈Z2n

p(kj)

to this number. The result has to equal ωn if the configuration is an affine Dellac
configuration to the parameter ω.
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6.5. Geometric Properties

In this section we apply the theory of quiver Grassmannians for the equioriented
cycle as introduced in the previous chapters of this thesis to the approximations of
the degenerate affine flag variety. This allows to derive properties of their geometry
from the study of the corresponding quiver Grassmannians.

Theorem 6.35. For ω ∈ N, the approximation F laω
(
ĝln
)
of the Feigin-degenerate

affine flag variety satisfies:
(1) It is a projective variety of dimension ωn2.
(2) It admits a cellular decomposition.
(3) There is a bijection between the cells and affine Dellac configurations to

the parameter ω.
The irreducible components of the finite dimensional approximation of the

Feigin-degenerate affine flag variety satisfy:
(4) They are equidimensional.
(5) They have rational singularities and are normal, Cohen-Macaulay.
(6) There is a bijection between the irreducible components and

grand Motzkin paths of length n.
Proof. In Theorem 6.4 we have established an isomorphism between the fi-

nite dimensional approximations of the flag variety and quiver Grassmannians for
the equioriented cycle. In Corollary 6.8 we have computed the dimension of these
quiver Grassmannians which are projective varieties. We have proven in Theo-
rem 6.25 that the cells of the approximations are parametrised by affine Delllac
configurations to the parameter ω. The irreducible components where examined
in Lemma 6.10. From the shape of the quiver representations Xω and Yω as in-
troduced in Theorem 6.4 it follows that we can apply Lemma 3.24 proving the
rationality of the singularities to the irreducible components of the quiver Grass-
mannian providing the approximation. �

6.6. The Non-Degenerate Affine Flag Variety

In this section we examine the structure of the non-degenerate affine flag vari-
ety. Its finite approximations can be identified with quiver Grassmannians for the
equioriented cycle similarly to the case of the affine flag variety.

Theorem 6.36. Let ω ∈ N be given, take the nilpotent quiver representa-
tion Mω =

⊕
i∈Zn Ui(2ωn) and define the dimension vector eω := 1/2 · dimMω.

The corresponding quiver Grassmannian is isomorphic to the approximation of the
affine flag variety, i.e.

F lω
(
ĝln
) ∼= Gr∆n

eω (Mω).
The proof of this theorem works in the same way as for the degenerate affine

flag variety. First we have to interpret the coefficient quiver ofMω suiting the maps
between the Sato Grassmannians.

Proposition 6.37. The quiver representation Mω is isomorphic to the quiver
representation

M0
ω :=

(
Mαi := s1

)
i∈Zn

where s1 is the index shift by one.
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Proof. The vertices of ∆n are in bijection with the set Zn and we choose
the representatives 0, 1, . . . , n− 1. For the representation Mω the vectorspace over
each vertex i ∈ Zn has dimension 2ωn. For the arrangement of the segments in the
coefficient quiver corresponding to the summands Ui(2ωn) of Mω as in Section 4.4
we obtain the maps s1 : C2ωn → C2ωn along the arrows of ∆n since there is starting
exactly one segment of length 2ωn over each vertex. It ends in the basis vector
indexed by 2ωn over the vertex i + 2ωn − 1 = i − 1 and along each step of the
segment the index of the corresponding basis vectors increases by one. �

We change the indices of the basis vectors over the vertices i ∈ Zn in order to
match the indices of the basis vectors for the spaces in the Sato Grassmannians
SGri. This is done in the same way as for Xω ⊕ Yω in the degenerate setting since
the vector spaces over the vertices of ∆n have dimension 2ωn in both cases. The
coefficient quiver of the representation M0

ω with the new labelling is show below.

Example 6.38. Using the new labelling the coefficient quiver of Mω for n = 4
and ω = 1 is given by

id

idid

s−n

−2 −1 0 1 2 3 4 5

−3

−2

−1

0

1

2

3

4

01234567

−1

0

1

2

3

4

5

6

Again the dashed arrows in the picture indicate where the segments grow if we
increase the value of ω.
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Remark. Here all summands ofMω are injective representations of the length
2ωn for the set of relations I2ωn. Hence we can apply Theorem 2.3 in order to study
the irreducible components of the approximations.

Lemma 6.39. For ω ∈ N, the irreducible components of the finite approximation
F lω

(
ĝln
)
are of dimension

2ω
⌊
n/2

⌋⌈
n/2

⌉
,

normal, Cohen-Macaulay, have rational singularities and their number is given by
n!

bn/2c!bn/2c! .

Proof. From Theorem 3.5 by G. Kempken we know that the orbit closures
in the variety of quiver representations have rational singularities. In both cases
all summands can be viewed as bounded injective representations such that we can
apply Theorem 2.3 to transport the rational singularities from the variety of quiver
representations to the quiver Grassmannian. The other two properties are a direct
consequence of Theorem 3.4 by G. Kempf. It remains to compute the dimension
and number of irreducible components from the orbit structure of the variety of
quiver representations. In this computation we have to distinguish between n even
and n odd.

For n even one can apply Lemma 3.22 in order to compute the dimension of
the approximations. With

xi = 1, xn/2+i = 0 for i ∈ Zn/2

and
yn/2+i−1 = 1, yi−1 = 0 for i ∈ Zn/2

the dimension of the approximation computes as

dimF lω
(
ĝln
)

= ω

2 n
2.

By definition we have yi+xi+1 = 1 for all i ∈ Zn. Hence we obtain by Lemma 3.23
that the irreducible components of the approximation are parametrised by the set

Cn/2(1) :=
{

p ∈ Zn≥0 : pi ≤ 1 for all i ∈ Zn,
∑
i∈Zn

pi = n/2
}

which is in bijection with the set of n/2-element subsets of the set [n]. Accordingly
the number of irreducible components equals

(
n
n/2
)
which matches the claimed

number for even n.
For n odd we can not apply the results from Section 3.3 but nevertheless we can

use the methods from Chapter 3 to examine the quiver Grassmannians providing
the approximations of the non-degenerate affine flag variety. Following the steps
in the proof of Proposition 3.21 we arrive at the subsequent representatives for the
highest dimensional orbits in the variety of quiver representations

U := Ui0(ωn)⊕
⊕
i∈I

Ui(2ωn).

where I is a subset of Zn with bn/2c many pairwise distinct elements. These repre-
sentatives also parametrise the irreducible components of the quiver Grassmannian
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and the dimension of the strata computes as
dimSU = dim Hom∆n

(
U,Mω

)
− dim Hom∆n

(
U,U

)
= 2ωbn/2cn+ ωn−

(
2ωbn/2cbn/2c+ 2ωbn/2c+ ω

)
= 2ωbn/2c

(
n− bn/2c

)
+ ωn−

(
2ωbn/2c+ ω

)
= 2ωbn/2cdn/2e+ ωn−

(
ω(n− 1) + ω

)
= 2ωbn/2cdn/2e.

There are (
n

bn/2c

)
possibilities to choose the set I ⊆ Zn. For each choice of I we have dn/2e possible
choices for the index i0 since I has bn/2c many elements. Hence the number of
irreducible components is given by

dn/2e
(

n

bn/2c

)
= dn/2en!
bn/2c!(n− bn/2c)! = dn/2en!

bn/2c!dn/2e! = n!
bn/2c!bn/2c! .

�

6.7. Linear Degenerations of Affine Flag Varieties

In this section we want to define linear degenerations of the affine flag variety
following the approach of G. Cerulli Irelli, X. Fang, E. Feigin, G. Fourier and
M. Reineke as introduced in [19]. This will generalise the degeneration of the
affine flag variety which is introduced in the beginning of this chapter.

In [19] a flag variety of type An is degenerated by relaxing the inclusion of the
subspace Ui ⊆ Ui+1 to the inclusion of the image via some linear maps fiUi ⊆ Ui+1.
They show that the resulting linear degenerate flag variety only depends on the
co-ranks of the maps fi and not the maps itself.

6.7.1. Setting. Let V be an infinite dimensional vector space over the field
C with basis vectors vj for j ∈ Z. The set Hom(V, V ) contains all linear maps from
V to V . We consider tuples of linear maps

f := (fi)i∈Zn ∈
∏
i∈Zn

Hom(V, V ) =: End×n(V ).

On the space End×n(V ) of tuples of linear maps we have an action of the group
G :=

∏
i∈Zn GL(V ) via base change

G× End×n(V ) −→ End×n(V )
(g, f) 7−→ g.f

where
g.f :=

(
g1f0g

−1
0 , g2f1g

−1
1 , . . . , g0fn−1g

−1
n−1

)
.

The orbit Oiso := G.(s1, . . . , s1) consisting of tuples where every map is an isomor-
phism is open in End×n(V ). This is shown as follows.

Define the finite dimensional subspace
V (`) := span

(
v`, v`−1, . . . , v−`+2, v−`+1

)
.

This induces a finite dimensional version of the above setup where the map s1
is nilpotent and the corresponding orbit is open by Proposition 3.9. It is open
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for every finite approximation V (`) and the natural embedding V (`) ↪→ V (`+1)

preserves the local structure such that the ind-topology and the Zariski topology
coincide.

Let U :=
(
Ui
)
i∈Zn

be a tuple of subspaces in V such that each Ui is contained
in the Sato Grassmannian SGr0, i.e.

U =
(
Ui
)
i∈Zn

∈
∏
i∈Zn

SGr0 =: SGr×n.

On the product of Sato Grassmannians the group G acts via translation
G× SGr×n −→ SGr×n

(g, U) 7−→ g.U

where
g.U :=

(
g0U0, g1U1, . . . , gn−1Un−1

)
.

Definition 6.40. A tuple of maps f ∈ End×n(V ) and a tuple of vector spaces
U ∈ SGr×n are compatible if

fi(Ui) ⊂ Ui+1 for all i ∈ Zn.

The variety of compatible pairs is defined as

EG×n(V ) :=
{

(f, U) ∈ End×n(V )× SGr×n : f and U are compatible
}
.

Remark. The notion of compatibility generalises the definitions of the affine
flag variety and the degenerate flag variety. For the tuple f where every map fi
is equal to the index shift s−1, the tuples U which are compatible with the index
shifts are exactly the points in the affine flag variety as shown in Theorem 6.36.
In the case where every fi equals the shifted projection s−1 ◦ pr1 the compatible
tuples U are in bijection with the points of the degenerate affine flag variety as
shown in Theorem 6.4. For both identifications it is essential that the affine flag
variety is isomorphic to the set

F l
(
ĝln
) ∼= {(Uk)k∈Zn ∈ SGr×n : s−1Ui ⊂ Ui+1 for all i ∈ Zn

}
which follows directly from the definition of the Sato Grassmannians SGri.

Let π be the projection
π : EG×n(V ) −→ End×n(V )

and p the projection
p : EG×n(V ) −→ SGr×n.

The remark above suggests the subsequent generalisation of the definitions of the
affine flag variety and its degeneration as given in the beginning of this chapter.

Definition 6.41. For f ∈ End×n(V ) the f-linear degenerate affine flag
variety is defined as

F lf
(
ĝln
)

:= π−1(f).
We call the map

π : EG×n(V ) −→ End×n(V )
universal linear degeneration of the affine flag variety F l

(
ĝln
)
. The subset

of End×n(V ) over which π is flat is denoted by Uflat and Uflat,irr is the subset of
End×n(V ) over which π is flat with irreducible fibres.
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The irreducible components of the degenerate affine flag variety, as studied in
the previous sections of this chapter, are in bijection with grand Motzkin paths.
Thus it is not included in the flat irreducible locus Uflat,irr. For all examples of
the partial degenerate affine flag varieties as computed in Appendix C.1 we do not
obtain any case where the finite approximations of the affine flag variety and some
of its partial degenerations are equidimensional.

An endomorphism f ∈ End×n(V ) is called nilpotent if there exists an ` ∈ N
such that the restrictions of fi to V (`) are nilpotent in the sense of Chapter 3.
The set of nilpotent endomorphism is denoted by End×nnil (V ). The G-orbits of
the nilpotent endomorphisms can be studied with the methods from the thesis by
G. Kempken and the corresponding degenerations of the affine flag variety admit
finite approximations by quiver Grassmannians for the equioriented cycle.

6.7.2. Loci via Co-Rank Tuples. From now on we restrict us to End×nnil (V ).
In this section we want to examine the fibres of the map π and classify the different
types of linear degenerations which arise as fibres of π.

For any finite quiver Q an isomorphism of Q-representations Ψ : M → N yields
the isomorphism

GrQe
(
M
) ∼= GrQe

(
N
)
.

This holds because for any subrepresentation (U, φ) of M we obtain that the rep-
resentation (Ψ(U),Ψ ◦ φ ◦Ψ−1) is a subrepresentation of N .

In the same way we can show that the fibres of two endomorphisms which live in
the same G-orbit are isomorphic. Again we restrict to the finite dimensional setting
for some ` ∈ N where the isomorphism of the fibres is obtained similar as for the
quiver Grassmannians in the above proposition. The isomorphisms are compatible
with the embeddings V (`) ↪→ V (`+1) such that they lift to the ind-varieties.

Let f ∈ End×nnil (V ) be a tuple of linear maps and let N ∈ N be given such that
f is nilpotent where we view the fi as maps between the finite approximations
V (N). We assign a tuple c of integers to f , where

c := (ci,k)i∈Zn,k∈ZN and ci,k := corank
(
fi+k ◦ fi+k−1 ◦ · · · ◦ fi+1 ◦ fi

)
.

Here every index is viewed as a number in Zn and we call c a co-rank tuple.
By the definition of the action of G on End×nnil (V ) it is clear, that g.f and f

have the same co-rank tuple for any g ∈ G. Thus the co-rank tuples are constant
on G-orbits in End×nnil (V ). It follows from Proposition 3.9 that all nilpotent endo-
morphisms with the same co-rank tuple are obtained in this way. Let f and f ′ be
tuples in End×nnil (V ) which live in the same G-orbit. The element g ∈ G such that
g.f = f ′ establishes an isomorphism of the fibres π−1(f) and π−1(f ′). Accordingly
it is sufficient to study the fibre for one representative of the orbits.

The co-rank tuple of f = (s−1, . . . , s−1) in the approximation to the parameter
N is denoted by c0 and its entries are c0i,k = k + 1 since the co-rank of s−1 is one
and the co-rank of s−1 ◦ s−1 is two. Accordingly the co-rank of the maps fi is
independent of the approximation and it is independent of the starting vertex i.
For the endomorphism f = pr = (s−1 ◦ pr1, . . . , s−1 ◦ pr1) we denote its co-rank
tuple by c1 and the entries of this tuple are given by c1i,k = 2(k + 1) because the
co-rank of s−1 ◦pr1 is two. Again the co-rank is independent of the approximation
parameter N .
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Moreover this co-rank tuple satisfies the property

ci,k =
k∑
l=0

ci+l,0(6.7.1)

which is also satisfied for c0. We define a partial order on the co-rank tuples, where
c′ ≤ c :⇐⇒ c′i,k ≥ ci,k for all i ∈ Zn.

From now on we only want to consider co-rank tuples c with c1 ≤ c ≤ c0 which
also satisfy Property 6.7.1.

These tuples correspond to the G-orbits of the maps f ∈ End×nnil (V ) where
each fi is either the shifted projection s−1 ◦ pr1 or the index shift s−1. They are
completely determined by their entries ci,0 for i ∈ Zn. Hence it is sufficient to view
co-rank tuples in Zn if the full tuple for any approximation to the parameter N
satisfies Property 6.7.1. Based on this observation want to simplify the notation
for the co-rank tuples. For a co-rank tuple c as above we now take the tuple

(ci,0 − 1)i∈Zn
and by abuse of notation also denote it by c. The new co-rank tuple c1 =
(1, . . . , 1) ∈ Zn corresponds to the degeneration we studied in the previous sec-
tions of this chapter. And the new tuple c0 = (0, . . . , 0) ∈ Zn is corresponding to
the non-degenerate affine flag variety.

Let F lc
(
ĝln
)
be the linear degenerate affine flag variety corresponding to the

co-rank tuple c. The degenerate flag varieties for tuples with c1 ≤ c ≤ c0 can
be viewed as intermediate degenerations between the non-degenerate affine flag
F l
(
ĝln
)
and the Feigin-degenerate affine flag variety F la

(
ĝln
)
. This terminology

is motivated by the structure of their approximations as given in the subsequent
lemma.

Lemma 6.42. For ω ∈ N and c ∈ {0, 1}Zn the finite approximation is given as

F lcω
(
ĝln
) ∼= Gr∆n

eω
(
Mc
ω

)
,

where eω := dim
⊕

i∈Zn Ui(ωn) = (ωn)i∈Zn and for every i ∈ Zn the representa-
tion Mc

ω contains the summand Ui(ωn)⊗ C2 if ci = 1 or Ui(2ωn) if ci = 0.

Proposition 6.43. The quiver representation Mc
ω is isomorphic to the quiver

representation (
Mαi := s1 ◦ prciωn

)
i∈Zn

.

Proof. For the representationMω the vectorspace over each vertex i ∈ Zn has
dimension 2ωn. In the coefficient quiver of Mc

ω there are 1 + ci segments starting
over the vertex i ∈ Zn.

The first segment is starting in the fist point over the vertex i and in the k-th
step its arrow goes from the k-th point over the vertex i + k − 1 to the k + 1-th
point over the vertex i + k. If ci = 1 this segment has length ωn and there has
to be a second segment starting over the same vertex. If ci = 0 this segment has
length 2ωn and there is no second segment starting over the vertex i ∈ Zn.

Now assume that ci = 1. The first segment ends in the ωn-th point over the
vertex i−1 and it is not possible that there exists an arrow pointing to the ωn+ 1-
th point over the vertex i. We choose this point as starting point for the second
segment starting over the vertex i.
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In the k-th step the arrow of this segment goes from the ωn+ k-th point over
the vertex i + k − 1 to the ωn + k + 1-th point over the vertex i + k and it ends
in the 2ωn-th point over the vertex i+ n− 1 = i− 1. With this realisation of the
coefficient quiver of Mc

ω we have the maps
Mαi := s1 ◦ prciωn

for the arrow αi from vertex i to vertex i+ 1. �

We change the indices of the basis vectors over the vertices i ∈ Zn in order to
match the indices of the basis vectors for the spaces in the Sato Grassmannians
SGri. This is done in the same way as for Xω ⊕ Yω in the full degenerate setting
since the vector spaces over the vertices of ∆n have the dimension 2ωn independent
of the parameter c.

Example 6.44. Using the new labelling the coefficient quiver ofMc
ω for n = 4,

ω = 1 and c = (1, 0, 0, 1) is given by

pr1

idid

s−n ◦ pr4

−2 −1 0 1 2 3 4 5

−3

−2

−1

0

1

2

3

4

01234567

−1

0

1

2

3

4

5

6

Again the dashed arrows in the picture indicate where the segments grow if we
increase the value of ω.
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Proof of Lemma 6.42. In this setting, it is possible to use the same maps
as defined between the finite approximation of the c1-degenerate affine flag variety
and the corresponding quiver Grassmannian in Theorem 6.4. For the basis of the
vector spaces over the vertices of the quiver we take the same labelling and add
arrows from v

(i)
i to v(i+1)

i (resp. v(n−1)
n−1 to v(0)

−1) in the coefficient quiver if ci = 0
(resp. cn−1 = 0). �

Remark. In the chapter about quiver Grassmannians for the equioriented
cycle we discovered that it was crucial for certain properties of the quiver Grass-
mannian that the length of the projective and injective representations of ∆n is
a multiple of n. For the co-rank tuples c we restricted to, we still get approxi-
mations of the corresponding linear degenerate affine flag varieties F lc

(
ĝln
)
where

the length of all summands of Mc
ω is a multiple of n. This enables us to use the

methods developed in Chapter 3 to study their approximations.
The approximation of the linear degenerate affine flag varieties F lc

(
ĝln
)
by

quiver Grassmannians for the equioriented cycle would work for all co-rank tuples
c coming from map tuples f ∈ End×n(V ) where each fi is an arbitrary finite
composition of projections. But the resulting quiver Grassmanians can not be
studied using the methods which are introduced in the previous chapters of this
thesis.

6.8. Ind-Variety Structure

In this section we introduce closed embeddings between the approximations of
the partial degenerations of the affine flag variety which are compatible with the
ind-variety structure of the partial degenerate affine flag varieties.

6.8.1. Ind-Variety Structure of the Feigin Degeneration. Before we
examine the maps for the ind-variety structure in the generality of the partial
degenerations we construct them for the Feigin degeneration where the explicit
description of the maps is less complicated. We realise the approximation for a
given ω ∈ N as a closed subset inside of the quiver Grassmannian for ω + 1. For
this purpose we need an other description of the cell which makes it easier to
describe how the parametrisation of the cells changes along the embedding.

Proposition 6.45. The cells of the approximation F laω
(
ĝln
)
are parametrised

by the set

Caω(n) :=
{(
I(i))

i∈Zn
∈
∏
i∈Zn

(
[2ωn]
ωn

)
: s2I

(i) ∩ [2ωn] ⊂ I(i+1) for all i ∈ Zn
}
.

Proof. The map s2 denotes the index shift by 2. Following Section 3.5.2 and
applying the identification of the approximations with quiver Grassmannians we
obtain that the cells are parametrised by the set{

l := (`i,1, `i,2) ∈
⊕
i∈Zn

[ωn]0 × [ωn]0 : dimU(l) =
(
ωn
)
i∈Zn

}
.

Each number `i,k parametrises a segment of a successor closed subquiver.
From the structure of the coefficient quiver of Xω ⊕ Yω we know that the

indices of the vertices on a segment increase by 2 along the arrows of the quiver.
The end points of the segments have the index 2ωn if the segment corresponds to a
summand of Xω or 2ωn− 1 if the segment corresponds to a summand of Yω. With
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this information we can construct index sets corresponding to the labelling of the
vertices on the segments from the length of the segments. This yields the claimed
parametrisation of the cells. �

Lemma 6.46. For all ω ∈ N there exists a closed embedding
Φaω : Gr∆n

eω (Xω ⊕ Yω)→ Gr∆n
eω+1

(Xω+1 ⊕ Yω+1)
preserving the dimension of the cells.

Proof. The quiver Grassmannians Gr∆n
eω (Xω⊕Yω) admit a cellular decompo-

sition into attracting sets of torus fixed points. Following the proof of Theorem 4.10
the points in the cells are spanned by vectors{

w
(i)
1 , w

(i)
2 , . . . , w(i)

ωn

}
of the form

w(i)
s = v

(i)
ks

+
∑

j>ks,j /∈I(i)

µ
(i)
j,sv

(i)
j

with coefficients µ(i)
j,s ∈ C for i ∈ Zn. Here I(i) ⊂ [2ωn] for i ∈ Zn are the index sets

describing the corresponding torus fixed point as determined in Proposition 6.45.
Similarly as done for the approximations of the affine Grassmannian in Sec-

tion 5.5, the points in the quiver Grassmannian which is isomorphic to the approx-
imation of the affine flag variety can be described by a tuple of matrices

M (i) ∈M2ωn,ωn(C)

for i ∈ Zn collecting the coefficients µ(i)
j,s of the basis vectors v

(i)
j which parametrise

the vectors w(i)
s spanning this point.

We define the map
Ψa
ω : M2ωn,ωn(C)→M2(ω+1)n,(ω+1)n(C)

where

Ψa
ω

(
M (i))

p,q
:=
{
m

(i)
p−n,q if n < p ≤ 2ωn+ n and q ∈ [ωn]
1 if q > ωn and p− 2ωn = q − ωn
0 otherwise.

These matrices have a block structure of the following shape

Ψa
ω

(
M (i)) =

 0n,ωn 0n,n
M (i) 0ωn,n
0n,ωn idn


where 0p,q is a p × q matrix with all entries equal to zero and idn is the n × n
identity matrix.

On the level of cells this corresponds to the map
ψaω : Caω(n)→ Caω+1(n)

where

ψaω
(
I(i)) = snI

(i) ∪
{

2ωn+ n+ 1, 2ωn+ n+ 2, . . . , 2ωn+ 2n
}
⊆ [2(ω + 1)n].

Hence the image of a fixed point is indeed a fixed point in the bigger approximation
and the dimension is preserved since we do not add holes below the starting points
of the segments.
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The image of a point is a point in the attracting set of the image of the fixed
point it is attracted from. This is checked in the same way as done for the points
in the approximations of the degenerate affine Grassmannian �

Corollary 6.47. On the Feigin-degenerate affine flag variety F la
(
ĝln
)
the

ind-topology and the Zariski topology coincide.

Proof. It is clear that any point in the degenerate affine flag variety lives in
some finite approximation. This approximation is isomorphic to a quiver Grass-
mannian. Combined with Lemma 6.46 the approximations by quiver Grassman-
nians induce an ind-variety structure on the affine flag variety. The topologies
coincide since the cell structure is preserved by the embeddings [71, Proposition
7]. �

6.8.2. Ind-Variety Structure of the Non-Degenerate Affine Flag Va-
riety. In this section we generalise the definition of the map between the approx-
imations of the degenerate affine flag variety to the non-degenerate setting.

Proposition 6.48. The cells of the approximation F lω
(
ĝln
)
are parametrised

by the set

Cω(n) :=
{(
I(i))

i∈Zn
∈
∏
i∈Zn

(
[2ωn]
ωn

)
: s1I

(i) ∩ [2ωn] ⊂ I(i+1) for all i ∈ Zn
}

Proof. Analogous to the approximations of the degenerate affine flag variety
we obtain that the cells are parametrised by the set{

l := (`i) ∈
⊕
i∈Zn

[2ωn]0 : dimU(l) =
(
ωn
)
i∈Zn

}
where each number `i parametrises a segment of a successor closed subquiver.

By the structure of the coefficient quiver of

M0
ω :=

⊕
i∈Zn

Ui(2ωn)

we know that the indices of the vertices on a segment increase by one along the
arrows of the quiver. The end points of the segments have the index 2ωn. As in the
degenerate case this information is sufficient to construct a bijection between the
cells parametrised by numbers `i and the tuples of indices as defined above. �

Lemma 6.49. For all ω ∈ N there exists a closed embedding

Φω : Gr∆n
eω
(
M0
ω

)
→ Gr∆n

eω+1

(
M0
ω+1

)
preserving the dimension of the cells.

The proof of this statement is analogous to the proof of the generalisation of
the map between the approximations of the degenerate affine Grassmannian to the
map between the approximations of the non-degenerate affine Grassmannian.

Corollary 6.50. On the non-degenerate affine flag variety F l
(
ĝln
)
the ind-

topology and the Zariski topology coincide.
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6.8.3. Ind-Variety Structure of the Partial Degenerations. For the
partial degenerations there are segments of two different lengths in the coefficient
quiver of the representation Mc

ω. Thus it is not possible to parametrise the cells
in a similar way as done for the approximations of the Feigin-degenerate and non-
degenerate affine flag variety. The relation between the index sets I(i) and I(i+1)

now depends on the value of ci.

Proposition 6.51. The cells of the approximation F lcω
(
ĝln
)
are parametrised

by the set

Cc
ω(n) :=

{(
I(i))

i∈Zn
∈
∏
i∈Zn

(
[2ωn]
ωn

)
: s1prciωnI(i) ∩ [2ωn] ⊂ I(i+1) for all i ∈ Zn

}
Proof. This set parametrises the successor closed subquivers with ωn marked

points over each vertex of the cycle in the coefficient quiver of the quiver represen-
tation

Mc
ω =

(
Mαi := s1 ◦ prciωn

)
i∈Zn

which is isomorphic to the quiver representation providing the approximations of
the partial degenerations. �

This choice of the index sets is not suitable to define the cell directly as the
attracting set of the point which is spanned by the basis vectors with indices in the
sets I(i). In order to obtain a cellular decomposition into attracting sets of torus
fixed points we have to rearrange the segments such that there are no points below
the end points of segments which are not the end point of some other segment.

This rearrangement corresponds to some permutations σ(i) ∈ S2ωn. For the
approximations of the non-degenerate affine flag the permutations are given by the
identity whereas for the approximations of the Feigin degenerations we have to use
the permutation

σ : [2ωn]→ [2ωn]

i 7→
{ 2i− 1 if i ≤ ωn

2(i− ωn) otherwise.

If we are in these special cases and apply this permutations to the set Cc
ω(n) we

obtain the description of the cells by Caω(n) and C0
ω(n) as introduced before.

We define the index sets J (i) := σ(i)I(i) for(
I(i))

i∈Zn
∈ Cc

ω(n)

which describe the torus fixed points

p =
(

span
{
vj : j ∈ J (i)})

i∈Zn
.

This are the torus fixed points which allow us to define the cells in the approxima-
tion as their attracting sets.

Based on this description of the cells we can express the points in the approxi-
mations as done above explicitly for the Feigin degeneration. Using this parametri-
sation we can define maps between the approximations of the partial degenerations
as done for the partial degenerations of the affine Grassmannian. Similar as in
Chapter 5 we prove the subsequent properties of these maps.
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Lemma 6.52. For all ω ∈ N there exists a closed embedding
Φc
ω : Gr∆n

eω
(
Mc
ω

)
→ Gr∆n

eω+1

(
Mc
ω+1

)
.

It preserves the dimension of the cells with all segments shorter than ωn.

6.9. Partial Degenerations of Affine Dellac Configurations

In this section we introduce subsets of affine Dellac configurations which de-
scribe the cells in the approximations of the partial degenerate affine flag varieties.
For the approximations of the intermediate degenerations of the affine flag variety
it is not possible to apply Theorem 4.10 in order to examine the cell structure
because not all summands of the used quiver representation have the same length.

For every nilpotent representation U ∈ repC(∆n) there exists a parameter
N ∈ N such that U ∈ repC(∆n, IN ). Hence it is conjugated to a direct sum of
indecomposable nilpotent representations, i.e.

U ∼= U(d) :=
⊕
i∈Zn

N⊕
`=1

U(i; `)⊗ Cdi,`

where di,` ∈ Z≥0 for all i ∈ Zn and ` ∈ [N ]. The number of indecomposable
summands of U(d) ending over the vertex i ∈ Zn is given by

di :=
N∑
`=1

di,`.

The condition d(α) := dtα for all α ∈ Zn induces a grading of the vertices in the
coefficient quiver of U(d) which satisfies the assumptions of Theorem 4.7.

Moreover it is possible to prove the subsequent generalisation of Theorem 4.10
with the methods developed in Chapter 4.

Theorem 6.53. Let M = U(d) and e ≤ dimM . For every L ∈ Gr∆n
e (M)T ,

the subset C(L) ⊆ Gr∆n
e (M) is an affine space and the quiver Grassmannian admits

a cellular decomposition

Gr∆n
e (M) =

∐
L∈Gr∆n

e (M)T

C(L).

This result can be applied to the quiver Grassmannians approximating the
partial degenerations of the affine flag variety. For every i ∈ Zn the representation
Mc
ω contains the summand

U(i;ωn)⊗ C2 if ci = 1 or U(i; 2ωn) if ci = 0.
Recall that for ω ∈ N the finite approximation is given as

F lcω
(
ĝln
) ∼= Gr∆n

eω
(
Mc
ω

)
,

where eω = (ωn)i∈Zn .
By Proposition 4.9, the cells in the approximations are in bijection with suc-

cessor closed subquivers in the coefficient quiver ofMc
ω with ωn marked points over

each vertex. Accordingly these successor closed subquivers are parametrised by the
set

Ce,c
(
∆n, IN

)
:=
{

l := (`i,k) ∈
⊕
i∈Zn

ci+1⊕
k=1

[
(2− ci)ωn

]
0 : dimU(l) = e

}
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where

U(l) =
⊕
i∈Zn

ci+1⊕
k=1

U(i; `i,k).

Definition 6.54. An affine Dellac configuration D̂ ∈ D̂Cn(ω) is called c-
degenerate to the parameter c ∈ {0, 1}n if kj > 0 for j ∈ [n] implies that
kj+n = ω and pj+n = n whenever cj = 0. The set of all c-degenerate affine Dellac
configurations is denoted by D̂C c

n(ω).

These configurations parametrise the cells in the finite approximation F lcω
(
ĝln
)
.

Theorem 6.55. There is an isomorphism
D̂C c

n(ω) ∼= Ce,c
(
∆n, IN

)
.

Proof. For the special case with cj = 0 for all j ∈ [n] we obtain the Feigin
degeneration. In this setting the isomorphism was established in Theorem 6.25.

In the general setting we distinguish two cases for the segments in the coefficient
quiver of Mc

ω coming from cj = 0 or cj = 1. For cj = 1 there are two summands
U(j;ωn) in Mc

ω. From the length of the subrepresentations `j,1 and `j,2 in these
summands we can compute the entries kj and kj+n as well as their positions pj
and pj+n in the configuration by

`j,1 = min{kj − 1, 0} · n+ pj and `j,2 = min{kj+n − 1, 0} · n+ pj+n.

For cj = 0 there is only one summand U(j; 2ωn) in Mc
ω. If `j,1 ≤ ωn we set kj = 0,

pj = 0 and compute kj+n and pj+n by
`j,1 = min{kj+n − 1, 0} · n+ pj+n.

Otherwise we set kj+n = ω, pj+n = n and compute kj and pj by
`j,1 − ωn = min{kj − 1, 0} · n+ pj .

By the proof of the isomorphism

D̂Cn(ω) ∼=
{

l := (`i,1, (`i,2) ∈
⊕
i∈Zn

[n]0 × [n]0 : dimU(l) = e
}

it is clear that via this map a tuple l ∈ Ce,c(∆n, IN ) describes an affine Dellac
configuration to the parameter ω. It follows from the construction of the map that
this configuration also satisfies the assumption of c-degenerations.

Starting with a c-degenerate configuration the same assignments as above gives
us a tuple l describing a cell in the set Ce,c(∆n, IN ). �

This correspondence has some immediate consequences for the Euler Poincaré
characteristic of the approximations F lcω

(
ĝln
)
. Let c0 be the tuple where every

entry equals zero. This corresponds to the non-degenerate affine flag variety. The
tuple c1 where every entry equals one describes the Feigin degeneration of the affine
flag variety. On the tuples we define the partial order

c′ ≤ c :⇐⇒ c′i ≥ ci for all i ∈ Zn.

Corollary 6.56. For two tuples c′ and c with c1 ≤ c′ ≤ c ≤ c0, the Euler
Poincaré characteristics of two approximations satisfy

χF lcω
(
ĝln
)
≤ χF lc

′

ω

(
ĝln
)

where equality holds if and only if the tuples are equal.
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Proof. The set D̂C c
n(ω) arises from D̂C c′

n (ω) by adding additional assump-
tions. If both tuples are equal there are no additional assumptions and both sets
are equal. There exist configurations in the set D̂C c′

n (ω) which do not satisfy the
additional assumptions. Hence the inequality is strict if and only if the inequality
of the tuples is strict. �

This implies that for a parameter ω ∈ N the Euler Poincaré characteristic of the
approximation of the non-degenerate affine flag variety is strictly smaller than the
Euler Poincaré characteristic of the approximation of the Feigin-degenerate affine
flag variety. Moreover the examples in Appendix C.1 suggest that the characteristic
only depends on the number of projections and not their positions.

Conjecture 6.57. The Euler Poincaré characteristic of two approximations
satisfies

χF lcω
(
ĝln
)
≥ χF lc

′

ω

(
ĝln
)

if and only if ∑
i∈Zn

ci ≥
∑
i∈Zn

c′i.

Equality holds if and only if both sums are equal.

The proof of this statement should somehow use the symmetries in the shape
of the partial degenerate affine Dellac configurations. But the comparison of Euler
characteristics is not one of the main goals of this thesis such that we do not want
to go into further details here.

6.10. Poincaré Polynomials of the Approximations

In this section we develop a description of the Poincaré polynomials of the ap-
proximations F lcω

(
ĝln
)
which is based on the partial degenerations of affine Dellac

configurations. It utilises the identification of cells with successor closed subquiv-
ers and Dellac configuration. The formula to compute the dimension of a cell
generalises the formula for the loop quiver which is defined in Section 5.1.5.

6.10.1. Poincaré Polynomials for the Approximations of the Feigin
Degeneration. First we examine the case of the Feigin-degenerate affine flag va-
riety. Let D̂k ∈ D̂Cn(ω) an affine Dellac configuration. Depending on j ∈ Z2n and
the position of kj in the configuration D̂k we define the index set

[j, j + pj)n := [j, j + pj)mod n :=
{
i ∈ Z2n : 0 ≤ (i− j) < pj mod n

}
.

For j ∈ Zn define the functions

hj
(
D̂k
)

:= 2(pj + nrj) +
⌈kj
ω

⌉⌊ j
n

⌋(⌈kj−n + 1− kj
ω + 1

⌉
− 1
)

−
∑

i∈[j,j+pj)n

min{kj , ri} −
∑

i∈Z2n\[j,j+pj)n

min{rj , ri}

−
∣∣{i ∈ [j, j + pj)n : 0 < ki ≤ kj , pi ≥ pj − (i− j) mod n

}∣∣
−
∣∣{i ∈ Z2n \ [j, j + pj)n : 0 < ki ≤ rj , pi ≥ pj + (j − i) mod n

}∣∣.
Using these functions on the affine Dellac configurations we can compute the di-
mension of the corresponding cells in the quiver Grassmannians.
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Proposition 6.58. Let D̂k ∈ D̂Cn(ω) an affine Dellac configuration. The
dimension of the corresponding cell in the quiver Grassmannian

Gr∆n
eω

( ⊕
i∈Zn

Ui(ωn)⊗ C2
)

is given by
h
(
D̂k
)

:=
∑
j∈Z2n

hj
(
D̂k
)
.

Proof. The dimension of a cell in this quiver Grassmannian equals the number
of holes below the starting points of the segments in the successor closed subquiver
corresponding to the cell. These segments are encoded in the kj ’s and their posi-
tions in the configuration D̂k. It remains to show that for j ∈ Z2n the function hj
counts the number of holes below the starting point of the segment corresponding
to kj .

The number
2(pj + nrj)−

⌈kj
ω

⌉⌊ j
n

⌋
is the height of the starting point of the segment which corresponds to kj . Here
pj + nrj is the length of the segment and in each step we go up by two since there
end two segments over each vertex i ∈ Z2n. The other term counts if we are in the
upper or lower segment ending over the vertex j.

The index set [j, j + pj)n contains the indices for segments which have a point
below the starting point of the j-th segment and the distance of these points to
the starting points of the corresponding segments is bigger than nrj . Hence these
segments have nkj points below the starting point of the j-th segment.

All other segments have nrj points below the starting point of the j-th segment
and their indices are collected in the set Z2n \ [j, j + pj)n. Now we have to count
the number of points in the subsegments which are described by ki for i ∈ Z2n and
live below the starting point of the j-th segment.

For this purpose we distinguish the two cases introduced above. If i ∈ [j, j +
pj)n there are at least min{kj , ri} points of the i-th subsegment below the starting
point of the j-th segment. For 0 < ki ≤ kj it depends on the position of ki if the
segment covers more than ri holes. This is the case if

pi ≥ pj − (i− j) mod n

and we have to remove one more hole. This case is captured by

−
∑

i∈[j,j+pj)n

min{kj , ri}

−
∣∣{i ∈ [j, j + pj)n : 0 < ki ≤ kj , pi ≥ pj − (i− j) mod n

}∣∣.
The number ⌈kj

ω

⌉⌊ j
n

⌋⌈kj−n + 1− kj
ω + 1

⌉
corrects the number of holes if we are in the lower segment and the upper segment
is longer than the lower segment. In this case we removed one hole to much by the
above formula.

If i /∈ [j, j + pj)n there are at least min{rj , ri} points of the i-th subsegment
below the starting point of the j-th segment. In this case the position of ki is
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important if 0 < ki ≤ rj and we have to remove an additional hole if
pi ≥ pj + (j − i) mod n.

This is handled by the formula

−
∑

i∈Z2n\[j,j+pj)n

min{rj , ri}

−
∣∣{i ∈ Z2n \ [j, j + pj)n : 0 < ki ≤ rj , pi ≥ pj + (j − i) mod n

}
.

�

Remark. This generalises the formula for the affine Grassmannian as intro-
duced in the previous chapter. Here the formula becomes more complicated because
the numbers ki and kj are not sufficient to count the repetitions of the i-th seg-
ment below the j-th segment. For the affine Grassmannian these numbers were
sufficient because the loop quiver has only one vertex. Nevertheless the structure
of both formulas is the same. First we determine the height of the starting point
of a segment. Then we count the repetitions of all segments which correspond to
this cell and are below this starting point. The difference gives the number of holes
below this segment. Summation over all segments determines the dimension of the
corresponding cell.

Combining this formula with the result about the cellular decomposition of the
approximation of the Feigin-degenerate affine flag variety we obtain the subsequent
formula for their Poincaré polynomials.

Theorem 6.59. For ω ∈ N, the Poincaré polynomial of F laω
(
ĝln
)
is given by

p
Flaω
(
ĝln

)(q) =
∑

D∈D̂Cn(ω)

qh(D).

6.10.2. Poincaré Polynomials for the Approximations of the Affine
Flag Variety. Let D̂k ∈ D̂C c0

n (ω) an affine Dellac configuration which corre-
sponds to a cell in the approximation of the non-degenerate affine flag variety.
Define the index set

[j, j + pj)Znn :=
{
i ∈ Zn : 0 ≤ (i− j) < pj mod n

}
.

From the entries of the configuration we compute

k̃j := kj + kj+n, r̃j := max{0, k̃j − 1} and p̃j :=
⌈kj
ω

⌉
pj +

(
1−

⌈kj
ω

⌉)
pj+n

for j ∈ Zn. Here p̃j equals pj if kj > 0 and otherwise it is equal to pj+n. Using
these numbers we define the functions
h0
j

(
D̂k
)

:= pj + pj+n + nrj + nrj+n

−
∑

i∈[j,j+pj)Znn

min{k̃j , r̃i} −
∑

i∈Zn\[j,j+p̃j)Znn

min{r̃j , r̃i}

−
∣∣{i ∈ [j, j + p̃j)Znn : 0 < k̃i ≤ k̃j , p̃i ≥ p̃j − (i− j) mod n

}∣∣
−
∣∣{i ∈ Zn \ [j, j + p̃j)Znn : 0 < k̃i ≤ r̃j , p̃i ≥ p̃j + (j − i) mod n

}∣∣
for all j ∈ Zn and

h0(D̂k
)

:=
∑
j∈Zn

h0
j

(
D̂k
)
.



6.10. POINCARÉ POLYNOMIALS OF THE APPROXIMATIONS 149

Theorem 6.60. For ω ∈ N, the Poincaré polynomial of F lω
(
ĝln
)
is given by

p
Flω
(
ĝln

)(q) =
∑

D∈D̂C c0
n (ω)

qh
0(D).

Proof. In the coefficient quiver corresponding to the approximation F lω
(
ĝln
)

there are n segments of length 2ωn where exactly one segment ends over each vertex
of the quiver. Hence the height of the starting point of the j-th segment equals
the length of this segment. By the correspondence of cells and configurations the
length of this segment is computed as

p̃j + nr̃j = pj + pj+n + nrj + nrj+n.

All relevant informations about the n segments are encoded in the numbers p̃j and
k̃j for j ∈ Zn such that the repetitions of the segments below the starting point
of the j-th segment can be computed from these numbers as in the setting of the
Feigin degeneration. The only difference is that there is only one segment for each
j ∈ Zn such that we can remove the other cases from the formula for the Feigin
degeneration. �

6.10.3. Poincaré Polynomials for the Approximations of the Partial
Degenerations. Let c be a corank tuple and D̂k ∈ D̂C c

n(ω) a partial degenerate
affine Dellac configuration. Depending on the tuple c we define the index set

Ic :=
{
i ∈ Z2n : i < n or i ≥ n and ci−n+1 = 1

}
.

From the entries of the configuration we compute the numbers

k̃j :=
{ kj + kj+n if cj+1 = 0
kj otherwise , p̃j :=

{ pj+n if cj+1 = 0 and pj = 0
pj otherwise.

and

r̃j := max
{

0, k̃j − 1
}
, sj := min

{
ωn, p̃j + nr̃j

}
, tj := max

{
0, p̃j + nr̃j − ωn

}
.

For j ∈ Ic we use the index set

[j, j + pj)Ic
n := [j, j + pj)n ∩ Ic

to define the functions

hc
j

(
D̂k
)

:= p̃j + nr̃j +
sj∑

`=tj+1
cj+`−1 +

⌈kj
ω

⌉⌊ j
n

⌋(⌈kj−n + 1− kj
ω + 1

⌉
− 1
)

−
∑

i∈[j,j+pj)Ic
n

min{k̃j , r̃i} −
∑

i∈Ic\[j,j+p̃j)Ic
n

min{r̃j , r̃i}

−
∣∣{i ∈ [j, j + p̃j)Ic

n : 0 < k̃i ≤ k̃j , p̃i ≥ p̃j − (i− j) mod n
}∣∣

−
∣∣{i ∈ Ic \ [j, j + p̃j)Ic

n : 0 < k̃i ≤ r̃j , p̃i ≥ p̃j + (j − i) mod n
}∣∣

and their sum
hc(D̂k

)
:=
∑
j∈Zn

hc
j

(
D̂k
)
.
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Theorem 6.61. For ω ∈ N and c ∈ Zn with c1 ≤ c ≤ c0, the Poincaré
polynomial of F lcω

(
ĝln
)
is given by

p
Flcω
(
ĝln

)(q) =
∑

D∈D̂C c
n(ω)

qh
c(D).

Proof. The subsegments in the coefficient quiver for the approximation

F lcω
(
ĝln
)

which parametrise the cell of the approximation can be indexed by the set Ic and
they are determined by the numbers k̃j and p̃j for j ∈ Ic.

For the first ωn steps in each step a segment moves up by the number of
segments ending in the target vertex of the step. If i is the index of this vertex,
the number of segments is given by 1 + ci. For the steps beyond ωn the segment
moves up if and only if a segment of length 2ωn ends in the vertex. The number of
these segments ending over the vertex i is given by 1− ci. Accordingly the height
of the starting point of the j-th segment is computed as

sj∑
`=1

(
1 + cj+`−1

)
+

tj∑
`=1

(
1− cj+`−1

)
= sj + tj +

sj∑
`=1

cj+`−1 −
tj∑
`=1

cj+`−1

= p̃j + nr̃j +
sj∑

`=tj+1
cj+`−1

where we have to subtract ⌈kj
ω

⌉⌊ j
n

⌋
to distinguish between the lower and upper segment ending over the vertex j if
both of them exist.

Here it is important that tj > 0 implies that sj = ωn and the maximal value
for tj is ωn because the maximal length for the segments is 2ωn. The computation
of the repetitions of the other segments below the starting point of the j-th segment
is analogous to the computation for the Feigin degeneration and non-degenerate
affine flag variety. �

In examples we can compute the Poincaré polynomials based on this parametri-
sation of the cells by configurations and with the dimension function defined on the
configurations. Alternatively we can draw the successor closed subquivers based
on the parametrisation by the length of the subsegments and count the holes below
the starting points of the segments. Based on the second approach we computed
the Poincaré polynomials of some approximations using SageMath [72]. The re-
sults of these computations are presented in Appendix C.1 and in Appendix B.1
we provide the code of the program.

6.11. The Action of the Automorphism Groups in the Limit

In this section we examine the structure of the automorphism group Aut∆n
(Mc

ω)
and its action on the quiver Grassmannian

Gr∆n
eω
(
Mc
ω

)
for the case c ∈ {c0, c1}. Based on this information we construct an embedding
ϕc
ω of the automorphism groups which is compatible with the map Φc

ω.
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For this construction we have to compute the elements of
Hom∆n

(
Ui(ωn), Uj(ωn)

)
for i, j ∈ Zn. The representation Ui(ωn) corresponds to the tuple (Mα)α∈Zn of
maps

Mα : Cω → Cω

where Mα = idω if tα 6= i and Mα = s1 if tα = i. In the same way let (Nα)α∈Zn be
the tuple of maps corresponding to the indecomposable representation Uj(ωn).

A morphism from Ui(ωn) to Uj(ωn) is a tuple of maps
ϕk : Cω → Cω

for k ∈ Zn such that ϕtα ◦Mα = Nα ◦ ϕsα for all α ∈ Zn. If tα /∈ {i, j} this yields
ϕtα = ϕsα which is equivalent to ϕk = ϕk−1 for k /∈ {i, j}. Accordingly these maps
satisfy ϕk = ϕi for k ∈ {i, i+1, . . . , j−1} ⊂ Zn. For tα = i we obtain ϕi−1 = ϕi◦s1
such that ϕk = ϕi ◦ s1 holds for k ∈ {j, j + 1, . . . , i− 1} ⊂ Zn. The final relation is

ϕj = ϕi ◦ s1 = s1 ◦ ϕi = s1 ◦ ϕj−1

which is obtained for tα = j. Hence we can compute all maps ϕk for k ∈ Zn after
we have found a map ϕi commuting with the index shift s1. This is the same
commutativity relation as for endomorphisms of the representation AN of the loop
quiver with ω = N . Following the same computation as in Section 5.6 of the
chapter about the affine Grassmannian we obtain the subsequent parametrisation
of the homomorphisms.

For a tuple (λk)k∈[ω] with entries λk ∈ C we define the entries of the lower
triangular matrix A(λ) ∈Mω(C) by

ai,j :=
{ λk if k = i− j + 1

0 otherwise.
This matrix describes an element of

Hom∆n

(
Ui(ωn), Uj(ωn)

)
for i, j ∈ Zn by defining ϕi as the left multiplication with this matrix. All homo-
morphisms between Ui(ωn) and Uj(ωn) have a unique description of this form.

In the same way as in Section 5.6 we obtain the parametrisation of the elements
of the automorphism group Aut∆n

(Mω) where

Mω =
⊕
i∈Zn

Ui(2ωn).

For a tuple
λ :=

(
λ

(i,j)
k

)
with k ∈ [2ω] and i, j ∈ [n]

let Mk(λ) ∈ Mn(C) be the matrix with entries λ(i,j)
k for i, j ∈ [n]. Define the

2ω × 2ω block matrix Aλ ∈M2ωn(C) with the blocks

Ap,q :=
{
Mk(λ) if k = p− q + 1
0n,n otherwise.

Independent of the choice of λ this describes an endomorphism of Mω where the
maps ϕi over the vertices i ∈ Zn are obtained form the matrix Aλ as described
above for the homomorphisms between two indecomposable representations of the
same length. Moreover all endomorphisms of Mω admit a parametrisation of this
form. If we additionally require that the matrix M1(λ) ∈ Mn(C) is invertible it is
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sufficient to describe the automorphisms of Mω. Hence the group Aut∆n
(Mω) is

2ωn2-dimensional.
With this parametrisation for the elements of the automorphism group of Mω

we define the embedding

ϕω : Aut∆n
(Mω)→ Aut∆n

(Mω+1)

by ϕω(Aλ) := Aλ̂ ∈M2(ω+1)n(C) where λ̂ is obtained from λ as

λ̂
(i,j)
k :=

{
λ

(i,j)
k if k < 2ω

0 otherwise.

This embedding is compatible with the action of the automorphism group on the
approximations of the affine flag variety.

Lemma 6.62. Let A ∈ Aut∆n
(Mω) be an automorphism of the quiver Grass-

mannian
Gr∆n

eω
(
Mω

) ∼= F lω(ĝln).
Then the diagram

F lω
(
ĝln
)

F lω+1
(
ĝln
)

F lω
(
ĝln
)

F lω+1
(
ĝln
)Φω

A

Φω

ϕω(A)

≡

commutes.

Proof. The prove is based on the same arguments as for the approximations
of the affine Grassmannian. The points in the quiver Grassmannians providing the
approximations are now described as tuples of vector spaces which are spanned
by certain vectors w(i)

k for i ∈ Zn and k ∈ [ωn]. The automorphisms act via left
multiplication on these vectors. Now we have to compute for each vertex i ∈ Zn
that the action on the span is equivariant for the embedding of the span in the
bigger approximation. Each of these computations is analogous to the computation
for the action on the approximations of the affine Grassmannian. �

The elements of the automorphism group Aut∆n
(Ma

ω) where

Ma
ω =

⊕
i∈Zn

Ui(ωn)⊗ C2

are parametrised by tuples

µ :=
(
µ

(i,j)
k

)
with k ∈ [ω] and i, j ∈ [2n]

such that the determinant of the matrix M1(µ) ∈ M2n(C) is non-zero. This is
obtained as combination of the arguments in Section 5.6 and the parametrisation
for the automorphisms of Mω. Hence the dimension of the group Aut∆n

(Ma
ω) is

computed as 4ωn2.
We define the embedding

ϕaω : Aut∆n
(Ma

ω)→ Aut∆n
(Ma

ω+1)
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by ϕaω(Aµ) := Aµ̂ ∈M2(ω+1)n(C) where µ̂ is obtained from µ as

µ̂
(i,j)
k :=

{
µ

(i,j)
k if k < ω

0 otherwise.

Remark. This embedding is not compatible with the action of the automor-
phisms on the approximations of the degenerate affine flag variety and there exists
no embedding compatible with this action. This is shown with the same arguments
as for the degeneration of the affine Grassmannian.

Nevertheless we can prove the subsequent equivariance of the action with two
consecutive embeddings of approximations using the methods developed in Sec-
tion 5.6 and apply it to the approximations of the degenerate affine flag variety as
described above for the non-degenerate setting.

Lemma 6.63. Let A ∈ Aut∆n
(Ma

ω) be an automorphism of the quiver Grass-
mannian

Gr∆n
eω
(
Ma
ω

) ∼= F laω(ĝln).
Then the diagram

F laω
(
ĝln
)

F laω+2
(
ĝln
)

F laω
(
ĝln
)

F laω+2
(
ĝln
)Φaω+1 ◦ Φaω

A

Φaω+1 ◦ Φaω

ϕaω+1 ◦ ϕaω(A)

≡

commutes.





CHAPTER 7

Equivariant Cohomology and the Moment Graph

The GKM or moment graph associated to an algebraic variety captures infor-
mation about the structure of fixed points and one-dimensional orbits of the action
of an algebraic torus on the variety. It is useful to describe geometric properties of
the variety as for example cohomology and intersection cohomology. The foudation
of this area was given by T. Braden, M. Goresky, R. Kottwitz and R. MacPherson
in [39, 11]. In this chapter we follow the computation of the moment graph for
degenerate flag varieties by G. Cerulli Irelli, E. Feigin and M. Reineke in [21]. For
introductionary surveys about GKM theory and equivariant cohomology see for
example [54, 73].

Let X be a projective algebraic variety over C with an algebraic action of a
torus T ∼= (C∗)d which has finitely many fixed points and one-dimensional orbits.
Moreover we assume that there exists an embedding C∗ ↪→ T such that the C∗-
fixed points and the T -fixed points coincide and the C∗-action induces a cellular
decomposition of X into T -invariant attracting sets of C∗-fixed points. Classically
it is assumed that X admits a T -invariant Whitney stratification by affine spaces
[11, Section 1.1]. But for our application it is necessary to require the existence of
the cellular decomposition. At some point both notions have to be related in the
setting of the quiver Grassmannians which we want to consider.

Definition 7.1. The vertex set of the moment graph Γ := Γ(X,T ) is given
by the set of torus fixed points, i.e.

Γ(X,T )0 := XT .

Let O1
T (X) be the set of one-dimensional T -orbits in X. Each orbit L ∈ O1

T (X)
has two distinct limit points. On one hand the T -fixed point p of the cell Cp which
contains the orbit L and on the other hand one other T -fixed point q in some cell
Cq in the closure of Cp. The edges of Γ are given by the one-dimensional T -orbits,
i.e.

Γ(X,T )1 := O1
T (X)

and they are oriented as sL := q, tL := p if Cq ⊂ Cp.
Moreover we define a labelling of the edges as follows: Let t be the Lie algebra

of the torus T . All points in the one-dimensional T -orbit L have the same stabiliser
in T , its Lie algebra is a hyperplane in t and the annihilator of the hyperplane is
denoted by αL which will be the label of the edge L.

On the vertex set of the moment graph we define the partial order q ≤ p if
and only if Cq ⊂ Cp. This partial order and the induced Alexandrov topology is
important for the computation of the Braden-MacPherson sheaves (BMP-sheaves)
over moment graphs [55, Definition 3.6]. These sheaves can be used to compute
the T -equivariant intersection cohomology of X [11, Theorem 1.5]. In the rest of

155
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this chapter we introduce a combinatoric approach to construct the moment graph
and the labelling of its edges for the quiver Grassmannians which admit a cellular
decomposition into attracting sets of C∗-fixed points.

7.1. The Euler-Poincaré Graph of a Quiver Grassmannian

Let M be a representation of a quiver Q such that the quiver Grassmannian
GrQe (M) has property (C). This means that there is a C∗-action on GrQe (M) in-
ducing a cellular decomposition into attracting sets of C∗-fixed points. These cells
have a combinatoric description by successor closed subquivers of dimension type
e in the coefficient quiver of M , i.e.

SCQe (M) :=
{
T
−→⊂Γ(M,B•) : |T0 ∩ Bi| = ei, for all i ∈ Q0

}
.

If we order the segments of M according to the power with which λ ∈ C∗ acts on
the corresponding basis vectors, the dimension of a cell equals the number of holes
below the starting points of the segments of T parametrising the cell.

For S, T ∈ SCQe (M) we say that T is obtained from S by a fundamental
mutation and write µ(S) = T if we obtain the coefficient quiver T from S by
moving up exactly one part of a segment where the order of segments is induced
by the C∗-action. The inverse fundamental mutations are obtained as downwards
movements of subsegments.

Remark. The distance of the movement in a mutation is not limited such
that it can happen that a fundamental mutation is the concatenation of two other
fundamental mutations.

Example 7.2. Let Q be an equioriented quiver of type A4, i.e.

1 2 3 4

and let M = X ⊕ Y be a representation of Q where

X =
4⊕
i=1

Pi and Y =
4⊕
j=1

Ij

and e := dimX. The coefficient quiver for the top-dimensional cell of the quiver
Grassmannian GrQe (M) is given on the left below and after two inverse fundamental
mutations we arrive at the right picture

7−→ 7−→

From this coefficient quiver we can obtain the subsequent quiver via one or two
inverse fundamental mutations
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Definition 7.3. The vertices of the Euler-Poincaré graph EPQe (M) for the
quiver Grassmannian GrQe (M) are given by the C∗-fixed points, i.e.

EPQe (M)0 := SCQe (M).

In the i-th row of the graph write the vertices corresponding to cells of dimension
k where i := dim GrQe (M) − k + 1 and label this row by k. For p, q ∈ EPQe (M)0
draw an arrow α ∈ EPQe (M)1 with sα = p and tα = q if there exists a fundamental
mutation of coefficient quivers such that µ(p) = q.

The fundamental mutations increase the dimension of the cells such that in this
graph all edges are oriented from the bottom to the top. For a certain class of quiver
representations this graph captures the information about the inclusion relations
of the cells in the decomposition of the corresponding quiver Grassmannian. The
representation from the example above belongs to this class.

Based on this combinatoric data we want to describe the moment graph asso-
ciated to the corresponding quiver Grassmannian as described for the degenerate
flag variety by G. Cerulli Irelli, E. Feigin and M. Reineke in [21] and for complex
algebraic varieties by T. Braden and R. MacPherson in [11]. For this construction
it is necessary that the EP-graph associated to a quiver Grassmannian with a cel-
lular decomposition satisfies the subsequent condition. If T is obtained from S by
a fundamental mutation the corresponding cells satisfy C(S) ⊂ C(T ).

This means that with a suitable label function this graph has the structure of
a moment graph on a lattice as defined by P. Fiebig in [31]. Here the order of
the vertices is induced by the order of the orbits as defined earlier in this chapter.
Having this interpretation of the EP-graph it would remain to find a bijection
between one-dimensional T -orbits and fundamental mutations. Then we can choose
as label function for the EP-graph the labels which arise from the T -action. It is not
clear yet in which generality these assumptions can be satisfied for the EP-graphs
associated to quiver Grassmannians.

If we restrict the arrows to basic mutations, i.e. fundamental mutations of
minimal distance, the Euler-Poincaré graph would have the structure of the Hasse-
diagram for the cells ordered by inclusion with the additional information about
the dimension of the cells.

The number of vertices in the Euler-Poincaré graph equals the Euler charac-
teristic of the quiver Grassmannian, i.e.

χ
(

GrQe (M)
)

= |EPQe (M)0|

and the coefficient of qk in the Poincaré polynomial of the quiver Grassmannian is
computed as the number of vertices in the row of EPQe (M) indexed by k.
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Remark. In praxis the Euler-Poincaré graph can be computed by applying
fundamental mutations to the zero-dimensional cell of the quiver Grassmannian
GrQe (M).

The idea of this chapter is to define a T -action on these quiver Grassmannians
such that the corresponding moment graph and its label can be computed based
on the combinatorics of the coefficient quivers.

For the quiver Grassmannian with n = 3 from the example above the zero-
dimensional cell is parametrised by

Applying basic mutations we can for example compute the following coefficient
quivers corresponding to one-dimensional cells.

In this setting the effective pairs labelling the edges of the moment graph as in [21]
are given as the index of the segment where the fundamental mutation ends and
the index of the segment where the movement of the subsegment starts. Here we
orient the edges in the opposite direction as in [21].

7.2. Torus Actions on Quiver Grassmannians for the Loop

In this section we introduce the action of a torus T on quiver Grassmannians
for the loop quiver. It is defined to be compatible with the cellular decomposition
which is induced by the C∗-action on these quiver Grassmannians. This means
that the C∗-fixed points and the T -fixed points coincide and the cells are stable
under the action of T . For the special case of the quiver Grassmannians providing
finite dimensional approximations of the affine Grassmannian this is linked to the
construction arising from the combinatorics of the words in the corresponding affine
Weyl group as studied by M. Lanini in [56].

As in the chapter about the affine Grassmannian we want to consider quiver
Grassmannians of the form

GrxN
(
AN ⊗ C(x+y)N).

Recall that the quiver representation AN ⊗Cm is isomorphic to the representation

Mm,N :=
((

CmN
)
,
(
sm
))
.

The vector space CmN has a basis vi,` for i ∈ [m] and ` ∈ [N ]. For

v =
∑
i∈[m]

∑
`∈[N ]

µi,`vi,`
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define si := min{` ∈ [N ] : µi,` 6= 0} for all i ∈ [m]. We define the torus action

T :=
(
C∗
)mN × CmN −→ CmN

(λ, v) 7−→
∑
i∈[m]

λi+m(si−1)

N∑
`=si

µi,`vi,`.

In this way T acts with the same λj on all basis vectors corresponding to one of
the m subsegements describing a C∗-fixed point in the quiver Grassmannian and
on each of the segments it acts with a different λj . Accordingly the C∗-fixed points
and the cells of the quiver Grassmannians above are stable under this action.

We define the embedding T0 :=
(
C∗
)m × C∗ ↪→ T via

λi+m(si−1) := γi · γsi0

for
(
(γi)i∈[m], γ0

)
∈ T0.

It follows from the explicit parametrisation of the cells in the quiver Grassman-
nians as attracting sets of C∗-fixed points which is used for example in Section 5.5.1
that there are only finitely many one-dimensional T -orbits in each cell and hence
in the the whole quiver Grassmannian. The orbits can not leave the cells because
the cells are T -stable. Moreover these one-dimensional orbits are in one to one cor-
respondence with the fundamental mutations of the subquivers in the coefficient
quiver of Mm,N . This is again a direct consequence of the parametrisation of the
cells as attracting sets.

The labels of the edges are given by annihilators of the hyperplanes in the
Lie algebra t which correspond to the one-dimensional T -orbits. These vectors are
obtained as follows. For the action of T take εi− εj where i ∈ [mN ] is the index of
the vertex in the coefficient quiver where the moved subsegment starts before the
fundamental mutation of the coefficient quiver and j ∈ [mN ] is the index of the
vertex where it starts after the movement. For the action of T0 we have indices in
[m] with the additional information how many blocks of size m ∈ [N ] the starting
point has moved down. With the identification of the different basis of CmN we
can compute the label εi − εj +mδ from the label for the action of T .

Everything as mentioned above is still conjectural but all computed examples
suggest that it should hold in this generality. But unfortunately I was not able
to work out all the details for the proofs before I had to submit this thesis. So I
decided to restrict to one example for the explicit computations.

Example 7.4. For x = y = 1, N = 2, the quiver Grassmannian Gr2(A2 ⊗ C4)
contains two-dimensional subrepresentations of the representation

M2,2 :=
((

C4), (s2
))

which coefficient quiver is given by
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1

2

3

4

The successor closed subquivers parametrising the cells of the quiver Grassmannian
are of the form

These are the only possibilities for successor closed subquivers on two vertices
because the other three possible subquivers one two vertices are not successor
closed. The corresponding C∗-fixed points are

p0 = Span
(
v3, v4

)
, p1 = Span

(
v2, v4

)
, p2 = Span

(
v1, v3

)
where the index of pi is equal to the dimension of the corresponding cells which is
computed by counting the holes below the starting points of the segments in the
coefficient quiver. From the description as attracting sets of the fixed points we
obtain the subsequent description of the cells

c0 = Span
(
v3, v4

)
= p0

c1 =
{

Span
(
v2 + av3, v4

)
: a ∈ C

}
c2 =

{
Span

(
v1 + av2 + bv4, v3 + av4

)
: a, b ∈ C

}
.

The torus T =
(
C∗
)4 acts on v =

∑4
i=1 µivi ∈ C4 as

λ.v =
∑
i∈[2]

λi+2(si−1)

2∑
`=si

vi+2(`−1)

where we used the identification vi,` = vi+m(`−1) for the basis of CmN .
It is straight forward to check that the C∗-fixed points and cells are T0-fixed

λ.p0 = Span
(
λ3v3, λ4v4

)
= Span

(
v3, v4

)
= p0 = c0,

λ.p1 = Span
(
λ2v2, λ2v4

)
= Span

(
v2, v4

)
= p1,

λ.p2 = Span
(
λ1v1, λ1v3

)
= Span

(
v1, v3

)
= p2,
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λ.c1 =
{

Span
(
λ2v2 + λ3av3, λ2v4

)
: a ∈ C

}
=
{

Span
(
v2 + ãv3, v4

)
: ã ∈ C

}
= c1

λ.c2 =
{

Span
(
λ1v1 + λ2av2 + λ2bv4, λ1v3 + λ2av4

)
: a ∈ C∗, b ∈ C

}
∪
{

Span
(
λ1v1 + λ4bv4, λ1v3

)
: b ∈ C

}
=
{

Span
(
v1 + ãv2 + b̃v4, v3 + ãv4

)
: ã, b̃ ∈ C

}
= c2.

Accordingly the cell c1 is a one-dimensional T -orbit and the point in its closure
is p0 such that there is an edge from p0 to p1 corresponding to this orbit and it
is oriented towards p1. The label of this edge is ε3 − ε2 since the effective action
of the torus is given by λ3/λ2. For the embedding T0 ↪→ T as defined above we
obtain the effective action of γ1γ0/γ2 which corresponds to the label ε1 − ε2 + δ.

In the zero-dimensional cell there can not be any one-dimensional T -orbits and
in the top-dimensional cell c2 there are two one-dimensional T -orbits qa and qb
corresponding to the cases b = 0 and a = 0. If both parameters are non-zero
the corresponding T -orbit is two-dimensional. There can not be any other one-
dimensional T -orbits in this quiver Grassmannian. Now we want to determine the
two corresponding edges in the moment graph.

λ.qa =
{

Span
(
λ1v1 + λ2av2, λ1v3 + λ2av4

)
: a ∈ C

}
=
{

Span
(
v1 + λ2

λ1
av2, v3 + λ2

λ1
av4
)

: a ∈ C
}

λ.qb =
{

Span
(
λ1v1 + λ4bv4, λ1v3

)
: b ∈ C

}
=
{

Span
(
v1 + λ4

λ1
bv4, v3

)
: b ∈ C

}
.

In the closure of qa we have the point p1 such that the corresponding edge is
directed from p1 to p2. The label is given by ε2 − ε1 because the effective action
is by λ2/λ1. For the embedding of T0 in T we have the same label in this setting.
The closure of qb contains the point p0 such that we obtain an edge directed from
p0 to p2 and the label for the T -action is ε4 − ε1. For the action of T0 we obtain
the label ε2 − ε1 + δ.

With α := ε2 − ε1 the moment graph for the action of the torus T0 on the
quiver Grassmannian Gr2(A2 ⊗ C2) is given as

p0 p1 p2
−α+ δ

α+ δ

α

The same graph with the same labels is computed using fundamental mutations
and the procedure to label the edges as described above this example.

Moreover this is the moment graph as computed for the interval [0,−α] of Ĝpar
for ĝ = ŝl2 by M. Lanini in [56, Example 4.2]. Observe that in her picture of the
moment graph the zero-dimensional cell is in the middle, the cells on the left of it
have even dimension and the cells on the right have odd dimension and as for the
corresponding quiver Grassmannians there is exactly one cell of each dimension.



162 7. EQUIVARIANT COHOMOLOGY AND THE MOMENT GRAPH

In the appendix of this article she shows that in this setting the structure sheaf
and the BMP-sheaf are isomorphic. This implies that the T -equivariant intersec-
tion cohomology is equal to the ordinary T -equivariant cohomology and hence the
intersection cohomology equals the ordinary cohomology [11, Theorem 1.6 and
1.7].

In bigger examples one might want to avoid drawing coefficient quivers. Recall
that the cells in the quiver Grassmannian GrxN (Mm,N ) are parametrised by tuples
(ki)i∈[m] with ki ∈ {0, 1, . . . , N} and

∑m
i=1 ki = xN . But this parametrisation

has the drawback that the notion of fundamental mutations and the corresponding
labelling and orientation of the edges becomes harder to control.

Nevertheless it is possible to give a complete description of the moment graph
in this setting. Let k and ` be two tuples parametrising cells in the quiver Grass-
mannian GrxN (Mm,N ). From the correspondence of one-dimensional orbits and
fundamental mutations we obtain that they are connected by an edge if and only
if there exists an pair of distinct indices i, j ∈ [m] such that ki 6= `i, kj 6= `j and
kr = `r for all r ∈ [m] \ {i, j}.

To determine the orientation and labelling of the edges let us assume that
i < j. Choose s ∈ {i, j} such that ks < `s. This index has to exist if k and ` are
connected by an edge. Let t be the remaining index from {i, j}. Now we take q ∈ Z
such that ks = `t + q and it follows from the dimension of the representations in
the quiver Grassmannian that kt = `s − q. We have to distinguish three different
cases.

For q = 0 we orient the edge towards the tuple with the bigger i-th entry and
label the edge by εj − εi. If q < 0 we orient the edge towards the tuple k and the
edge is labelled by εs − εt + qδ. For q > 0 we orient the edge towards the tuple `
and the label is given by εt − εs + qδ. Analogous we can compute the labelling for
the action of T .

It is straight forward to check that in the above example we obtain the same
labelling as computed from the T0-action or equivalently from the fundamental
mutations of the coefficient quivers. The proof for the general setting is analogous
to the computations in this example. It turns out that in all computed examples
the moment graph and its labelling for the approximations of Gr(ĝln) has the same
shape as the moment graph for certain finite intervals of Ĝpar for ĝ = ŝln which are
of the same form as in the example above.



APPENDIX A

Examples: Quiver Grassmannians for the
Equioriented Cycle

In this appendix we give some examples of quiver Grassmannians for the equior-
iented cycle which do not satisfy all the properties of the class of quiver Grassman-
nians studied for the main part of this thesis. These examples illustrate why the
restrictions on the studied class of quiver Grassmannians were made. Moreover
we give counterexamples for some geometric properties which are obtained for a
similar class of quiver Grassmannians for Dynkin quivers.

Example A.1. Let n = 4 and

M := U1(4)⊕ U2(4)⊕ U3(4)⊕ U4(4), M̃λ :=
⊕
i∈Z4

Ui(1;λ)

and e := t(2, 2, 2, 2) where Ui(d;λ) denotes the representation

Cd

Cd

Cd

Cd

idd

idd

idd

Jd(λ)

of the equioriented cycle ∆4 where the map from the vertex i to the vertex i + 1
is given by Jd(λ), i.e. the Jordanblock of size d with the eigenvalue λ. Then for
λ ∈ C∗ we obtain

Gr2(4) ∼= Gr∆4
e (M̃λ) and define Gra2(4) := Gr∆4

e (M)

which we call the degenerate Grassmannian.
This constructions generalise to arbitrary n, k ∈ N. The classical Grassmannian

has dimension k(n− k). From the formula for the dimension of quiver Grassman-
nians for the cycle ∆n as developed in Lemma 3.22 we obtain that this equals the
dimension of the quiver Grassmannian Gr∆n

e (M) for the quiver representation

M :=
⊕
i∈Zn

Ui(n)

and the dimension vector e := t(k, . . . , k). Following Lemma 3.23 the number of
irreducible components of this quiver Grassmannian is given by

(
n
k

)
.

For λ = 0 we obtain M̃0 = M such that the quiver Grassmannians Gr∆n
e (M̃λ)

are a family over C with special fibre Grak(n) and generic fibre isomorphic to Grk(n).
A degeneration is called flat if the morphism above is flat. For this it is necessary
that the fibre dimension is constant. This is satisfied in the setting of this example.
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For a certain class of representations of Dynkin quivers there exists a unique
(up to isomorphism) representation with the same dimension vector such that the
quiver Grassmannian corresponding to the first representation is a flat degenera-
tion of the quiver Grassmannian corresponding to the second representation [20,
Theorem 3.2].

The quiver Grassmannians studied in this thesis are based on representations
which live in a generalisation of the class of quiver representations studied in [20].
Hence it is natural to ask if there exists a similar statement about flat degener-
ations for representations of the cycle ∆n. In the Dynkin setting the statement
mentioned above can be applied to show that the degeneration of the classical flag
variety is flat. For the affine flag variety and the affine Grassmannian we would
have some similar statement if we could show it for the quiver Grassmannians ap-
proximating them. But as shown the Chapter 5 and Chapter 6 we do not get the
equidimensionality of the approximations. Accordingly it is not possible to prove
the flatness with methods from quiver theory and we would have to apply different
theory as done for example in [30] to prove the flatness for the degeneration of the
affine Grassmannian. But in this thesis we restrict us to methods from the study
of modules over finite dimensional algebras.

A.1. Strata outside the Closure of the Stratum of X

Let Xbe a projective and Y be a injective representation of a Dynkin quiver
Q. Then the closure of the stratum of X is the whole quiver Grassmannian
GrdimX(X ⊕Y ) [20, Theorem 1.1]. For projective and injective representations of
the equioriented cycle it follows from Lemma 3.23 that the corresponding quiver
Grassmannians are irreducible if and only if X or Y is trivial. If we give up the
restriction that the summands of X and Y all have the same length there are a
few more cases. All in all irreducibility of quiver Grassmannians for the cycle is
much more rare than in the Dynkin setting. Moreover there are cases where the
dimension of the quiver Grassmannian is strictly bigger than the dimension of the
stratum of X.

For N 6= ω · n the subsequent examples contradict the statement about the
dimension and the parametrisation of the irreducible components in the Grass-
mannians as proven for N = ω · n in Lemma 3.23.

Example A.2. Let n = 4, N = 5 and X := U3(5) ⊕ U4(5) be a bounded
projective representation of the equioriented cycle ∆4. In this setting the part of
the Auslander Reiten Quiver with the nilpotent representations of maximal length
5 is given as

U1(1) U4(1) U3(1) U2(1) U1(1) U4(1)

U1(2) U4(2) U3(2) U2(2) U1(2) U4(2)

U4(3) U3(3) U2(3) U1(3) U4(3) U3(3)

U3(4) U2(4) U1(4) U4(4) U3(4) U2(4)

U2(5) U1(5) U4(5) U3(5) U2(5) U1(5)
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where points with the same label are identified such that we have meshes on a
cylinder. Here we do not want to go into the details how Auslander Reiten Quiv-
ers are defined in general and how they are obtained for the equioriented cycle.
The definition and some possible ways of construction are given in the book by
R. Schiffler [66, Chapter 1.5, Chapter 3] and the book by I. Assem, D. Simson and
A. Skowronski [2, Chapter IV]. The dimension vector of X computes as

e := dimX = t(1, 1, 2, 1) + t(1, 1, 1, 2) = t(2, 2, 3, 3)

and dim GLe = 22 + 22 + 32 + 32 = 4 + 4 + 9 + 9 = 26. The dimension of the space
of endomorphisms is given as

dim Hom∆4

(
X,X

)
= (2 + 1) + (1 + 2) = 6

which can be computed using the word combinatorics as in Proposition 3.16. Define
U := U2(4)⊕ U2(4)⊕ U3(2). Then

dim Hom∆4

(
U,U

)
= (1 + 0 + 0) + (0 + 1 + 1) + (0 + 1 + 1) = 5.

For Y := U1(5) ⊕ U1(5) we obtain U ∈ Gr∆4
e (X ⊕ Y ) from the shape of the

indecomposable embeddings as described in Proposition 3.19 or from the structure
of the Auslander Reiten Quiver. The dimension of the strata compute as

dimSU = dim Hom∆4

(
U,X

)
+ dim Hom∆4

(
U, Y

)
− dim Hom∆4

(
U,U

)
=
(
(1 + 1) + (1 + 1) + (1 + 1)

)
+
(
(0 + 0) + (1 + 1) + (1 + 1)

)
− 5 = 5

dimSX = dim Hom∆4

(
X,X

)
+ dim Hom∆4

(
X,Y

)
− dim Hom∆4

(
X,X

)
=
(
(1 + 1) + (1 + 1)

)
= 4.

The indecomposable summands of X and Y have all the same length. Hence we
can apply Theorem 2.3 in order to compute the closures of the strata in the quiver
Grassmannian using the results by G. Kempken about the orbit closures in the
variety of quiver representations. We obtain that X is not included in the closure
of the stratum of U . Accordingly the Grassmannian is not irreducible and its
dimension strictly bigger than the dimension of the irreducible component of X.
For any Dynkin quiver Q the closure of the stratum of a projective representation
X would already be the whole Grassmannian

Gre(X ⊕ Y )

where Y is a injective representation of Q and e is the dimension vector of X [20,
Theorem 1.1].

Example A.3. Let n = 7, N = 4 and define

X := U3(4)⊕ U4(4)⊕ U7(4),
Y := U1(4)⊕ U2(4)⊕ U5(4) and
U := U2(4)⊕ U5(4)⊕ U3(2)⊕ U6(2).

Then U ∈ Gr∆7
e (X ⊕ Y ) where e := dimX since the coefficient quiver of U is a

subquiver in the coefficient quiver of X ⊕ Y and has the right dimension vector.
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Using word combinatorics or a computer algebra system we obtain
dimSU = dim Hom∆7

(
U,X

)
+ dim Hom∆7

(
U, Y

)
− dim Hom∆7

(
U,U

)
=
(
(1 + 0 + 0) + (0 + 0 + 0) + (1 + 1 + 0) + (0 + 1 + 1)

)
+
(
(0 + 0 + 1) + (1 + 1 + 0) + (0 + 0 + 1) + (1 + 1 + 0)

)
−
(
(1 + 0 + 0 + 0) + (0 + 1 + 0 + 0) + (0 + 0 + 1 + 0) + (0 + 0 + 1 + 1)

)
= 6 + 5− 5 = 6

dimSX = dim Hom∆7

(
X,X

)
+ dim Hom∆7

(
X,Y

)
− dim Hom∆7

(
X,X

)
=
(
(1 + 1 + 0) + (1 + 1 + 0) + (0 + 0 + 1)

)
= 5.

Again we can check that X is not contained in the closure of the stratum of U .
Thus this Grassmannian is not irreducible and its dimension is strictly bigger than
the dimension of the stratum of X.

A.2. Irreducible Components of different Dimension

Even if the dimension of the Grassmannian is the same as the dimension of the
stratum of X the other irreducible components of the Grassmannian do not have
to be of the same dimension.

Example A.4. Let n = 3, N = 2. Define X := U2(2) ⊕ U2(2) ⊕ U3(2), Y :=
U1(2) ⊕ U1(2) ⊕ U2(2) and e := dimX = t(1, 2, 3). In this setting we obtain the
Auslander Reiten Quiver

U1(1) U3(1) U2(1) U1(1) U3(1)

U1(2) U3(2) U2(2) U1(2) U3(2)

The isomorphism classes of subrepresentations of X ⊕ Y with dimension vector e
are described by the following representatives:

X := U2(2)⊕ U2(2)⊕ U3(2) V1 := U1(2)⊕ S2 ⊕ S3 ⊕ S3 ⊕ S3

U1 := U2(2)⊕ U3(2)⊕ S2 ⊕ S3 V2 := U2(2)⊕ S1 ⊕ S2 ⊕ S3 ⊕ S3

U2 := U2(2)⊕ U2(2)⊕ S1 ⊕ S2 V3 := U3(2)⊕ S2 ⊕ S2 ⊕ S3 ⊕ S3

N := U1(2)⊕ U2(2)⊕ S3 ⊕ S3 Se := S1 ⊕ S2 ⊕ S2 ⊕ S3 ⊕ S3 ⊕ S3

We can compute them using Proposition 3.19 about the structure of the indecom-
posable embeddings or using a computer algebra system. For the equioriented cycle
we have the following equivalence

SU ⊂ SV ⇔ OU ⊂ OV
if the strata live in the quiver Grassmannian of a representation M where all
indecomposable summands have the same length. In general we only have the
implication U ∈ SV ⇒ OU ⊂ OV [41, Theorem 3.4.1]. The closures of orbits
in the variety of quiver representations were studied in the thesis of G. Kempken
[48]. We can use Theorem 3.13 to compute the dimension of the higher dimensional
strata from the dimension of the strata of Se and its dimension could be computed
using the corresponding subquivers of the coefficient quiver of X ⊕ Y . In the
following diagram we collect information about closures and the dimension of the
strata
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Se

V1

V2

V3

N

U1 U2

X

Representatives: dimS :
7
6
5
4
3
2

0

where we draw U 7→ V if OU ⊂ OV . The corresponding quiver Grassmannian
therefore has two irreducible components of distinct dimension.

The above examples should illustrate that in the general setup a lot of different
problems could arise. That is the reason why we we restrict us to the case N = ω ·n
for the main part of this work.

A.3. Intersection of Irreducible Components

With the parametrisation of the irreducible components of the quiver Grass-
mannians obtained for N = ω · n we can go one step further and examine the
structure of the intersection of two irreducible components. Namely we ask if the
section of two irreducible components is again irreducible and if the codimension
of the intersection is minimal within the components.

Example A.5. Let n = N = 3. Define X := U1(3)⊕U1(3), Y := U2(3)⊕U2(3)
and e := dimX. The isomorphism classes of subrepresentations of X ⊕ Y with
dimension vector e are described by the following representatives:

U1 := U1(3)⊕ U2(2)⊕ S1 X := U1(3)⊕ U1(3)
U2 := U2(3)⊕ U2(2)⊕ S1 N := U1(3)⊕ U2(3)
Be := U2(2)⊕ U2(2)⊕ S1 ⊕ S1 Y := U2(3)⊕ U2(3)

We obtain the subsequent diagram

Be

U1 U2

X N Y

Representatives: dimS :
4

2

0

The section SX ∩SY is given by SBe with codimension four and SU1 is the section
SX ∩ SN which has codimension two.

This example shows that there can not be a general statement about the codi-
mension of the section of two irreducible components. But it suggests that the
answer to the first question might be positive.
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Example A.6. Let n = N = 4. Define M := U1(4) ⊕ U2(4) ⊕ U3(4) ⊕ U4(4)
and e := (2, 2, 2, 2). The isomorphism classes of subrepresentations of M with
dimension vector e are described by the following representatives:

C1 := U1(4)⊕ U2(4) U1 := U1(4)⊕ U3(3)⊕ U2(1)
C2 := U1(4)⊕ U3(4) U2 := U2(4)⊕ U4(3)⊕ U3(1)
C3 := U2(4)⊕ U3(4) U3 := U3(4)⊕ U1(3)⊕ U4(1)
C4 := U1(4)⊕ U4(4) U4 := U4(4)⊕ U2(3)⊕ U1(1)
C5 := U2(4)⊕ U4(4) U5 := U1(4)⊕ U2(2)⊕ U4(2)
C6 := U3(4)⊕ U4(4) U6 := U2(4)⊕ U1(2)⊕ U3(2)
V1 := U1(3)⊕ U2(3)⊕ U4(2) U7 := U3(4)⊕ U2(2)⊕ U4(2)
V2 := U2(3)⊕ U3(3)⊕ U1(2) U8 := U4(4)⊕ U1(2)⊕ U3(2)
V3 := U3(3)⊕ U4(3)⊕ U2(2) U9 := U1(4)⊕ U4(3)⊕ U3(1)
V4 := U1(3)⊕ U4(3)⊕ U3(2) U10 := U2(4)⊕ U1(3)⊕ U4(1)
V5 := U1(3)⊕ U3(3)⊕ U2(1) U11 := U3(4)⊕ U2(3)⊕ U1(1)
V6 := U2(3)⊕ U4(3)⊕ U1(1) U12 := U4(4)⊕ U3(3)⊕ U2(1)
V7 := U1(4)⊕ U4(2)⊕ U2(1)⊕ U3(1) W1 := U1(3)⊕ U3(2)⊕ U4(2)⊕ U2(1)
V8 := U2(4)⊕ U1(2)⊕ U3(1)⊕ U4(1) W2 := U2(3)⊕ U4(2)⊕ U1(2)⊕ U3(1)
V9 := U3(4)⊕ U2(2)⊕ U1(1)⊕ U4(1) W3 := U3(3)⊕ U1(2)⊕ U2(2)⊕ U4(1)
V10 := U4(4)⊕ U3(2)⊕ U1(1)⊕ U2(1) W4 := U4(3)⊕ U2(2)⊕ U3(2)⊕ U1(1)
Be := U1(2)⊕ U2(2)⊕ U3(2)⊕ U4(2)

All representations labelled with C have four-dimensional strata, U ’s correspond
to three-dimensional strata, V ’s to two-dimensional, W ’s to one-dimensional and
the stratum of Be is zero-dimensional. In the following diagram we show represen-
tatives for the strata of codimension one included in the closures of the strata of
C2 and C5. For codimension two we display representatives only for some of the
strata included in the closures.

C2 C5

U9 U11U3U1 U10 U12 U4U2

V5 V6

Representatives: dimS :

4

3

2

Accordingly there is no section in codimension one and in codimension two the
section has at least two components. This shows that the section of two irreducible
components in general is not irreducible.
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A.4. Orbits and Strata of different Codimension

For all examples above we stayed in the setting where all indecomposable sum-
mands of X and Y have the same length. Thus it is possible to apply Theorem 2.3
and we can examine the orbits in the variety of quiver representations in order to
understand the strata in the quiver Grassmannian. We finish this appendix with
an example where this correspondence fails.

Example A.7. Let M := A6 ⊕A3 ⊗C2 be a representation of the loop quiver
∆1. The dimension of the vector space corresponding to M is 12 and we consider
the quiver Grassmannian GrA6

6 (M). It contains the isomorphism classes of the
representations

U0 := A3 ⊗ C2, U1 := A4 ⊕A2, U2 := A5 ⊕A1, U3 := A6.

Using Proposition 5.1 the dimension of their strata computes as
dim Hom∆1

(
U0,M

)
= 2 · 3 + 2 · 2 · 3 = 18

dim Hom∆1

(
U0, U0

)
= 2 · 2 · 3 = 12

dim SU0 = dim Hom∆1

(
U0,M

)
− dim Hom∆1

(
U0, U0

)
= 18− 12 = 6

dim Hom∆1

(
U1,M

)
= 4 + 2 · 3 + 2 + 2 · 2 = 16

dim Hom∆1

(
U1, U1

)
= 4 + 2 + 2 + 2 = 10

dim SU1 = dim Hom∆1

(
U1,M

)
− dim Hom∆1

(
U1, U1

)
= 16− 10 = 6

dim Hom∆1

(
U2,M

)
= 5 + 2 · 3 + 1 + 2 · 1 = 14

dim Hom∆1

(
U2, U2

)
= 5 + 1 + 1 + 1 = 8

dim SU2 = dim Hom∆1

(
U2,M

)
− dim Hom∆1

(
U2, U2

)
= 14− 8 = 6

dim Hom∆1

(
U3,M

)
= 6 + 2 · 3 = 12

dim Hom∆1

(
U3, U3

)
= 6

dim SU3 = dim Hom∆1

(
U3,M

)
− dim Hom∆1

(
U3, U3

)
= 12− 6 = 6

whereas their orbit dimensions in the variety of quiver representations is given as
dim OU3 = 30, dim OU2 = 28, dim OU1 = 26, dim OU0 = 24

because dim GLe = 6 · 6 = 36. Moreover it follows from G. Kempkens results that
OUi−1 ⊂ OUi for all i ∈ [3].

This quiver Grassmannian provides a finite approximation of a partial degen-
erate affine Grassmannian and its Poincaré polynomial and Euler characteristic is
computed in Example C.28. Conjecture 5.32 about the dimension and irreducible
components of the approximations of the partial degenerate affine Grassmannian
is based on the assumption that the strata as described above are always the strata
of biggest dimension.





APPENDIX B

Computer Programs

In this appendix we present programs for the computation of the Euler charac-
teristic and the Poincaré polynomial of the approximations of the affine flag variety
and the affine Grassmannian as well as their partial degenerations. These programs
are based on the parametrisation of the cells by successor closed subquivers in the
coefficient quiver of the quiver representation whose quiver Grassmannian provides
the approximation. The dimension function for the cells is based on the observa-
tion that the dimension of a cell is given by the number of holes below the starting
points of the segments in the coefficient quiver which parametrise the cell.

B.1. For Approximations of Partial-Degenerate Affine Flag Varieties

1 #
# Program to compute the Euler c h a r a c t e r i s t i c s and

Poincare po lynomia l s f o r approximat ions o f the a f f i n e
Flag v a r i e t y and i t s p a r t i a l degenera t i ons

#

# Parameters
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

6
# n = index o f gl_n
# w = parameter such t ha t 2wn = l en g t h o f l o n g e s t a l l owed

indecomposab le n i l p o t e t r e p r e s en t a t i on o f the
e qu i o r i en t e d c y c l e

# p = vec to r con ta in ing e n t r i e s 1 or 0 parametr i s ing the
maps f_i : U_i −−> U_i+1

# f_i = id i f p_i = 1 and f_i = pr_i i f p_i = 0
11

# the m u l t i p l i c i t i e s o f the p r o j e c t i v e and i n j e c t i v e
r e p r e s en t a t i on s i s one f o r both and the dimension
vec t o r o f s u b r ep r e s en t a t i on s i s g i ven by e = (wn , . . . ,
wn)

Z = IntegerRing ( )

16 # Basics
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

171
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# se t i n g up the dimension v e c t o r s o f the indecomposab le
r e p r e s en t a t i on s f o r w = 1

# s u f f i c i e n t to compute the dimension v e c t o r s o f l onger
indecomposab le r e p r e s en t a t i on s

# ID = iden t i t y_matr i x (n)
21 def index_set ( ID , i ) :

n = len ( ID [ 0 ] )
v = 0∗ID [ 0 ]
D_i = [ v ]
for j in xrange (n) :

26 k = ( i−j+n−1) % n
v += ID [ k ]
D_i += [ v ]

return D_i
31

# dimension vec t o r o f the indecomposab le r e p r e s en t a t i on o f
l e n g t h k embedding in t o U_i(2wn)

def dim_vec (D_i , k ) :
vec = D_i [ 0 ]

36 n = len ( vec )
r = k%n
for j in xrange (1 , f l o o r ( k/n)+1) :

vec += D_i [ n ]

41 vec += D_i [ r ]
return vec

# check vec to r f o r p o s i t i v i t y component wise
46 def geq_null ( v ) :

p o s i t i v e = true
n = len ( v )
for i in xrange (n) :

i f v [ i ] < 0 :
51 p o s i t i v e = f a l s e

break

return p o s i t i v e

56
# check i f v e c t o r i s zero vec t o r
def eq_null ( v ) :

ze ro = true
n = len ( v )

61 for i in xrange (n) :
i f not v [ i ] == 0 :

zero = f a l s e
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break

66 return zero

# Main Computation
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

# computing a l l c e l l s o f the qu i v e r Grassmannian
71 def ce l l_se tup (p ,w) :

n = len (p)
ID = ident i ty_matr ix (n)
nu l l = 0∗ID [ 0 ]

76 # the dim vec o f sub reps
e = [ ]
for k in xrange (n) :

e += [w∗n ]

81 # the dim vecs f o r w=1
D = [ ]
for i in xrange (n) :

D_i = index_set ( ID , i )
D += [ D_i ]

86
# vec to r con ta in ing the maximal l e n g t h f o r each segment
max_length = [ ]
# data parametr i s ing cand ida te s f o r c e l l s
t_tup = [ [ ] , v ec to r ( e ) ]

91 for i in xrange (n) :
for k in xrange(2−p [ i ] ) :

max_length += [ (1+p [ i ] ) ∗w∗n ]
t_tup [ 0 ] += [ 0 ]

96 # dimension vec t o r o f M
dim = 2∗ vec to r ( e )

# number o f segments
n_seg = len (max_length )

101
# computing the a c t ua l c e l l s
c e l l s = [ ]
tupel_tmp = [ t_tup ]
rest_dim = dim

106 counter = 0
for i in xrange (n) :

for k in xrange(2−p [ i ] ) :
k_max = l i s t (max_length ) [ counter ]
rest_dim −= vector ( l i s t ( dim_vec (D[ i ] , k_max) ) )

111 for temp in tupel_tmp :



174 B. COMPUTER PROGRAMS

i f temp [ 0 ] [ counter ] == 0 :
for l in xrange (k_max) :
# computing new candida te
r = ( vec to r ( l i s t ( temp [ 1 ] ) ) −

vec to r ( l i s t ( dim_vec (D[ i ] , l +1) ) ) )
116 i f geq_null ( r ) == true :

i f eq_null ( r ) == true :
# we have found a c e l l !
new_cell = l i s t ( temp [ 0 ] )
new_cell [ counter ] = ( l +1)

121 c e l l s += [ new_cell ]
e l i f geq_null ( rest_dim − r ) == true :
# t h i s can s t i l l become a c e l l
new_tup = [ l i s t ( temp [ 0 ] ) ,

vec to r ( l i s t ( e ) ) ]
new_tup [ 0 ] [ counter ] = ( l +1)

126 new_tup [ 1 ] = vec to r ( l i s t ( r ) )
tupel_tmp += [ new_tup ]

counter += 1
sys . s tdout . wr i t e ( ’ \ r ’ )
sys . s tdout . wr i t e ( ’ S e t t i ng up problem data : %d /

%d ’ % ( counter , n_seg ) )
131 sys . s tdout . f l u s h ( )

sys . s tdout . wr i t e ( ’ \ r ’ )
sys . s tdout . wr i t e ( ’

\n ’ )

136 sys . s tdout . wr i t e ( ’ \ r ’ )
sys . s tdout . wr i t e ( ’ chi_e (M) = %d ’ % ( len ( c e l l s ) ) )
sys . s tdout . wr i t e ( ’ \n ’ )

return c e l l s
141

# func t i on to compute the dimension o f a c e l l in the
Grassmannian from the corresponding subqu i v e r in the
c o e f f i c i e n t qu i v e r o f M

def cel l_dim ( c e l l ,w, p) :
dim = 0

146 n = len (p)

# data type f o r the c e l l s
# expre s s them as segments in the c o e f f i c i e n t qu i v e r
cel l_mat = [ ]

151 for j in xrange (2∗w∗n) :
cel l_mat += [ [ ] ]
for i in xrange (n) :

cel l_mat [ j ] += [ 1 ]
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156 # wr i t i n g the segments in the matrix
counter = 0
s ta r t i ng_po in t s = [ ]
for i in xrange (n) :

for k in xrange(2−p [ i ] ) :
161 # the l en g t h o f the curren t segment

l ength = c e l l [ counter ]
i f l ength > 0 :
# po s i t i o n o f the endpoint
t = ( i )%n

166 # ht o f the endpoint o f the segment
s = ( 2∗w∗n − k − 1 + (2−p [ t ] ) )
for s tep in xrange ( l ength ) :
# po s i t i o n at curren t s t ep
t = ( i−s tep )%n

171 # ht at current s t ep
i f not ( p [ t ] == 0 and s tep >= w∗n ) :

s −= (2−p [ t ] )
# marking the po in t corresponding to the

segment
cel l_mat [ s ] [ t ] = 0

176 # c o l l e c t i n g in format ion on the s t a r t i n g po in t s
s t a r t i ng_po in t s += [ [ s , t ] ]

counter += 1

# count ing the ho l e s i . e . ones be low the s t a r t i n g
po in t s

181 for s ta r t ing_po in t in s t a r t i ng_po in t s :
s tart_ht = sta r t ing_po in t [ 0 ]
s tart_index = sta r t ing_po in t [ 1 ]
for below in xrange ( start_ht ,2∗w∗n) :

dim += cell_mat [ below ] [ s tart_index ]
186

return dim , cel l_mat

# computing the Poincare po lynomia l o f the qu i v e r
Grassmannian from the c e l l s

191 def poincare_poly (p ,w) :
tups = [ ]
c o e f f s = [ 0 ]
c e l l s = ce l l_se tup (p ,w)
length_1 = len ( c e l l s )

196 counter = 0
for c e l l in c e l l s :

index , cel l_mat = cel l_dim ( c e l l ,w, p)
tups +=[ [ c e l l , cell_mat , index ] ]
l ength = len ( c o e f f s )
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201 i f ( index + 1) > length :
for k in xrange ( index + 1 − l ength ) :

c o e f f s += [ 0 ]
c o e f f s [ index ] += 1
counter += 1

206 sys . s tdout . wr i t e ( ’ \ r ’ )
sys . s tdout . wr i t e ( ’Computing polynomial : %d / %d ’ %

( counter , length_1 ) )
sys . s tdout . f l u s h ( )

sys . s tdout . wr i t e ( ’ \ r ’ )
211 sys . s tdout . wr i t e ( ’

\n ’ )
sys . s tdout . wr i t e ( ’ p_e ,M( t ) = ’ )
for i in xrange ( len ( c o e f f s ) ) :

sys . s tdout . wr i t e ( ’%d∗ t^%d ’ %
( c o e f f s [ len ( c o e f f s )−i −1] , len ( c o e f f s )−i −1) )

i f i < ( len ( c o e f f s ) − 1) :
216 sys . s tdout . wr i t e ( ’ + ’ )

sys . s tdout . wr i t e ( ’ \n ’ )
sys . s tdout . wr i t e ( ’ \n ’ )

221 return tups

B.2. For Approximations of Partial-Degenerate Affine Grassmannians

#
2 # Program to compute the Euler c h a r a c t e r i s t i c s and

Poincare po lynomia l s f o r approximat ions o f the a f f i n e
Grassmannian and i t s p a r t i a l degenera t ions

#

# Parameters
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

7 # n = index o f gl_n
# N = parameter such t ha t 2∗N = l eng t h o f l o n g e s t a l l owed

indecomposab le n i l p o t e t r e p r e s en t a t i on o f the loop
# p = vec to r con ta in ing e n t r i e s 1 or 0 parametr i s ing the

map f : U_0 −−> U_0

# the m u l t i p l i c i t i e s o f the r e p e s en t a t i on s depend on n and
the dimension vec to r o f s u b r ep r e s en t a t i on s i s g i ven by
nN

12
Z = IntegerRing ( )
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# Main Computation
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

17 # computing a l l c e l l s o f the qu i v e r Grassmannian
def s e tup_ce l l s (p ,N) :

n = len (p)
c e l l s = [ ]
dim = 2∗n∗N

22
# vec to r con ta in ing the maximal l e n g t h f o r each segment
max_length = [ ]
# data parametr i s ing cand ida te s f o r c e l l s
t_tup = [ [ ] , [ n∗N] ]

27 for i in xrange (n) :
for k in xrange(2−p [ i ] ) :

max_length += [ (1+p [ i ] ) ∗N ]
t_tup [ 0 ] += [ 0 ]

32 # number o f segments
n_seg = len (max_length )

# computing the a c t ua l c e l l s
tupel_tmp = [ t_tup ]

37 r e s t_length = dim
for j in xrange ( n_seg ) :

r e s t_length −= max_length [ j ]
for temp in tupel_tmp :

i f temp [ 0 ] [ j ] == 0 :
42 k_max = min( l i s t ( temp [ 1 ] ) [ 0 ] , l i s t (max_length ) [ j ] )

for k in xrange (k_max) :
# computing new candida te
r = ( l i s t ( temp [ 1 ] ) [ 0 ] − k − 1 )
i f r >= 0 :

47 i f r == 0 :
# we have found a c e l l !
new_cell = l i s t ( temp [ 0 ] )
new_cell [ j ] = (k+1)
c e l l s += [ new_cell ]

52 e l i f r <= res t_length :
# t h i s can s t i l l become a c e l l
new_tup = [ l i s t ( temp [ 0 ] ) , l i s t ( temp [ 1 ] ) ]
new_tup [ 0 ] [ j ] = (k+1)
new_tup [ 1 ] [ 0 ] −= (k+1)

57 tupel_tmp += [ new_tup ]
sys . s tdout . wr i t e ( ’ \ r ’ )
sys . s tdout . wr i t e ( ’ S e t t i ng up problem data : %d / %d ’

% ( j +1,n_seg ) )
sys . s tdout . f l u s h ( )
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62 sys . s tdout . wr i t e ( ’ \ r ’ )
sys . s tdout . wr i t e ( ’

\n ’ )

sys . s tdout . wr i t e ( ’ \ r ’ )
sys . s tdout . wr i t e ( ’ chi_e (M) = %d\n ’ % ( len ( c e l l s ) ) )

67 sys . s tdout . wr i t e ( ’ \n ’ )

return c e l l s , max_length

72
# func t i on to compute the dimension o f a c e l l in the

Grassmannian from the corresponding subqu i v e r in the
c o e f f i c i e n t qu i v e r o f M

def cel l_dim ( c e l l , max_length ) :
dim = 0
ht_tupel = [ ]

77 n = len ( c e l l )

# data type f o r the c e l l s
# expre s s them as segments in the c o e f f i c i e n t qu i v e r

and count the ho l e s be low the s t a r t i n g po in t s o f
the subsegments

for i in xrange (n) :
82 ht_tupel += [ 0 ]

i f not c e l l [ i ] == 0 :
for j in xrange (n) :

i f ( j > i ) :
ht_tupel [ i ] += ( min( c e l l [ i ] , max_length [ j ] ) −

min( c e l l [ i ] , c e l l [ j ] ) )
87 e l i f ( j < i ) :

ht_tupel [ i ] += ( min( c e l l [ i ]−1 , max_length [ j ] )
− min( c e l l [ i ]−1 , c e l l [ j ] ) )

for ht in ht_tupel :
dim += ht

92
return dim

# computing the Poincare po lynomia l o f the qu i v e r
Grassmannian from the c e l l s

97 def poincare_poly (p ,N) :
tups = [ ]
c o e f f s = [ 0 ]
dim_Grass = 0
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c e l l s , max_length = se tup_ce l l s (p ,N)
102 length_1 = len ( c e l l s )

counter = 0
for c e l l in c e l l s :

index = cel l_dim ( c e l l , max_length )
tups +=[ [ c e l l , index ] ]

107 l ength = len ( c o e f f s )
i f ( index + 1) > length :
for k in xrange ( index + 1 − l ength ) :

c o e f f s += [ 0 ]
c o e f f s [ index ] += 1

112 counter += 1
sys . s tdout . wr i t e ( ’ \ r ’ )
sys . s tdout . wr i t e ( ’Computing polynomial : %d / %d ’ %

( counter , length_1 ) )
sys . s tdout . f l u s h ( )

117 sys . s tdout . wr i t e ( ’ \ r ’ )
sys . s tdout . wr i t e ( ’

\n ’ )
sys . s tdout . wr i t e ( ’ p_e ,M( t ) = ’ )
for i in xrange ( len ( c o e f f s ) ) :

sys . s tdout . wr i t e ( ’%d∗ t^%d ’ %
( c o e f f s [ len ( c o e f f s )−i −1] , len ( c o e f f s )−i −1) )

122 i f i < ( len ( c o e f f s ) − 1) :
sys . s tdout . wr i t e ( ’ + ’ )

sys . s tdout . wr i t e ( ’ \n ’ )
sys . s tdout . wr i t e ( ’ \n ’ )

127
return tups





APPENDIX C

Euler Characteristics and Poincaré Polynomials

In this appendix we collect Euler characteristics and Poincaré polynomials of
some approximations of partial degenerate affine flag varieties and affine Grassman-
nians. Everything is computed using the programs as presented in Appendix B.
Because of the limits in computational power and memory of the used machine it
was not possible to handle the computations for bigger values of n or N . The most
time and memory consuming part of the computation was the setup of the data
for the cells. Optimising this part of the program could yield a much faster and
more efficient computation. But for our purpose the computed data was sufficient
such that we did not pursue this goal.

C.1. For Approximations of Partial-Degenerate Affine Flag Varieties

Cyclic permutations of the vector c ∈ Zn do not change the Poincaré poly-
nomial because of the symmetry of the oriented cycle. Hence we only give the
Poincaré polynomial for one representative of the isomorphism class of partial de-
generations.

C.1.1. Poincaré Polynomials for n=1.

Example C.1. For ω ∈ N and n = 1 the Euler characteristics and Poincaré
polynomials of the approximations F laω

(
ĝln
)
are given by

χaω,1 = ω + 1

paω,1(q) =
ω∑
k=0

qk

Example C.2. For ω ∈ N and n = 1 the Euler characteristics and Poincaré
polynomials of the approximations F lω

(
ĝln
)
are given by

χω,1 = 1
pω,1(q) = q0

181
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C.1.2. Poincaré Polynomials for n=2.

Example C.3. For ω ∈ [6] and n = 2 the Euler characteristics and Poincaré
polynomials of the approximations F laω

(
ĝln
)
are given by

χa1,2 = 15
pa1,2(q) = 3q4 + 4q3 + 5q2 + 2q1 + 1q0

χa2,2 = 65
pa2,2(q) = 3q8 + 6q7 + 13q6 + 14q5 + 13q4 + 8q3 + 5q2 + 2q1 + 1q0

χa3,2 = 175
pa3,2(q) = 3q12 + 6q11 + 15q10 + 22q9 + 29q8 + 28q7

+ 25q6 + 18q5 + 13q4 + 8q3 + 5q2 + 2q1 + 1q0

χa4,2 = 369
pa4,2(q) = 3q16 + 6q15 + 15q14 + 24q13 + 37q12 + 44q11 + 49q10 + 46q9 + 41q8 + 32q7

+ 25q6 + 18q5 + 13q4 + 8q3 + 5q2 + 2q1 + 1q0

χa5,2 = 671
pa5,2(q) = 3q20 + 6q19 + 15q18 + 24q17 + 39q16 + 52q15 + 65q14 + 70q13

+ 73q12 + 68q11 + 61q10 + 50q9 + 41q8 + 32q7

+ 25q6 + 18q5 + 13q4 + 8q3 + 5q2 + 2q1 + 1q0

χa6,2 = 1105
pa6,2(q) = 3q24 + 6q23 + 15q22 + 24q21 + 39q20 + 54q19

+ 73q18 + 86q17 + 97q16 + 100q15 + 101q14 + 94q13

+ 85q12 + 72q11 + 61q10 + 50q9 + 41q8 + 32q7

+ 25q6 + 18q5 + 13q4 + 8q3 + 5q2 + 2q1 + 1q0
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Example C.4. For ω ∈ [6], n = 2 and c = (1, 0) the Euler characteristics and
Poincaré polynomials of the approximations F lcω

(
ĝln
)
are given by

χc
1,2 = 8

pc
1,2(q) = 1q3 + 4q2 + 2q1 + 1q0

χc
2,2 = 21

pc
2,2(q) = 2q5 + 7q4 + 5q3 + 4q2 + 2q1 + 1q0

χc
3,2 = 40

pc
3,2(q) = 3q7 + 10q6 + 8q5 + 7q4 + 5q3 + 4q2 + 2q1 + 1q0

χc
4,2 = 65

pc
4,2(q) = 4q9 + 13q8 + 11q7 + 10q6 + 8q5 + 7q4 + 5q3 + 4q2 + 2q1 + 1q0

χc
5,2 = 96

pc
5,2(q) = 5q11 + 16q10 + 14q9 + 13q8 + 11q7 + 10q6 + 8q5 + 7q4 + 5q3 + 4q2 + 2q1 + 1q0

χc
6,2 = 133

pc
6,2(q) = 6q13 + 19q12 + 17q11 + 16q10 + 14q9 + 13q8 + 11q7

+ 10q6 + 8q5 + 7q4 + 5q3 + 4q2 + 2q1 + 1q0

Example C.5. For ω ∈ [6] and n = 2 the Euler characteristics and Poincaré
polynomials of the approximations F lω

(
ĝln
)
are given by

χ1,2 = 5
p1,2(q) = 2q2 + 2q1 + 1q0

χ2,2 = 9
p2,2(q) = 2q4 + 2q3 + 2q2 + 2q1 + 1q0

χ3,2 = 13
p3,2(q) = 2q6 + 2q5 + 2q4 + 2q3 + 2q2 + 2q1 + 1q0

χ4,2 = 17
p4,2(q) = 2q8 + 2q7 + 2q6 + 2q5 + 2q4 + 2q3 + 2q2 + 2q1 + 1q0

χ5,2 = 21
p5,2(q) = 2q10 + 2q9 + 2q8 + 2q7 + 2q6 + 2q5 + 2q4 + 2q3 + 2q2 + 2q1 + 1q0

χ6,2 = 25
p6,2(q) = 2q12 + 2q11 + 2q10 + 2q9 + 2q8 + 2q7

+ 2q6 + 2q5 + 2q4 + 2q3 + 2q2 + 2q1 + 1q0
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C.1.3. Poincaré Polynomials for n=3.

Example C.6. For ω ∈ [4] and n = 3 the Euler characteristic and Poincaré
polynomials of the approximations F laω

(
ĝln
)
are given by

χa1,3 = 226
pa1,3(q) = 7q9 + 21q8 + 39q7 + 49q6 + 45q5 + 33q4 + 19q3 + 9q2 + 3q1 + 1q0

χa2,3 = 3511
pa2,3(q) = 7q18 + 33q17 + 102q16 + 205q15 + 330q14 + 423q13

+ 478q12 + 468q11 + 423q10 + 343q9 + 261q8 + 180q7

+ 118q6 + 69q5 + 39q4 + 19q3 + 9q2 + 3q1 + 1q0

χa3,3 = 20620
pa3,3(q) = 7q27 + 33q26 + 114q25 + 274q24 + 540q23 + 882q22 + 1258q21 + 1596q20 + 1851q19

+ 1993q18 + 2016q17 + 1932q16 + 1762q15 + 1536q14 + 1281q13

+ 1027q12 + 789q11 + 585q10 + 415q9 + 285q8 + 186q7

+ 118q6 + 69q5 + 39q4 + 19q3 + 9q2 + 3q1 + 1q0

χa4,3 = 76177
pa4,3(q) = 7q36 + 33q35 + 114q34 + 286q33 + 609q32 + 1098q31

+ 1771q30 + 2556q29 + 3405q28 + 4195q27 + 4884q26 + 5382q25

+ 5701q24 + 5796q23 + 5715q22 + 5446q21 + 5055q20 + 4551q19

+ 4003q18 + 3423q17 + 2865q16 + 2332q15 + 1860q14 + 1443q13

+ 1099q12 + 813q11 + 591q10 + 415q9 + 285q8 + 186q7

+ 118q6 + 69q5 + 39q4 + 19q3 + 9q2 + 3q1 + 1q0
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Example C.7. For ω ∈ [4], n = 3 and c = (1, 1, 0) the Euler characteristics
and Poincaré polynomials of the approximations F lcω

(
ĝln
)
are given by

χc
1,3 = 99

pc
1,3(q) = 1q8 + 4q7 + 17q6 + 25q5 + 24q4 + 16q3 + 8q2 + 3q1 + 1q0

χc
2,3 = 875

pc
2,3(q) = 2q14 + 12q13 + 49q12 + 98q11 + 139q10 + 148q9 + 137q8 + 106q7

+ 77q6 + 49q5 + 30q4 + 16q3 + 8q2 + 3q1 + 1q0

χc
3,3 = 3565

pc
3,3(q) = 3q20 + 20q19 + 85q18 + 186q17 + 301q16 + 386q15 + 439q14 + 441q13

+ 408q12 + 346q11 + 280q10 + 215q9 + 159q8 + 112q7

+ 77q6 + 49q5 + 30q4 + 16q3 + 8q2 + 3q1 + 1q0

χc
4,3 = 10065

pc
4,3(q) = 4q26 + 28q25 + 121q24 + 278q23 + 477q22 + 664q21 + 827q20 + 932q19

+ 989q18 + 972q17 + 909q16 + 804q15 + 693q14 + 575q13

+ 468q12 + 368q11 + 286q10 + 215q9 + 159q8 + 112q7

+ 77q6 + 49q5 + 30q4 + 16q3 + 8q2 + 3q1 + 1q0

Example C.8. For ω ∈ [4], n = 3 and c = (1, 0, 0) the Euler characteristics
and Poincaré polynomials of the approximations F lcω

(
ĝln
)
are given by

χc
1,3 = 48

pc
1,2(q) = 1q6 + 9q5 + 14q4 + 13q3 + 7q2 + 3q1 + 1q0

χc
2,3 = 257

pc
2,3(q) = 1q11 + 11q10 + 29q9 + 47q8 + 50q7

+ 43q6 + 31q5 + 21q4 + 13q3 + 7q2 + 3q1 + 1q0

χc
3,3 = 748

pc
3,3(q) = 1q16 + 11q15 + 31q14 + 63q13

+ 91q12 + 107q11 + 104q10 + 91q9 + 73q8 + 57q7

+ 43q6 + 31q5 + 21q4 + 13q3 + 7q2 + 3q1 + 1q0

χc
4,3 = 1641

pc
4,3(q) = 1q21 + 11q20 + 31q19

+ 65q18 + 107q17 + 149q16 + 175q15 + 185q14 + 176q13

+ 157q12 + 133q11 + 111q10 + 91q9 + 73q8 + 57q7

+ 43q6 + 31q5 + 21q4 + 13q3 + 7q2 + 3q1 + 1q0
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Example C.9. For ω ∈ [6] and n = 3 the Euler characteristics and Poincaré
polynomials of the approximations F lω

(
ĝln
)
are given by

χ1,3 = 25
p1,3(q) = 6q4 + 9q3 + 6q2 + 3q1 + 1q0

χ2,3 = 85
p2,3(q) = 6q8 + 15q7 + 18q6 + 15q5 + 12q4 + 9q3 + 6q2 + 3q1 + 1q0

χ3,3 = 181
p3,3(q) = 6q12 + 15q11 + 24q10 + 27q9 + 24q8 + 21q7

+ 18q6 + 15q5 + 12q4 + 9q3 + 6q2 + 3q1 + 1q0

χ4,3 = 313
p4,3(q) = 6q16 + 15q15 + 24q14 + 33q13

+ 36q12 + 33q11 + 30q10 + 27q9 + 24q8 + 21q7

+ 18q6 + 15q5 + 12q4 + 9q3 + 6q2 + 3q1 + 1q0

χ5,3 = 481
p5,3(q) = 6q20 + 15q19 + 24q18 + 33q17 + 42q16 + 45q15 + 42q14 + 39q13

+ 36q12 + 33q11 + 30q10 + 27q9 + 24q8 + 21q7

+ 18q6 + 15q5 + 12q4 + 9q3 + 6q2 + 3q1 + 1q0

χ6,3 = 685
p6,3(q) = 6q24 + 15q23 + 24q22 + 33q21 + 42q20 + 51q19

+ 54q18 + 51q17 + 48q16 + 45q15 + 42q14 + 39q13

+ 36q12 + 33q11 + 30q10 + 27q9 + 24q8 + 21q7

+ 18q6 + 15q5 + 12q4 + 9q3 + 6q2 + 3q1 + 1q0

C.1.4. Poincaré Polynomials for n=4.

Example C.10. For ω ∈ [2] and n = 4 the Euler characteristics and Poincaré
polynomials of the approximations F laω

(
ĝln
)
are given by

χa1,4 = 6137
pa1,4(q) = 19q16 + 88q15 + 254q14 + 492q13

+ 753q12 + 920q11 + 966q10 + 864q9 + 689q8 + 480q7

+ 304q6 + 168q5 + 85q4 + 36q3 + 14q2 + 4q1 + 1q0

χa2,4 = 359313
pa2,4(q) = 19q32 + 148q31

+ 646q30 + 1896q29 + 4343q28 + 8144q27 + 13192q26 + 18880q25

+ 24529q24 + 29260q23 + 32548q22 + 33952q21 + 33541q20 + 31456q19

+ 28206q18 + 24192q17 + 19957q16 + 15812q15 + 12088q14 + 8888q13

+ 6313q12 + 4308q11 + 2838q10 + 1788q9 + 1085q8 + 624q7

+ 344q6 + 176q5 + 85q4 + 36q3 + 14q2 + 4q1 + 1q0
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Example C.11. For ω ∈ [3], n = 4 and c = (1, 1, 1, 0) the Euler characteristics
and Poincaré polynomials of the approximations F lcω

(
ĝln
)
are given by

χc
1,4 = 2248

pc
1,4(q) = 1q15 + 6q14 + 27q13 + 92q12 + 206q11 + 334q10 + 401q9 + 393q8 + 314q7

+ 221q6 + 132q5 + 71q4 + 32q3 + 13q2 + 4q1 + 1q0

χc
2,4 = 72361

pc
2,4(q) = 2q27 + 18q26 + 102q25 + 1129q23 + 2407q22 + 4071q21 + 5808q20 + 7191q19

+ 7997q18 + 8111q17 + 7655q16 + 6765q15 + 5672q14 + 4511q13

+ 3432q12 + 2489q11 + 1736q10 + 1155q9 + 738q8 + 447q7

+ 259q6 + 140q5 + 71q4 + 32q3 + 13q2 + 4q1 + 1q0

χc
3,4 = 645352

pc
3,4(q) = 3q39 + 30q38 + 183q37

+ 775q36 + 2338q35 + 5486q34 + 10495q33 + 17290q32 + 25210q31

+ 33413q30 + 40822q29 + 46694q28 + 50443q27 + 51988q26 + 51383q25

+ 49035q24 + 45296q23 + 40679q22 + 35538q21 + 30296q20 + 25199q19

+ 20505q18 + 16310q17 + 12713q16 + 9690q15 + 7236q14 + 5277q13

+ 3766q12 + 2617q11 + 1774q10 + 1163q9 + 738q8 + 447q7

+ 259q6 + 140q5 + 71q4 + 32q3 + 13q2 + 4q1 + 1q0

Example C.12. For ω ∈ [3], n = 4 and c = (1, 1, 0, 0) the Euler characteristics
and Poincaré polynomials of the approximations F lcω

(
ĝln
)
are given by

χc
1,4 = 901

pc
1,4(q) = 1q13 + 4q12 + 17q11 + 55q10 + 119q9 + 175q8 + 179q7

+ 148q6 + 100q5 + 58q4 + 28q3 + 12q2 + 4q1 + 1q0

χc
2,4 = 16537

pc
2,4(q) = 1q23 + 6q22 + 34q21 + 136q20 + 398q19

+ 866q18 + 1419q17 + 1867q16 + 2082q15 + 2081q14 + 1903q13

+ 1620q12 + 1289q11 + 970q10 + 692q9 + 471q8 + 304q7

+ 187q6 + 108q5 + 58q4 + 28q3 + 12q2 + 4q1 + 1q0

χc
3,4 = 102805

pc
3,4(q) = 1q33 + 6q32 + 36q31

+ 156q30 + 512q29 + 1307q28 + 2657q27 + 4458q26 + 6319q25

+ 7859q24 + 8864q23 + 9345q22 + 9338q21 + 8926q20 + 8191q19

+ 7252q18 + 6208q17 + 5162q16 + 4176q15 + 3297q14 + 2540q13

+ 1912q12 + 1404q11 + 1006q10 + 700q9 + 471q8 + 304q7

+ 187q6 + 108q5 + 58q4 + 28q3 + 12q2 + 4q1 + 1q0
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Example C.13. For ω ∈ [3], n = 4 and c = (1, 0, 1, 0) the Euler characteristics
and Poincaré polynomials of the approximations F lcω

(
ĝln
)
are given by

χc
1,4 = 901

pc
1,4(q) = 10q11 + 52q10 + 124q9 + 181q8 + 182q7

+ 149q6 + 100q5 + 58q4 + 28q3 + 12q2 + 4q1 + 1q0

χc
2,4 = 16537

pc
2,4(q) = 10q21 + 90q20 + 360q19

+ 866q18 + 1448q17 + 1899q16 + 2106q15 + 2097q14 + 1912q13

+ 1624q12 + 1290q11 + 970q10 + 692q9 + 471q8 + 304q7

+ 187q6 + 108q5 + 58q4 + 28q3 + 12q2 + 4q1 + 1q0

χc
3,4 = 102805

pc
3,4(q) = 10q31 + 90q30 + 400q29 + 1184q28 + 2592q27 + 4480q26 + 6392q25

+ 7937q24 + 8930q23 + 9399q22 + 9380q21 + 8956q20 + 8210q19

+ 7262q18 + 6212q17 + 5163q16 + 4176q15 + 3297q14 + 2540q13

+ 1912q12 + 1404q11 + 1006q10 + 700q9 + 471q8 + 304q7

+ 187q6 + 108q5 + 58q4 + 28q3 + 12q2 + 4q1 + 1q0

Example C.14. For ω ∈ [3], n = 4 and c = (1, 0, 0, 0) the Euler characteristics
and Poincaré polynomials of the approximations F lcω

(
ĝln
)
are given by

χc
1,4 = 392

pc
1,4(q) = 1q10 + 16q9 + 51q8 + 81q7 + 87q6 + 70q5 + 46q4 + 24q3 + 11q2 + 4q1 + 1q0

χc
2,4 = 4245

pc
2,4(q) = 2q18 + 43q17 + 161q16 + 321q15 + 465q14 + 555q13

+ 579q12 + 541q11 + 462q10 + 365q9 + 271q8 + 189q7

+ 126q6 + 79q5 + 46q4 + 24q3 + 11q2 + 4q1 + 1q0

χc
3,4 = 18664

pc
3,4(q) = 3q26 + 70q25 + 281q24 + 611q23 + 977q22 + 1311q21 + 1575q20 + 1743q19

+ 1805q18 + 1765q17 + 1644q16 + 1466q15 + 1257q14 + 1040q13

+ 836q12 + 654q11 + 501q10 + 374q9 + 271q8 + 189q7

+ 126q6 + 79q5 + 46q4 + 24q3 + 11q2 + 4q1 + 1q0
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Example C.15. For ω ∈ [5] and n = 4 the Euler characteristics and Poincaré
polynomials of the approximations F lω

(
ĝln
)
are given by

χ1,4 = 185
p1,4(q) = 6q8 + 24q7 + 42q6 + 44q5 + 34q4 + 20q3 + 10q2 + 4q1 + 1q0

χ2,4 = 1233
p2,4(q) = 6q16 + 24q15 + 54q14 + 96q13

+ 138q12 + 164q11 + 170q10 + 156q9 + 130q8 + 100q7

+ 74q6 + 52q5 + 34q4 + 20q3 + 10q2 + 4q1 + 1q0

χ3,4 = 3913
p3,4(q) = 6q24 + 24q23 + 54q22 + 96q21 + 150q20 + 216q19

+ 282q18 + 332q17 + 362q16 + 372q15 + 362q14 + 332q13

+ 290q12 + 244q11 + 202q10 + 164q9 + 130q8 + 100q7

+ 74q6 + 52q5 + 34q4 + 20q3 + 10q2 + 4q1 + 1q0

χ4,4 = 8993
p4,4(q) = 6q32 + 24q31 + 54q30 + 96q29 + 150q28 + 216q27 + 294q26 + 384q25

+ 474q24 + 548q23 + 602q22 + 636q21 + 650q20 + 644q19

+ 618q18 + 572q17 + 514q16 + 452q15 + 394q14 + 340q13

+ 290q12 + 244q11 + 202q10 + 164q9 + 130q8 + 100q7

+ 74q6 + 52q5 + 34q4 + 20q3 + 10q2 + 4q1 + 1q0

χ5,4 = 17241
p5,4(q) = 6q40 + 24q39 + 54q38 + 96q37

+ 150q36 + 216q35 + 294q34 + 384q33 + 486q32 + 600q31

+ 714q30 + 812q29 + 890q28 + 948q27 + 986q26 + 1004q25

+ 1002q24 + 980q23 + 938q22 + 876q21 + 802q20 + 724q19

+ 650q18 + 580q17 + 514q16 + 452q15 + 394q14 + 340q13

+ 290q12 + 244q11 + 202q10 + 164q9 + 130q8 + 100q7

+ 74q6 + 52q5 + 34q4 + 20q3 + 10q2 + 4q1 + 1q0

C.1.5. Poincaré Polynomials for n=5.

Example C.16. For ω = 1 and n = 5 the Euler characteristic and Poincaré
polynomial of the approximation F laω

(
ĝln
)
is given by

χa1,5 = 265266
pa1,5(q) = 51q25 + 355q24 + 1390q23 + 3780q22 + 7985q21 + 13841q20 + 20480q19

+ 26530q18 + 30675q17 + 32095q16 + 30716q15 + 27110q14 + 22195q13

+ 16935q12 + 12070q11 + 8056q10 + 5030q9 + 2940q8 + 1600q7

+ 810q6 + 376q5 + 160q4 + 60q3 + 20q2 + 5q1 + 1q0
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Example C.17. For ω = 1, n = 5 and c = (1, 1, 1, 1, 0) the Euler characteristic
and Poincaré polynomial of the approximation F lcω

(
ĝln
)
is given by

χc
1,5 = 82865

pc
1,5(q) = 1q24 + 8q23 + 46q22 + 186q21 + 634q20 + 1677q19

+ 3557q18 + 6079q17 + 8667q16 + 10548q15 + 11244q14 + 10674q13

+ 9166q12 + 7184q11 + 5184q10 + 3458q9 + 2140q8 + 1226q7

+ 650q6 + 316q5 + 140q4 + 55q3 + 19q2 + 5q1 + 1q0

Example C.18. For ω = 1, n = 5 and c = (1, 1, 1, 0, 0) the Euler characteristic
and Poincaré polynomial of the approximation F lcω

(
ĝln
)
is given by

χc
1,5 = 28016

pc
1,2(q) = 1q22 + 5q21 + 20q20 + 67q19

+ 196q18 + 527q17 + 1180q16 + 2179q15 + 3241q14 + 3985q13

+ 4158q12 + 3785q11 + 3062q10 + 2239q9 + 1493q8 + 912q7

+ 510q6 + 261q5 + 121q4 + 50q3 + 18q2 + 5q1 + 1q0

Example C.19. For ω ∈ [6], n = 2 and c = (1, 1, 0, 1, 0) the Euler character-
istics and Poincaré polynomials of the approximations F lcω

(
ĝln
)
are given by

χc
1,5 = 28016

pc
1,5(q) = 3q20 + 21q19 + 106q18 + 408q17 + 1097q16 + 2189q15 + 3326q14 + 4089q13

+ 4240q12 + 3833q11 + 3084q10 + 2247q9 + 1495q8 + 912q7

+ 510q6 + 261q5 + 121q4 + 50q3 + 18q2 + 5q1 + 1q0

Example C.20. For ω ∈ [6], n = 2 and c = (1, 0, 1, 0, 0) the Euler character-
istics and Poincaré polynomials of the approximations F lcω

(
ĝln
)
are given by

χc
1,5 = 10221

pc
1,5(q) = 4q17 + 28q16 + 151q15 + 498q14 + 1014q13

+ 1480q12 + 1693q11 + 1615q10 + 1335q9 + 982q8 + 650q7

+ 389q6 + 211q5 + 103q4 + 45q3 + 17q2 + 5q1 + 1q0

χc
2,5 = 386777

pc
2,5(q) = 10q31 + 97q30 + 675q29 + 2721q28 + 7146q27 + 13845q26 + 21687q25

+ 29116q24 + 34777q23 + 37958q22 + 38564q21 + 36969q20 + 33746q19

+ 29521q18 + 24842q17 + 20169q16 + 15827q15 + 12028q14 + 8859q13

+ 6329q12 + 4381q11 + 2937q10 + 1901q9 + 1185q8 + 706q7

+ 399q6 + 211q5 + 103q4 + 45q3 + 17q2 + 5q1 + 1q0
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Example C.21. For ω ∈ [2], n = 5 and c = (1, 1, 0, 0, 0) the Euler character-
istics and Poincaré polynomials of the approximations F lcω

(
ĝln
)
are given by

χc
1,5 = 10221

pc
1,5(q) = 1q19 + 5q18 + 23q17 + 78q16 + 219q15 + 533q14 + 991q13

+ 1425q12 + 1643q11 + 1585q10 + 1321q9 + 977q8 + 649q7

+ 389q6 + 211q5 + 103q4 + 45q3 + 17q2 + 5q1 + 1q0

χc
2,5 = 386777

pc
2,5(q) = 2q33 + 16q32 + 93q31

+ 384q30 + 1279q29 + 3505q28 + 7782q27 + 14099q26 + 21536q25

+ 28695q24 + 34263q23 + 37478q22 + 38179q21 + 36689q20 + 33556q19

+ 29401q18 + 24773q17 + 20134q16 + 15812q15 + 12023q14 + 8858q13

+ 6329q12 + 4381q11 + 2937q10 + 1901q9 + 1185q8 + 706q7

+ 399q6 + 211q5 + 103q4 + 45q3 + 17q2 + 5q1 + 1q0

Example C.22. For ω ∈ [2], n = 5 and c = (1, 0, 0, 0, 0) the Euler character-
istics and Poincaré polynomials of the approximations F lcω

(
ĝln
)
are given by

χc
1,5 = 4020

pc
1,5(q) = 1q15 + 25q14 + 129q13

+ 328q12 + 550q11 + 685q10 + 687q9 + 584q8 + 433q7

+ 284q6 + 166q5 + 86q4 + 40q3 + 16q2 + 5q1 + 1q0

χc
2,5 = 88361

pc
2,5(q) = 1q28 + 27q27 + 204q26 + 790q25

+ 1967q24 + 3654q23 + 5520q22 + 7181q21 + 8369q20 + 8962q19

+ 8971q18 + 8479q17 + 7622q16 + 6545q15 + 5391q14 + 4269q13

+ 3258q12 + 2399q11 + 1706q10 + 1171q9 + 775q8 + 491q7

+ 295q6 + 166q5 + 86q4 + 40q3 + 16q2 + 5q1 + 1q0

Example C.23. For ω ∈ [2] and n = 5 the Euler characteristics and Poincaré
polynomials of the approximations F lω

(
ĝln
)
are given by

χ1,5 = 1701
p1,5(q) = 30q12 + 120q11 + 230q10 + 300q9 + 310q8 + 265q7

+ 195q6 + 125q5 + 70q4 + 35q3 + 15q2 + 5q1 + 1q0

χ2,5 = 22421
p2,5(q) = 30q24 + 180q23 + 490q22 + 900q21 + 1330q20 + 1720q19

+ 2030q18 + 2220q17 + 2270q16 + 2185q15 + 1995q14 + 1735q13

+ 1440q12 + 1145q11 + 875q10 + 645q9 + 460q8 + 315q7

+ 205q6 + 125q5 + 70q4 + 35q3 + 15q2 + 5q1 + 1q0
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C.1.6. Poincaré Polynomials for n=6.

Example C.24. For ω = 1 and n = 6 the Euler characteristic and Poincaré
polynomial of the approximation F lω

(
ĝln
)
is given by

χ1,6 = 19045
p1,6(q) = 20q18 + 180q17 + 630q16 + 1340q15 + 2085q14 + 2610q13

+ 2780q12 + 2610q11 + 2205q10 + 1694q9 + 1194q8 + 774q7

+ 461q6 + 252q5 + 126q4 + 56q3 + 21q2 + 6q1 + 1q0
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C.2. For Approximations of Partial-Degenerate Affine Grassmannians

The computations of the Poincaré polynomials for the finite approximations
of the partial degenerations of the affine Grassmannian show that in this setting
the Poincaré polynomials only depend on the number of projections, i.e. the codi-
mension of the map f : V → V and not the relative positions of the projections.
Hence we only give the Poincaré polynomial of one representative for these iso-
morphism classes of degenerations in the following list of examples. Polynomials
where computed using the formula for the Poincaré polynomials of the loop quiver
as introduced in Chapter 5 and implemented as in Appendix B.2.

C.2.1. Poincaré Polynomials for n=1.

Example C.25. For N ∈ N and n = 1 the Euler characteristics and Poincaré
polynomials of the approximations GraN

(
ĝln
)
are given by

χaN,1 = N + 1

paN,1(q) =
N∑
k=0

qk

Example C.26. For N ∈ N and n = 1 the Euler characteristics and Poincaré
polynomials of the approximations GrN

(
ĝln
)
are given by

χN,1 = 1
pN,1(q) = q0

C.2.2. Poincaré Polynomials for n=2.

Example C.27. For N ∈ [5] and n = 2 the Euler characteristics and Poincaré
polynomials of the approximations GraN

(
ĝln
)
are given by

χa1,2 = 6
pa1,2(q) = 1q4 + 1q3 + 2q2 + 1q1 + 1q0

χa2,2 = 19
pa2,2(q) = 1q8 + 1q7 + 3q6 + 3q5 + 4q4 + 3q3 + 2q2 + 1q1 + 1q0

χa3,2 = 44
pa3,2(q) = 1q12 + 1q11 + 3q10 + 4q9 + 6q8 + 6q7

+ 7q6 + 5q5 + 4q4 + 3q3 + 2q2 + 1q1 + 1q0

χa4,2 = 85
pa4,2(q) = 1q16 + 1q15 + 3q14 + 4q13

+ 7q12 + 8q11 + 10q10 + 10q9 + 10q8 + 8q7

+ 7q6 + 5q5 + 4q4 + 3q3 + 2q2 + 1q1 + 1q0

χa5,2 = 146
pa5,2(q) = 1q20 + 1q19 + 3q18 + 4q17 + 7q16 + 9q15 + 12q14 + 13q13

+ 15q12 + 14q11 + 14q10 + 12q9 + 10q8 + 8q7

+ 7q6 + 5q5 + 4q4 + 3q3 + 2q2 + 1q1 + 1q0
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Example C.28. For N ∈ [5], n = 2 and k = 1 the Euler characteristics and
Poincaré polynomials of the approximations GrkN

(
ĝln
)
are given by

χk1,2 = 4
pk1,2(q) = 2q2 + 1q1 + 1q0

χk2,2 = 9
pk2,2(q) = 3q4 + 2q3 + 2q2 + 1q1 + 1q0

χk3,2 = 16
pk3,2(q) = 4q6 + 3q5 + 3q4 + 2q3 + 2q2 + 1q1 + 1q0

χk4,2 = 25
pk4,2(q) = 5q8 + 4q7 + 4q6 + 3q5 + 3q4 + 2q3 + 2q2 + 1q1 + 1q0

χk5,2 = 36
pk5,2(q) = 6q10 + 5q9 + 5q8 + 4q7 + 4q6 + 3q5 + 3q4 + 2q3 + 2q2 + 1q1 + 1q0

Example C.29. For N ∈ [5] and n = 2 the Euler characteristics and Poincaré
polynomials of the approximations GrN

(
ĝln
)
are given by

χ1,2 = 3
p1,2(q) = 1q2 + 1q1 + 1q0

χ2,2 = 5
p2,2(q) = 1q4 + 1q3 + 1q2 + 1q1 + 1q0

χ3,2 = 7
p3,2(q) = 1q6 + 1q5 + 1q4 + 1q3 + 1q2 + 1q1 + 1q0

χ4,2 = 9
p4,2(q) = 1q8 + 1q7 + 1q6 + 1q5 + 1q4 + 1q3 + 1q2 + 1q1 + 1q0

χ5,2 = 11
p5,2(q) = 1q10 + 1q9 + 1q8 + 1q7 + 1q6 + 1q5 + 1q4 + 1q3 + 1q2 + 1q1 + 1q0
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C.2.3. Poincaré Polynomials for n=3.

Example C.30. For N ∈ [5] and n = 3 the Euler characteristics and Poincaré
polynomials of the approximations GraN

(
ĝln
)
are given by

χa1,3 = 20
pa1,3(q) = 1q9 + 1q8 + 2q7 + 3q6 + 3q5 + 3q4 + 3q3 + 2q2 + 1q1 + 1q0

χa2,3 = 141
pa2,3(q) = 1q18 + 1q17 + 3q16 + 5q15 + 8q14 + 10q13

+ 14q12 + 14q11 + 16q10 + 15q9 + 14q8 + 11q7

+ 10q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χa3,3 = 58
pa3,3(q) = 1q27 + 1q26 + 3q25 + 6q24 + 10q23 + 15q22 + 23q21 + 29q20 + 36q19

+ 42q18 + 46q17 + 48q16 + 48q15 + 46q14 + 43q13

+ 39q12 + 33q11 + 28q10 + 23q9 + 18q8 + 13q7

+ 10q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χa4,3 = 1751
pa4,3(q) = 1q36 + 1q35 + 3q34 + 6q33 + 11q32 + 17q31

+ 28q30 + 38q29 + 53q28 + 66q27 + 81q26 + 92q25

+ 105q24 + 110q23 + 116q22 + 116q21 + 116q20 + 110q19

+ 105q18 + 95q17 + 87q16 + 76q15 + 66q14 + 55q13

+ 47q12 + 37q11 + 30q10 + 23q9 + 18q8 + 13q7

+ 10q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χa5,3 = 4332
pa5,3(q) = 1q45 + 1q44 + 3q43 + 6q42 + 11q41 + 18q40 + 30q39 + 43q38 + 62q37

+ 83q36 + 107q35 + 131q34 + 157q33 + 179q32 + 200q31

+ 217q30 + 229q29 + 237q28 + 241q27 + 240q26 + 235q25

+ 227q24 + 215q23 + 201q22 + 185q21 + 168q20 + 150q19

+ 133q18 + 115q17 + 99q16 + 84q15 + 70q14 + 57q13

+ 47q12 + 37q11 + 30q10 + 23q9 + 18q8 + 13q7

+ 10q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0
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Example C.31. For N ∈ [5], n = 3 and k = 2 the Euler characteristics and
Poincaré polynomials of the approximations GrkN

(
ĝln
)
are given by

χk1,3 = 14
pk1,3(q) = 2q6 + 2q5 + 3q4 + 3q3 + 2q2 + 1q1 + 1q0

χk2,3 = 71
pk2,3(q) = 3q12 + 4q11 + 8q10 + 9q9 + 11q8 + 9q7

+ 9q6 + 6q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χk3,3 = 226
pk3,3(q) = 4q18 + 6q17 + 13q16 + 17q15 + 22q14 + 23q13

+ 26q12 + 23q11 + 21q10 + 18q9 + 15q8 + 11q7

+ 9q6 + 6q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χk4,3 = 555
pk4,3(q) = 5q24 + 8q23 + 18q22 + 25q21 + 35q20 + 39q19

+ 47q18 + 47q17 + 50q16 + 46q15 + 43q14 + 37q13

+ 34q12 + 27q11 + 23q10 + 18q9 + 15q8 + 11q7

+ 9q6 + 6q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χk5,3 = 1156
pk5,3(q) = 6q30 + 10q29 + 23q28 + 33q27 + 48q26 + 57q25

+ 70q24 + 75q23 + 83q22 + 84q21 + 86q20 + 80q19

+ 76q18 + 68q17 + 62q16 + 54q15 + 47q14 + 39q13

+ 34q12 + 27q11 + 23q10 + 18q9 + 15q8 + 11q7

+ 9q6 + 6q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0
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Example C.32. For N ∈ [5], n = 3 and k = 1 the Euler characteristics and
Poincaré polynomials of the approximations GrkN

(
ĝln
)
are given by

χk1,3 = 10
pk1,3(q) = 1q5 + 2q4 + 3q3 + 2q2 + 1q1 + 1q0

χk2,3 = 37
pk2,3(q) = 1q10 + 2q9 + 5q8 + 6q7 + 7q6 + 5q5 + 4q4 + 3q3 + 2q2 + 1q1 + 1q0

χk3,3 = 92
pk3,3(q) = 1q15 + 2q14 + 5q13 + 8q12 + 11q11 + 12q10 + 12q9 + 10q8 + 8q7

+ 7q6 + 5q5 + 4q4 + 3q3 + 2q2 + 1q1 + 1q0

χk4,3 = 185
pk4,3(q) = 1q20 + 2q19 + 5q18 + 8q17 + 13q16 + 16q15 + 19q14 + 19q13

+ 19q12 + 16q11 + 14q10 + 12q9 + 10q8 + 8q7

+ 7q6 + 5q5 + 4q4 + 3q3 + 2q2 + 1q1 + 1q0

χk5,3 = 326
pk5,3(q) = 1q25 + 2q24 + 5q23 + 8q22 + 13q21 + 18q20 + 23q19

+ 26q18 + 28q17 + 28q16 + 27q15 + 24q14 + 21q13

+ 19q12 + 16q11 + 14q10 + 12q9 + 10q8 + 8q7

+ 7q6 + 5q5 + 4q4 + 3q3 + 2q2 + 1q1 + 1q0

Example C.33. For N ∈ [5] and n = 3 the Euler characteristics and Poincaré
polynomials of the approximations GrN

(
ĝln
)
are given by

χ1,3 = 7
p1,3(q) = 1q4 + 2q3 + 2q2 + 1q1 + 1q0

χ2,3 = 19
p2,3(q) = 1q8 + 2q7 + 4q6 + 3q5 + 3q4 + 2q3 + 2q2 + 1q1 + 1q0

χ3,3 = 37
p3,3(q) = 1q12 + 2q11 + 4q10 + 5q9 + 5q8 + 4q7

+ 4q6 + 3q5 + 3q4 + 2q3 + 2q2 + 1q1 + 1q0

χ4,3 = 61
p4,3(q) = 1q16 + 2q15 + 4q14 + 5q13 + 7q12 + 6q11 + 6q10 + 5q9 + 5q8 + 4q7

+ 4q6 + 3q5 + 3q4 + 2q3 + 2q2 + 1q1 + 1q0

χ5,3 = 91
p5,3(q) = 1q20 + 2q19 + 4q18 + 5q17 + 7q16 + 8q15 + 8q14 + 7q13

+ 7q12 + 6q11 + 6q10 + 5q9 + 5q8 + 4q7

+ 4q6 + 3q5 + 3q4 + 2q3 + 2q2 + 1q1 + 1q0
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C.2.4. Poincaré Polynomials for n=4.

Example C.34. For N ∈ [5] and n = 4 the Euler characteristics and Poincaré
polynomials of the approximations GraN

(
ĝln
)
are given by

χa1,4 = 70
pa1,4(q) = 1q16 + 1q15 + 2q14 + 3q13 + 5q12 + 5q11 + 7q10 + 7q9 + 8q8 + 7q7

+ 7q6 + 5q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χa2,4 = 1107
pa2,4(q) = 1q32 + 1q31 + 3q30 + 5q29 + 10q28 + 14q27 + 22q26 + 29q25

+ 40q24 + 48q23 + 59q22 + 66q21 + 75q20 + 78q19

+ 82q18 + 80q17 + 79q16 + 72q15 + 67q14 + 58q13

+ 51q12 + 41q11 + 34q10 + 26q9 + 21q8 + 15q7

+ 11q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χa3,4 = 8092
pa3,4(q) = 1q48 + 1q47 + 3q46 + 6q45 + 12q44 + 19q43

+ 33q42 + 48q41 + 72q40 + 98q39 + 132q38 + 167q37

+ 211q36 + 249q35 + 294q34 + 332q33 + 371q32 + 398q31

+ 426q30 + 438q29 + 449q28 + 446q27 + 439q26 + 420q25

+ 402q24 + 371q23 + 343q22 + 308q21 + 276q20 + 240q19

+ 210q18 + 177q17 + 150q16 + 123q15 + 101q14 + 80q13

+ 65q12 + 49q11 + 38q10 + 28q9 + 21q8 + 15q7

+ 11q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χa4,4 = 38165
pa4,4(q) = 1q64 + 1q63 + 3q62 + 6q61

+ 13q60 + 21q59 + 38q58 + 59q57 + 93q56 + 134q55

+ 192q54 + 258q53 + 346q52 + 439q51 + 551q50 + 667q49

+ 798q48 + 923q47 + 1059q46 + 1181q45 + 1304q44 + 1408q43

+ 1507q42 + 1578q41 + 1642q40 + 1674q39 + 1695q38 + 1688q37

+ 1670q36 + 1623q35 + 1571q34 + 1496q33 + 1418q32 + 1324q31

+ 1231q30 + 1126q29 + 1029q28 + 925q27 + 829q26 + 732q25

+ 645q24 + 558q23 + 484q22 + 412q21 + 350q20 + 292q19

+ 244q18 + 199q17 + 164q16 + 131q15 + 105q14 + 82q13

+ 65q12 + 49q11 + 38q10 + 28q9 + 21q8 + 15q7

+ 11q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0
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χa5,4 = 135954
pa5,4(q) = 1q80 + 1q79 + 3q78 + 6q77 + 13q76 + 22q75 + 40q74 + 64q73

+ 104q72 + 155q71 + 230q70 + 322q69 + 447q68 + 592q67

+ 775q66 + 980q65 + 1223q64 + 1482q63 + 1776q62 + 2077q61

+ 2404q60 + 2724q59 + 3058q58 + 3372q57 + 3687q56 + 3968q55

+ 4237q54 + 4461q53 + 4664q52 + 4813q51 + 4936q50 + 5001q49

+ 5038q48 + 5018q47 + 4972q46 + 4875q45 + 4757q44 + 4595q43

+ 4419q42 + 4209q41 + 3994q40 + 3753q39 + 3515q38 + 3261q37

+ 3016q36 + 2763q35 + 2524q34 + 2284q33 + 2062q32 + 1843q31

+ 1644q30 + 1451q29 + 1279q28 + 1115q27 + 971q26 + 836q25

+ 719q24 + 610q23 + 518q22 + 434q21 + 364q20 + 300q19

+ 248q18 + 201q17 + 164q16 + 131q15 + 105q14 + 82q13

+ 65q12 + 49q11 + 38q10 + 28q9 + 21q8 + 15q7

+ 11q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0
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Example C.35. For N ∈ [5], n = 4 and k = 3 the Euler characteristics and
Poincaré polynomials of the approximations GrkN

(
ĝln
)
are given by

χk1,4 = 50
pk1,4(q) = 2q12 + 2q11 + 4q10 + 5q9 + 7q8 + 6q7

+ 7q6 + 5q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χk2,4 = 573
pk2,4(q) = 3q24 + 4q23 + 10q22 + 15q21 + 25q20 + 31q19

+ 41q18 + 45q17 + 52q16 + 51q15 + 51q14 + 46q13

+ 44q12 + 36q11 + 31q10 + 24q9 + 20q8 + 14q7

+ 11q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χk3,4 = 3256
pk3,4(q) = 4q36 + 6q35 + 16q34 + 27q33 + 47q32 + 66q31

+ 97q30 + 120q29 + 152q28 + 174q27 + 198q26 + 209q25

+ 222q24 + 218q23 + 218q22 + 206q21 + 195q20 + 175q19

+ 161q18 + 139q17 + 122q16 + 102q15 + 86q14 + 69q13

+ 58q12 + 44q11 + 35q10 + 26q9 + 20q8 + 14q7

+ 11q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χk4,4 = 12529
pk4,4(q) = 5q48 + 8q47 + 22q46 + 39q45 + 71q44 + 105q43

+ 161q42 + 214q41 + 287q40 + 352q39 + 428q38 + 489q37

+ 558q36 + 601q35 + 645q34 + 665q33 + 683q32 + 676q31

+ 670q30 + 641q29 + 617q28 + 576q27 + 538q26 + 489q25

+ 448q24 + 396q23 + 353q22 + 307q21 + 268q20 + 227q19

+ 195q18 + 161q17 + 136q16 + 110q15 + 90q14 + 71q13

+ 58q12 + 44q11 + 35q10 + 26q9 + 20q8 + 14q7

+ 11q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χk5,4 = 37654
pk5,4(q) = 6q60 + 10q59 + 28q58 + 51q57 + 95q56 + 146q55

+ 229q54 + 316q53 + 438q52 + 560q51 + 710q50 + 850q49

+ 1011q48 + 1147q47 + 1294q46 + 1408q45 + 1520q44 + 1593q43

+ 1663q42 + 1689q41 + 1711q40 + 1694q39 + 1674q38 + 1621q37

+ 1570q36 + 1490q35 + 1416q34 + 1322q33 + 1233q32 + 1130q31

+ 1040q30 + 937q29 + 847q28 + 753q27 + 671q26 + 588q25

+ 518q24 + 446q23 + 387q22 + 329q21 + 282q20 + 235q19

+ 199q18 + 163q17 + 136q16 + 110q15 + 90q14 + 71q13

+ 58q12 + 44q11 + 35q10 + 26q9 + 20q8 + 14q7

+ 11q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0
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Example C.36. For N ∈ [5], n = 4 and k = 2 the Euler characteristics and
Poincaré polynomials of the approximations GrkN

(
ĝln
)
are given by

χk1,4 = 36
pk1,4(q) = 1q10 + 2q9 + 5q8 + 5q7

+ 6q6 + 5q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χk2,4 = 301
pk2,4(q) = 1q20 + 2q19 + 7q18 + 13q17 + 22q16 + 26q15 + 31q14 + 31q13

+ 32q12 + 29q11 + 26q10 + 21q9 + 18q8 + 13q7

+ 10q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χk3,4 = 1336
pk3,4(q) = 1q30 + 2q29 + 7q28 + 15q27 + 30q26 + 47q25

+ 69q24 + 82q23 + 95q22 + 101q21 + 106q20 + 104q19

+ 102q18 + 94q17 + 87q16 + 76q15 + 66q14 + 55q13

+ 47q12 + 37q11 + 30q10 + 23q9 + 18q8 + 13q7

+ 10q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χk4,4 = 4209
pk4,4(q) = 1q40 + 2q39 + 7q38 + 15q37

+ 32q36 + 55q35 + 90q34 + 127q33 + 169q32 + 199q31

+ 227q30 + 244q29 + 259q28 + 263q27 + 265q26 + 258q25

+ 250q24 + 234q23 + 218q22 + 197q21 + 178q20 + 156q19

+ 137q18 + 117q17 + 101q16 + 84q15 + 70q14 + 57q13

+ 47q12 + 37q11 + 30q10 + 23q9 + 18q8 + 13q7

+ 10q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χk5,4 = 10700
pk5,4(q) = 1q50 + 2q49 + 7q48 + 15q47 + 32q46 + 57q45 + 98q44 + 148q43

+ 214q42 + 282q41 + 354q40 + 410q39 + 462q38 + 498q37

+ 530q36 + 547q35 + 559q34 + 558q33 + 554q32 + 537q31

+ 518q30 + 490q29 + 461q28 + 425q27 + 391q26 + 353q25

+ 319q24 + 283q23 + 251q22 + 219q21 + 192q20 + 164q19

+ 141q18 + 119q17 + 101q16 + 84q15 + 70q14 + 57q13

+ 47q12 + 37q11 + 30q10 + 23q9 + 18q8 + 13q7

+ 10q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0
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Example C.37. For N ∈ [5], n = 4 and k = 1 the Euler characteristics and
Poincaré polynomials of the approximations GrkN

(
ĝln
)
are given by

χk1,4 = 26
pk1,4(q) = 2q8 + 3q7 + 5q6 + 4q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χk2,4 = 159
pk2,4(q) = 3q16 + 6q15 + 12q14 + 14q13

+ 18q12 + 18q11 + 19q10 + 16q9 + 15q8 + 11q7

+ 9q6 + 6q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χk3,4 = 552
pk3,4(q) = 4q24 + 9q23 + 19q22 + 26q21 + 35q20 + 39q19

+ 46q18 + 46q17 + 48q16 + 45q15 + 43q14 + 37q13

+ 34q12 + 27q11 + 23q10 + 18q9 + 15q8 + 11q7

+ 9q6 + 6q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χk4,4 = 1425
pk4,4(q) = 5q32 + 12q31 + 26q30 + 38q29 + 54q28 + 64q27 + 77q26 + 84q25

+ 93q24 + 94q23 + 98q22 + 94q21 + 92q20 + 85q19

+ 80q18 + 70q17 + 64q16 + 54q15 + 47q14 + 39q13

+ 34q12 + 27q11 + 23q10 + 18q9 + 15q8 + 11q7

+ 9q6 + 6q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χk5,4 = 3066
pk5,4(q) = 6q40 + 15q39 + 33q38 + 50q37

+ 73q36 + 91q35 + 112q34 + 126q33 + 144q32 + 153q31

+ 165q30 + 168q29 + 173q28 + 169q27 + 168q26 + 159q25

+ 153q24 + 141q23 + 132q22 + 118q21 + 108q20 + 94q19

+ 84q18 + 72q17 + 64q16 + 54q15 + 47q14 + 39q13

+ 34q12 + 27q11 + 23q10 + 18q9 + 15q8 + 11q7

+ 9q6 + 6q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0
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Example C.38. For N ∈ [5] and n = 4 the Euler characteristics and Poincaré
polynomials of the approximations GrN

(
ĝln
)
are given by

χ1,4 = 19
p1,4(q) = 1q8 + 1q7 + 3q6 + 3q5 + 4q4 + 3q3 + 2q2 + 1q1 + 1q0

χ2,4 = 85
p2,4(q) = 1q16 + 1q15 + 3q14 + 4q13 + 7q12 + 8q11 + 10q10 + 10q9 + 10q8 + 8q7

+ 7q6 + 5q5 + 4q4 + 3q3 + 2q2 + 1q1 + 1q0

χ3,4 = 231
p3,4(q) = 1q24 + 1q23 + 3q22 + 4q21 + 7q20 + 9q19

+ 13q18 + 15q17 + 18q16 + 19q15 + 20q14 + 19q13

+ 19q12 + 16q11 + 14q10 + 12q9 + 10q8 + 8q7

+ 7q6 + 5q5 + 4q4 + 3q3 + 2q2 + 1q1 + 1q0

χ4,4 = 489
p4,4(q) = 1q32 + 1q31 + 3q30 + 4q29 + 7q28 + 9q27 + 13q26 + 16q25

+ 21q24 + 24q23 + 28q22 + 30q21 + 32q20 + 32q19

+ 33q18 + 31q17 + 30q16 + 27q15 + 24q14 + 21q13

+ 19q12 + 16q11 + 14q10 + 12q9 + 10q8 + 8q7

+ 7q6 + 5q5 + 4q4 + 3q3 + 2q2 + 1q1 + 1q0

χ5,4 = 891
p5,4(q) = 1q40 + 1q39 + 3q38 + 4q37

+ 7q36 + 9q35 + 13q34 + 16q33 + 21q32 + 25q31

+ 31q30 + 35q29 + 40q28 + 43q27 + 46q26 + 47q25

+ 49q24 + 48q23 + 48q22 + 46q21 + 44q20 + 40q19

+ 37q18 + 33q17 + 30q16 + 27q15 + 24q14 + 21q13

+ 19q12 + 16q11 + 14q10 + 12q9 + 10q8 + 8q7

+ 7q6 + 5q5 + 4q4 + 3q3 + 2q2 + 1q1 + 1q0
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C.2.5. Poincaré Polynomials for n=5.

Example C.39. For N ∈ [5] and n = 5 the Euler characteristics and Poincaré
polynomials of the approximations GraN

(
ĝln
)
are given by

χa1,5 = 252
pa1,5(q) = 1q25 + 1q24 + 2q23 + 3q22 + 5q21 + 7q20 + 9q19

+ 11q18 + 14q17 + 16q16 + 18q15 + 19q14 + 20q13

+ 20q12 + 19q11 + 18q10 + 16q9 + 14q8 + 11q7

+ 9q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χa2,5 = 8953
pa2,5(q) = 1q50 + 1q49 + 3q48 + 5q47 + 10q46 + 16q45 + 26q44 + 37q43

+ 56q42 + 75q41 + 103q40 + 131q39 + 168q38 + 203q37

+ 247q36 + 285q35 + 329q34 + 365q33 + 403q32 + 429q31

+ 457q30 + 468q29 + 479q28 + 475q27 + 469q26 + 450q25

+ 431q24 + 399q23 + 370q22 + 333q21 + 299q20 + 260q19

+ 228q18 + 192q17 + 163q16 + 133q15 + 109q14 + 86q13

+ 69q12 + 52q11 + 41q10 + 30q9 + 22q8 + 15q7

+ 11q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χa3,5 = 116304
pa3,5(q) = 1q75 + 1q74 + 3q73 + 6q72 + 12q71 + 21q70 + 37q69 + 58q68 + 92q67

+ 137q66 + 200q65 + 279q64 + 385q63 + 510q62 + 667q61

+ 849q60 + 1061q59 + 1297q58 + 1564q57 + 1845q56 + 2149q55

+ 2460q54 + 2777q53 + 3088q52 + 3394q51 + 3675q50 + 3935q49

+ 4162q48 + 4351q47 + 4498q46 + 4604q45 + 4659q44 + 4670q43

+ 4637q42 + 4557q41 + 4440q40 + 4287q39 + 4102q38 + 3891q37

+ 3663q36 + 3415q35 + 3161q34 + 2901q33 + 2642q32 + 2385q31

+ 2141q30 + 1901q29 + 1679q28 + 1469q27 + 1277q26 + 1099q25

+ 942q24 + 797q23 + 672q22 + 560q21 + 464q20 + 379q19

+ 310q18 + 248q17 + 199q16 + 157q15 + 123q14 + 94q13

+ 73q12 + 54q11 + 41q10 + 30q9 + 22q8 + 15q7

+ 11q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0
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χk4,5 = 856945
pk4,5(q) = 1q100 + 1q99 + 3q98 + 6q97 + 13q96 + 23q95 + 42q94 + 69q93 + 115q92 + 177q91

+ 272q90 + 396q89 + 573q88 + 795q87 + 1092q86 + 1454q85

+ 1914q84 + 2454q83 + 3113q82 + 3864q81 + 4746q80 + 5719q79

+ 6825q78 + 8012q77 + 9319q76 + 10682q75 + 12137q74 + 13613q73

+ 15146q72 + 16651q71 + 18169q70 + 19613q69 + 21021q68 + 22307q67

+ 23517q66 + 24564q65 + 25500q64 + 26245q63 + 26854q62 + 27257q61

+ 27518q60 + 27566q59 + 27475q58 + 27187q57 + 26771q56 + 26178q55

+ 25483q54 + 24638q53 + 23720q52 + 22687q51 + 21609q50 + 20451q49

+ 19282q48 + 18062q47 + 16858q46 + 15637q45 + 14452q44 + 13273q43

+ 12151q42 + 11052q41 + 10022q40 + 9029q39 + 8109q38 + 7235q37

+ 6439q36 + 5689q35 + 5014q34 + 4388q33 + 3830q32 + 3317q31

+ 2868q30 + 2458q29 + 2104q28 + 1785q27 + 1511q26 + 1267q25

+ 1062q24 + 879q23 + 728q22 + 596q21 + 488q20 + 393q19

+ 318q18 + 252q17 + 201q16 + 157q15 + 123q14 + 94q13

+ 73q12 + 54q11 + 41q10 + 30q9 + 22q8 + 15q7

+ 11q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0
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χk5,5 = 4395456
pk5,5(q) = 1q125 + 1q124 + 3q123 + 6q122 + 13q121

+ 24q120 + 44q119 + 74q118 + 126q117 + 200q116 + 314q115

+ 472q114 + 700q113 + 1003q112 + 1417q111 + 1949q110 + 2641q109

+ 3503q108 + 4580q107 + 5880q106 + 7456q105 + 9301q104 + 11467q103

+ 13946q102 + 16776q101 + 19936q100 + 23458q99 + 27301q98 + 31487q97

+ 35962q96 + 40725q95 + 45713q94 + 50919q93 + 56254q92 + 61703q91

+ 67181q90 + 72652q89 + 78032q88 + 83289q87 + 88331q86 + 93133q85

+ 97616q84 + 101746q83 + 105468q82 + 108762q81 + 111571q80 + 113891q79

+ 115695q78 + 116974q77 + 117724q76 + 117953q75 + 117661q74 + 116872q73

+ 115607q72 + 113881q71 + 111739q70 + 109206q69 + 106319q68 + 103113q67

+ 99640q66 + 95921q65 + 92017q64 + 87951q63 + 83775q62 + 79514q61

+ 75222q60 + 70905q59 + 66625q58 + 62387q57 + 58232q56 + 54166q55

+ 50232q54 + 46419q53 + 42769q52 + 39269q51 + 35948q50 + 32793q49

+ 29830q48 + 27033q47 + 24432q46 + 22001q45 + 19754q44 + 17670q43

+ 15764q42 + 14006q41 + 12412q40 + 10954q39 + 9640q38 + 8448q37

+ 7385q36 + 6423q35 + 5574q34 + 4814q33 + 4146q32 + 3551q31

+ 3036q30 + 2578q29 + 2186q28 + 1841q27 + 1547q26 + 1291q25

+ 1076q24 + 887q23 + 732q22 + 598q21 + 488q20 + 393q19

+ 318q18 + 252q17 + 201q16 + 157q15 + 123q14 + 94q13

+ 73q12 + 54q11 + 41q10 + 30q9 + 22q8 + 15q7

+ 11q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0
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Example C.40. For N ∈ [5], n = 5 and k = 4 the Euler characteristics and
Poincaré polynomials of the approximations GrkN

(
ĝln
)
are given by

χk1,5 = 182
pk1,5(q) = 2q20 + 2q19 + 4q18 + 6q17 + 9q16 + 11q15 + 14q14 + 15q13

+ 17q12 + 17q11 + 17q10 + 15q9 + 14q8 + 11q7

+ 9q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χk2,5 = 4707
pk2,5(q) = 3q40 + 4q39 + 10q38 + 17q37

+ 31q36 + 45q35 + 69q34 + 91q33 + 124q32 + 152q31

+ 188q30 + 214q29 + 247q28 + 265q27 + 286q26 + 292q25

+ 298q24 + 289q23 + 283q22 + 263q21 + 246q20 + 219q19

+ 197q18 + 169q17 + 148q16 + 122q15 + 102q14 + 81q13

+ 66q12 + 50q11 + 40q10 + 29q9 + 22q8 + 15q7

+ 11q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χk3,5 = 47660
pk3,5(q) = 4q60 + 6q59 + 16q58 + 30q57 + 57q56 + 91q55

+ 150q54 + 217q53 + 316q52 + 428q51 + 572q50 + 723q49

+ 906q48 + 1082q47 + 1280q46 + 1463q45 + 1650q44 + 1806q43

+ 1960q42 + 2069q41 + 2167q40 + 2220q39 + 2253q38 + 2241q37

+ 2217q36 + 2149q35 + 2072q34 + 1964q33 + 1850q32 + 1714q31

+ 1584q30 + 1438q29 + 1302q28 + 1160q27 + 1030q26 + 900q25

+ 787q24 + 674q23 + 578q22 + 487q21 + 410q20 + 338q19

+ 280q18 + 226q17 + 184q16 + 146q15 + 116q14 + 89q13

+ 70q12 + 52q11 + 40q10 + 29q9 + 22q8 + 15q7

+ 11q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0
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χk4,5 = 287005
pk4,5(q) = 5q80 + 8q79 + 22q78 + 43q77 + 85q76 + 141q75 + 241q74 + 366q73

+ 557q72 + 789q71 + 1105q70 + 1469q69 + 1935q68 + 2441q67

+ 3045q66 + 3679q65 + 4392q64 + 5102q63 + 5870q62 + 6596q61

+ 7345q60 + 8019q59 + 8681q58 + 9238q57 + 9761q56 + 10152q55

+ 10491q54 + 10695q53 + 10838q52 + 10844q51 + 10797q50 + 10622q49

+ 10403q48 + 10078q47 + 9722q46 + 9282q45 + 8833q44 + 8318q43

+ 7811q42 + 7264q41 + 6738q40 + 6189q39 + 5675q38 + 5152q37

+ 4670q36 + 4191q35 + 3756q34 + 3333q33 + 2957q32 + 2593q31

+ 2274q30 + 1972q29 + 1711q28 + 1467q27 + 1259q26 + 1066q25

+ 905q24 + 756q23 + 634q22 + 523q21 + 434q20 + 352q19

+ 288q18 + 230q17 + 186q16 + 146q15 + 116q14 + 89q13

+ 70q12 + 52q11 + 40q10 + 29q9 + 22q8 + 15q7

+ 11q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χk5,5 = 1243476
pk5,5(q) = 6q100 + 10q99 + 28q98 + 56q97

+ 113q96 + 193q95 + 336q94 + 525q93 + 818q92 + 1194q91

+ 1718q90 + 2357q89 + 3195q88 + 4169q87 + 5369q86 + 6721q85

+ 8300q84 + 10009q83 + 11933q82 + 13941q81 + 16116q80 + 18315q79

+ 20612q78 + 22858q77 + 25136q76 + 27281q75 + 29382q74 + 31289q73

+ 33087q72 + 34631q71 + 36027q70 + 37128q69 + 38049q68 + 38666q67

+ 39088q66 + 39208q65 + 39147q64 + 38799q63 + 38289q62 + 37533q61

+ 36644q60 + 35544q59 + 34356q58 + 33002q57 + 31596q56 + 30074q55

+ 28534q54 + 26920q53 + 25329q52 + 23697q51 + 22113q50 + 20523q49

+ 19000q48 + 17493q47 + 16073q46 + 14686q45 + 13390q44 + 12141q43

+ 10987q42 + 9886q41 + 8883q40 + 7932q39 + 7072q38 + 6268q37

+ 5548q36 + 4878q35 + 4285q34 + 3738q33 + 3259q32 + 2819q31

+ 2438q30 + 2090q29 + 1793q28 + 1523q27 + 1295q26 + 1090q25

+ 919q24 + 764q23 + 638q22 + 525q21 + 434q20 + 352q19

+ 288q18 + 230q17 + 186q16 + 146q15 + 116q14 + 89q13

+ 70q12 + 52q11 + 40q10 + 29q9 + 22q8 + 15q7

+ 11q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0
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Example C.41. For N ∈ [5], n = 5 and k = 3 the Euler characteristics and
Poincaré polynomials of the approximations GrkN

(
ĝln
)
are given by

χk1,5 = 132
pk1,5(q) = 1q17 + 2q16 + 5q15 + 7q14 + 10q13

+ 12q12 + 14q11 + 15q10 + 14q9 + 13q8 + 11q7

+ 9q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χk2,5 = 2495
pk2,5(q) = 1q34 + 2q33 + 7q32 + 15q31

+ 30q30 + 45q29 + 70q28 + 92q27 + 118q26 + 140q25

+ 161q24 + 171q23 + 182q22 + 181q21 + 179q20 + 168q19

+ 157q18 + 139q17 + 125q16 + 107q15 + 91q14 + 74q13

+ 61q12 + 47q11 + 38q10 + 28q9 + 21q8 + 15q7

+ 11q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χk3,5 = 19748
pk3,5(q) = 1q51 + 2q50 + 7q49 + 17q48 + 38q47 + 70q46 + 124q45 + 189q44 + 277q43

+ 376q42 + 486q41 + 598q40 + 712q39 + 812q38 + 904q37

+ 979q36 + 1032q35 + 1064q34 + 1078q33 + 1070q32 + 1044q31

+ 1005q30 + 950q29 + 889q28 + 821q27 + 749q26 + 674q25

+ 602q24 + 529q23 + 462q22 + 398q21 + 340q20 + 286q19

+ 240q18 + 197q17 + 162q16 + 131q15 + 105q14 + 82q13

+ 65q12 + 49q11 + 38q10 + 28q9 + 21q8 + 15q7

+ 11q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χk4,5 = 97401
pk4,5(q) = 1q68 + 2q67 + 7q66 + 17q65 + 40q64 + 78q63 + 149q62 + 250q61

+ 403q60 + 594q59 + 842q58 + 1123q57 + 1451q56 + 1792q55

+ 2157q54 + 2511q53 + 2868q52 + 3189q51 + 3490q50 + 3735q49

+ 3947q48 + 4092q47 + 4197q46 + 4235q45 + 4238q44 + 4179q43

+ 4090q42 + 3953q41 + 3798q40 + 3606q39 + 3407q38 + 3184q37

+ 2963q36 + 2728q35 + 2502q34 + 2271q33 + 2055q32 + 1840q31

+ 1643q30 + 1451q29 + 1279q28 + 1115q27 + 971q26 + 836q25

+ 719q24 + 610q23 + 518q22 + 434q21 + 364q20 + 300q19

+ 248q18 + 201q17 + 164q16 + 131q15 + 105q14 + 82q13

+ 65q12 + 49q11 + 38q10 + 28q9 + 21q8 + 15q7

+ 11q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0
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χk5,5 = 357036
pk5,5(q) = 1q85 + 2q84 + 7q83 + 17q82 + 40q81 + 80q80 + 157q79

+ 275q78 + 464q77 + 729q76 + 1097q75 + 1556q74 + 2134q73

+ 2799q72 + 3561q71 + 4390q70 + 5278q69 + 6187q68 + 7122q67

+ 8035q66 + 8920q65 + 9749q64 + 10512q63 + 11180q62 + 11756q61

+ 12218q60 + 12567q59 + 12805q58 + 12927q57 + 12940q56 + 12855q55

+ 12674q54 + 12404q53 + 12065q52 + 11658q51 + 11201q50 + 10699q49

+ 10167q48 + 9605q47 + 9034q46 + 8450q45 + 7868q44 + 7289q43

+ 6724q42 + 6169q41 + 5640q40 + 5128q39 + 4645q38 + 4187q37

+ 3761q36 + 3359q35 + 2992q34 + 2650q33 + 2340q32 + 2055q31

+ 1800q30 + 1565q29 + 1359q28 + 1171q27 + 1007q26 + 860q25

+ 733q24 + 618q23 + 522q22 + 436q21 + 364q20 + 300q19

+ 248q18 + 201q17 + 164q16 + 131q15 + 105q14 + 82q13

+ 65q12 + 49q11 + 38q10 + 28q9 + 21q8 + 15q7

+ 11q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0



C.2. FOR APPROXIMATIONS OF PARTIAL-DEGENERATE AFFINE GRASSMANNIANS211

Example C.42. For N ∈ [5], n = 5 and k = 2 the Euler characteristics and
Poincaré polynomials of the approximations GrkN

(
ĝln
)
are given by

χk1,5 = 96
pk1,5(q) = 2q14 + 4q13 + 7q12 + 9q11 + 12q10 + 12q9 + 12q8 + 10q7

+ 9q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χk2,5 = 1329
pk2,5(q) = 3q28 + 8q27 + 20q26 + 32q25

+ 52q24 + 67q23 + 86q22 + 96q21 + 107q20 + 107q19

+ 109q18 + 101q17 + 96q16 + 85q15 + 76q14 + 63q13

+ 54q12 + 42q11 + 35q10 + 26q9 + 20q8 + 14q7

+ 11q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χk3,5 = 8234
pk3,5(q) = 4q42 + 12q41 + 33q40 + 63q39 + 108q38 + 158q37

+ 222q36 + 280q35 + 344q34 + 394q33 + 441q32 + 469q31

+ 493q30 + 495q29 + 495q28 + 479q27 + 461q26 + 431q25

+ 403q24 + 365q23 + 331q22 + 292q21 + 258q20 + 221q19

+ 191q18 + 159q17 + 134q16 + 110q15 + 90q14 + 71q13

+ 58q12 + 44q11 + 35q10 + 26q9 + 20q8 + 14q7

+ 11q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χk4,5 = 33293
pk4,5(q) = 5q56 + 16q55

+ 46q54 + 94q53 + 174q52 + 269q51 + 398q50 + 534q49

+ 697q48 + 850q47 + 1016q46 + 1156q45 + 1296q44 + 1398q43

+ 1493q42 + 1545q41 + 1589q40 + 1592q39 + 1589q38 + 1552q37

+ 1514q36 + 1447q35 + 1382q34 + 1296q33 + 1215q32 + 1118q31

+ 1031q30 + 932q29 + 845q28 + 752q27 + 671q26 + 588q25

+ 518q24 + 446q23 + 387q22 + 329q21 + 282q20 + 235q19

+ 199q18 + 163q17 + 136q16 + 110q15 + 90q14 + 71q13

+ 58q12 + 44q11 + 35q10 + 26q9 + 20q8 + 14q7

+ 11q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0
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χk5,5 = 103320
pk5,5(q) = 6q70 + 20q69 + 59q68 + 125q67

+ 240q66 + 392q65 + 598q64 + 836q63 + 1126q62 + 1432q61

+ 1777q60 + 2113q59 + 2466q58 + 2786q57 + 3100q56 + 3362q55

+ 3607q54 + 3787q53 + 3942q52 + 4032q51 + 4097q50 + 4101q49

+ 4087q48 + 4019q47 + 3940q46 + 3818q45 + 3688q44 + 3524q43

+ 3361q42 + 3170q41 + 2986q40 + 2783q39 + 2590q38 + 2386q37

+ 2197q36 + 2001q35 + 1823q34 + 1644q33 + 1482q32 + 1322q31

+ 1182q30 + 1043q29 + 923q28 + 807q27 + 707q26 + 612q25

+ 532q24 + 454q23 + 391q22 + 331q21 + 282q20 + 235q19

+ 199q18 + 163q17 + 136q16 + 110q15 + 90q14 + 71q13

+ 58q12 + 44q11 + 35q10 + 26q9 + 20q8 + 14q7

+ 11q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0
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Example C.43. For N ∈ [5], n = 5 and k = 1 the Euler characteristics and
Poincaré polynomials of the approximations GrkN

(
ĝln
)
are given by

χk1,5 = 70
pk1,5(q) = 1q13 + 2q12 + 5q11 + 7q10 + 9q9 + 10q8 + 9q7

+ 8q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χk2,5 = 711
pk2,5(q) = 1q26 + 2q25 + 7q24 + 13q23 + 24q22 + 33q21 + 45q20 + 52q19

+ 59q18 + 60q17 + 62q16 + 58q15 + 55q14 + 49q13

+ 43q12 + 35q11 + 30q10 + 23q9 + 18q8 + 13q7

+ 10q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χk3,5 = 3452
pk3,5(q) = 1q39 + 2q38 + 7q37 + 15q36 + 30q35 + 49q34 + 76q33 + 102q32 + 131q31

+ 157q30 + 179q29 + 196q28 + 209q27 + 215q26 + 216q25

+ 214q24 + 206q23 + 195q22 + 182q21 + 166q20 + 149q19

+ 133q18 + 115q17 + 99q16 + 84q15 + 70q14 + 57q13

+ 47q12 + 37q11 + 30q10 + 23q9 + 18q8 + 13q7

+ 10q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χk4,5 = 11451
pk4,5(q) = 1q52 + 2q51 + 7q50 + 15q49

+ 32q48 + 55q47 + 92q46 + 134q45 + 189q44 + 243q43

+ 304q42 + 358q41 + 413q40 + 456q39 + 498q38 + 525q37

+ 549q36 + 560q35 + 566q34 + 560q33 + 553q32 + 533q31

+ 512q30 + 484q29 + 455q28 + 420q27 + 388q26 + 351q25

+ 318q24 + 283q23 + 251q22 + 219q21 + 192q20 + 164q19

+ 141q18 + 119q17 + 101q16 + 84q15 + 70q14 + 57q13

+ 47q12 + 37q11 + 30q10 + 23q9 + 18q8 + 13q7

+ 10q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0
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χk5,5 = 30102
pk5,5(q) = 1q65 + 2q64 + 7q63 + 15q62 + 32q61

+ 57q60 + 98q59 + 150q58 + 221q57 + 302q56 + 398q55

+ 497q54 + 603q53 + 705q52 + 805q51 + 896q50 + 980q49

+ 1051q48 + 1111q47 + 1159q46 + 1193q45 + 1214q44 + 1224q43

+ 1221q42 + 1207q41 + 1185q40 + 1151q39 + 1110q38 + 1064q37

+ 1011q36 + 953q35 + 895q34 + 833q33 + 771q32 + 709q31

+ 648q30 + 588q29 + 532q28 + 476q27 + 425q26 + 377q25

+ 333q24 + 291q23 + 255q22 + 221q21 + 192q20 + 164q19

+ 141q18 + 119q17 + 101q16 + 84q15 + 70q14 + 57q13

+ 47q12 + 37q11 + 30q10 + 23q9 + 18q8 + 13q7

+ 10q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0
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Example C.44. For N ∈ [5] and n = 5 the Euler characteristics and Poincaré
polynomials of the approximations GrN

(
ĝln
)
are given by

χ1,5 = 51
p1,5(q) = 1q12 + 2q11 + 4q10 + 5q9 + 7q8 + 7q7

+ 7q6 + 6q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χ2,5 = 381
p2,5(q) = 1q24 + 2q23 + 6q22 + 9q21 + 15q20 + 19q19

+ 25q18 + 27q17 + 32q16 + 32q15 + 33q14 + 31q13

+ 30q12 + 25q11 + 23q10 + 18q9 + 15q8 + 11q7

+ 9q6 + 6q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χ3,5 = 1451
p3,5(q) = 1q36 + 2q35 + 6q34 + 11q33 + 19q32 + 27q31

+ 39q30 + 47q29 + 58q28 + 66q27 + 75q26 + 80q25

+ 87q24 + 88q23 + 90q22 + 88q21 + 86q20 + 80q19

+ 76q18 + 68q17 + 62q16 + 54q15 + 47q14 + 39q13

+ 34q12 + 27q11 + 23q10 + 18q9 + 15q8 + 11q7

+ 9q6 + 6q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χ4,5 = 3951
p4,5(q) = 1q48 + 2q47 + 6q46 + 11q45 + 21q44 + 31q43

+ 47q42 + 61q41 + 80q40 + 94q39 + 113q38 + 126q37

+ 143q36 + 154q35 + 168q34 + 175q33 + 185q32 + 187q31

+ 191q30 + 188q29 + 187q28 + 179q27 + 174q26 + 163q25

+ 155q24 + 142q23 + 132q22 + 118q21 + 108q20 + 94q19

+ 84q18 + 72q17 + 64q16 + 54q15 + 47q14 + 39q13

+ 34q12 + 27q11 + 23q10 + 18q9 + 15q8 + 11q7

+ 9q6 + 6q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χ5,5 = 8801
p5,5(q) = 1q60 + 2q59 + 6q58 + 11q57 + 21q56 + 33q55

+ 51q54 + 69q53 + 94q52 + 116q51 + 143q50 + 166q49

+ 193q48 + 214q47 + 240q46 + 259q45 + 281q44 + 297q43

+ 315q42 + 325q41 + 338q40 + 342q39 + 347q38 + 345q37

+ 344q36 + 335q35 + 329q34 + 316q33 + 305q32 + 289q31

+ 275q30 + 256q29 + 241q28 + 221q27 + 204q26 + 185q25

+ 169q24 + 150q23 + 136q22 + 120q21 + 108q20 + 94q19

+ 84q18 + 72q17 + 64q16 + 54q15 + 47q14 + 39q13

+ 34q12 + 27q11 + 23q10 + 18q9 + 15q8 + 11q7

+ 9q6 + 6q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0
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C.2.6. Poincaré Polynomials for n=6.

Example C.45. For N ∈ [3] and n = 6 the Euler characteristics and Poincaré
polynomials of the approximations GraN

(
ĝln
)
are given by

χa1,6 = 924
pa1,6(q) = 1q36 + 1q35 + 2q34 + 3q33 + 5q32 + 7q31

+ 11q30 + 13q29 + 18q28 + 22q27 + 28q26 + 32q25

+ 39q24 + 42q23 + 48q22 + 51q21 + 55q20 + 55q19

+ 58q18 + 55q17 + 55q16 + 51q15 + 48q14 + 42q13

+ 39q12 + 32q11 + 28q10 + 22q9 + 18q8 + 13q7

+ 11q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χa2,6 = 73789
pa2,6(q) = 1q72 + 1q71 + 3q70 + 5q69 + 10q68 + 16q67

+ 28q66 + 41q65 + 64q64 + 91q63 + 131q62 + 178q61

+ 244q60 + 316q59 + 412q58 + 518q57 + 648q56 + 786q55

+ 951q54 + 1118q53 + 1310q52 + 1499q51 + 1704q50 + 1898q49

+ 2104q48 + 2284q47 + 2467q46 + 2619q45 + 2762q44 + 2865q43

+ 2957q42 + 3001q41 + 3031q40 + 3015q39 + 2982q38 + 2907q37

+ 2822q36 + 2696q35 + 2565q34 + 2407q33 + 2248q32 + 2069q31

+ 1899q30 + 1715q29 + 1545q28 + 1371q27 + 1212q26 + 1055q25

+ 918q24 + 783q23 + 669q22 + 561q21 + 470q20 + 385q19

+ 317q18 + 254q17 + 205q16 + 161q15 + 127q14 + 97q13

+ 76q12 + 56q11 + 42q10 + 30q9 + 22q8 + 15q7

+ 11q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0
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χa3,6 = 1703636
pa3,6(q) = 1q108 + 1q107 + 3q106 + 6q105 + 12q104 + 21q103

+ 39q102 + 62q101 + 102q100 + 157q99 + 240q98 + 350q97

+ 509q96 + 710q95 + 985q94 + 1328q93 + 1772q92 + 2310q91

+ 2986q90 + 3778q89 + 4740q88 + 5845q87 + 7141q86 + 8593q85

+ 10255q84 + 12067q83 + 14087q82 + 16243q81 + 18581q80 + 21017q79

+ 23601q78 + 26221q77 + 28932q76 + 31616q75 + 34316q74 + 36912q73

+ 39457q72 + 41814q71 + 44050q70 + 46035q69 + 47832q68 + 49323q67

+ 50587q66 + 51502q65 + 52165q64 + 52472q63 + 52516q62 + 52211q61

+ 51665q60 + 50790q59 + 49706q58 + 48342q57 + 46808q56 + 45047q55

+ 43174q54 + 41127q53 + 39022q52 + 36807q51 + 34581q50 + 32300q49

+ 30060q48 + 27808q47 + 25635q46 + 23494q45 + 21455q44 + 19478q43

+ 17626q42 + 15851q41 + 14211q40 + 12662q39 + 11247q38 + 9926q37

+ 8737q36 + 7636q35 + 6657q34 + 5763q33 + 4976q32 + 4264q31

+ 3647q30 + 3092q29 + 2618q28 + 2197q27 + 1840q26 + 1526q25

+ 1265q24 + 1036q23 + 849q22 + 687q21 + 556q20 + 443q19

+ 355q18 + 278q17 + 219q16 + 169q15 + 131q14 + 99q13

+ 76q12 + 56q11 + 42q10 + 30q9 + 22q8 + 15q7

+ 11q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0
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Example C.46. For N ∈ [3], n = 6 and k = 5 the Euler characteristics and
Poincaré polynomials of the approximations GrkN

(
ĝln
)
are given by

χk1,6 = 672
pk1,6(q) = 2q30 + 2q29 + 4q28 + 6q27 + 10q26 + 13q25

+ 19q24 + 22q23 + 29q22 + 33q21 + 39q20 + 41q19

+ 47q18 + 46q17 + 48q16 + 46q15 + 45q14 + 40q13

+ 38q12 + 31q11 + 28q10 + 22q9 + 18q8 + 13q7

+ 11q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χk2,6 = 39183
pk2,6(q) = 3q60 + 4q59 + 10q58 + 17q57 + 33q56 + 51q55

+ 83q54 + 119q53 + 176q52 + 238q51 + 324q50 + 415q49

+ 534q48 + 651q47 + 793q46 + 929q45 + 1083q44 + 1219q43

+ 1367q42 + 1486q41 + 1609q40 + 1694q39 + 1774q38 + 1813q37

+ 1847q36 + 1835q35 + 1817q34 + 1761q33 + 1700q32 + 1606q31

+ 1515q30 + 1398q29 + 1290q28 + 1165q27 + 1050q26 + 927q25

+ 820q24 + 707q23 + 612q22 + 518q21 + 440q20 + 363q19

+ 302q18 + 243q17 + 198q16 + 156q15 + 124q14 + 95q13

+ 75q12 + 55q11 + 42q10 + 30q9 + 22q8 + 15q7

+ 11q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χk3,6 = 706364
pk3,6(q) = 4q90 + 6q89 + 16q88 + 30q87 + 60q86 + 101q85

+ 175q84 + 270q83 + 423q82 + 618q81 + 896q80 + 1238q79

+ 1699q78 + 2238q77 + 2923q76 + 3703q75 + 4641q74 + 5670q73

+ 6861q72 + 8116q71 + 9514q70 + 10943q69 + 12469q68 + 13973q67

+ 15531q66 + 16997q65 + 18459q64 + 19778q63 + 21034q62 + 22094q61

+ 23055q60 + 23777q59 + 24374q58 + 24722q57 + 24927q56 + 24886q55

+ 24717q54 + 24312q53 + 23800q52 + 23093q51 + 22303q50 + 21355q49

+ 20365q48 + 19254q47 + 18137q46 + 16947q45 + 15776q44 + 14569q43

+ 13414q42 + 12246q41 + 11149q40 + 10069q39 + 9069q38 + 8101q37

+ 7222q36 + 6380q35 + 5627q34 + 4919q33 + 4292q32 + 3710q31

+ 3206q30 + 2739q29 + 2340q28 + 1978q27 + 1671q26 + 1395q25

+ 1166q24 + 960q23 + 793q22 + 645q21 + 526q20 + 421q19

+ 340q18 + 267q17 + 212q16 + 164q15 + 128q14 + 97q13

+ 75q12 + 55q11 + 42q10 + 30q9 + 22q8 + 15q7

+ 11q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0
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Example C.47. For N ∈ [3], n = 6 and k = 4 the Euler characteristics and
Poincaré polynomials of the approximations GrkN

(
ĝln
)
are given by

χk1,6 = 490
pk1,6(q) = 1q26 + 2q25 + 5q24 + 7q23 + 12q22 + 16q21 + 22q20 + 26q19

+ 33q18 + 35q17 + 39q16 + 39q15 + 40q14 + 37q13

+ 36q12 + 30q11 + 27q10 + 22q9 + 18q8 + 13q7

+ 11q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χk2,6 = 20915
pk2,6(q) = 1q52 + 2q51 + 7q50 + 15q49

+ 32q48 + 53q47 + 90q46 + 135q45 + 199q44 + 271q43

+ 363q42 + 456q41 + 566q40 + 668q39 + 776q38 + 869q37

+ 960q36 + 1022q35 + 1078q34 + 1106q33 + 1122q32 + 1109q31

+ 1088q30 + 1040q29 + 990q28 + 921q27 + 851q26 + 770q25

+ 695q24 + 611q23 + 537q22 + 462q21 + 397q20 + 333q19

+ 280q18 + 228q17 + 187q16 + 149q15 + 119q14 + 92q13

+ 73q12 + 54q11 + 41q10 + 30q9 + 22q8 + 15q7

+ 11q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χk3,6 = 294966
pk3,6(q) = 1q78 + 2q77 + 7q76 + 17q75 + 40q74 + 78q73

+ 148q72 + 248q71 + 406q70 + 619q69 + 912q68 + 1277q67

+ 1747q66 + 2289q65 + 2935q64 + 3646q63 + 4439q62 + 5262q61

+ 6138q60 + 6993q59 + 7856q58 + 8657q57 + 9415q56 + 10068q55

+ 10655q54 + 11104q53 + 11462q52 + 11678q51 + 11794q50 + 11771q49

+ 11664q48 + 11426q47 + 11121q46 + 10714q45 + 10257q44 + 9726q43

+ 9177q42 + 8575q41 + 7974q40 + 7350q39 + 6743q38 + 6133q37

+ 5558q36 + 4990q35 + 4466q34 + 3962q33 + 3502q32 + 3067q31

+ 2681q30 + 2319q29 + 2002q28 + 1711q27 + 1459q26 + 1231q25

+ 1038q24 + 863q23 + 718q22 + 590q21 + 484q20 + 391q19

+ 318q18 + 252q17 + 201q16 + 157q15 + 123q14 + 94q13

+ 73q12 + 54q11 + 41q10 + 30q9 + 22q8 + 15q7

+ 11q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0
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Example C.48. For N ∈ [4], n = 6 and k = 3 the Euler characteristics and
Poincaré polynomials of the approximations GrkN

(
ĝln
)
are given by

χk1,6 = 358
pk1,6(q) = 2q22 + 4q21 + 8q20 + 11q19

+ 19q18 + 22q17 + 28q16 + 30q15 + 33q14 + 32q13

+ 33q12 + 28q11 + 26q10 + 21q9 + 18q8 + 13q7

+ 11q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χk2,6 = 11205
pk2,6(q) = 3q44 + 8q43 + 22q42 + 40q41 + 76q40 + 119q39 + 180q38 + 243q37

+ 324q36 + 393q35 + 471q34 + 531q33 + 591q32 + 627q31

+ 661q30 + 666q29 + 669q28 + 648q27 + 625q26 + 583q25

+ 545q24 + 491q23 + 444q22 + 389q21 + 342q20 + 291q19

+ 250q18 + 206q17 + 172q16 + 138q15 + 112q14 + 87q13

+ 70q12 + 52q11 + 40q10 + 29q9 + 22q8 + 15q7

+ 11q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χk3,6 = 123766
pk3,6(q) = 4q66 + 12q65 + 36q64 + 77q63 + 155q62 + 268q61

+ 446q60 + 668q59 + 971q58 + 1317q57 + 1734q56 + 2168q55

+ 2652q54 + 3111q53 + 3587q52 + 4009q51 + 4417q50 + 4746q49

+ 5045q48 + 5246q47 + 5408q46 + 5473q45 + 5496q44 + 5428q43

+ 5330q42 + 5153q41 + 4959q40 + 4705q39 + 4445q38 + 4144q37

+ 3853q36 + 3534q35 + 3235q34 + 2924q33 + 2638q32 + 2349q31

+ 2091q30 + 1835q29 + 1611q28 + 1394q27 + 1207q26 + 1030q25

+ 881q24 + 740q23 + 624q22 + 517q21 + 430q20 + 350q19

+ 288q18 + 230q17 + 186q16 + 146q15 + 116q14 + 89q13

+ 70q12 + 52q11 + 40q10 + 29q9 + 22q8 + 15q7

+ 11q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0
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χk4,6 = 783319
pk4,6(q) = 5q88 + 16q87 + 50q86 + 114q85

+ 244q84 + 445q83 + 774q82 + 1231q81 + 1880q80 + 2698q79

+ 3754q78 + 4982q77 + 6449q76 + 8051q75 + 9837q74 + 11677q73

+ 13625q72 + 15523q71 + 17440q70 + 19226q69 + 20950q68 + 22472q67

+ 23879q66 + 25031q65 + 26031q64 + 26754q63 + 27305q62 + 27577q61

+ 27687q60 + 27531q59 + 27235q58 + 26710q57 + 26074q56 + 25249q55

+ 24354q54 + 23311q53 + 22235q52 + 21057q51 + 19878q50 + 18637q49

+ 17427q48 + 16183q47 + 14993q46 + 13799q45 + 12672q44 + 11559q43

+ 10525q42 + 9517q41 + 8593q40 + 7705q39 + 6899q38 + 6133q37

+ 5448q36 + 4801q35 + 4229q34 + 3696q33 + 3229q32 + 2797q31

+ 2424q30 + 2080q29 + 1787q28 + 1519q27 + 1293q26 + 1088q25

+ 919q24 + 764q23 + 638q22 + 525q21 + 434q20 + 352q19

+ 288q18 + 230q17 + 186q16 + 146q15 + 116q14 + 89q13

+ 70q12 + 52q11 + 40q10 + 29q9 + 22q8 + 15q7

+ 11q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0
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Example C.49. For N ∈ [4], n = 6 and k = 2 the Euler characteristics and
Poincaré polynomials of the approximations GrkN

(
ĝln
)
are given by

χk1,6 = 262
pk1,6(q) = 1q20 + 2q19 + 7q18 + 10q17 + 16q16 + 20q15 + 24q14 + 25q13

+ 28q12 + 25q11 + 24q10 + 20q9 + 17q8 + 13q7

+ 11q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χk2,6 = 6021
pk2,6(q) = 1q40 + 2q39 + 9q38 + 20q37

+ 45q36 + 74q35 + 117q34 + 161q33 + 212q32 + 256q31

+ 303q30 + 336q29 + 367q28 + 382q27 + 391q26 + 385q25

+ 377q24 + 354q23 + 332q22 + 301q21 + 272q20 + 238q19

+ 209q18 + 177q17 + 150q16 + 123q15 + 101q14 + 80q13

+ 65q12 + 49q11 + 38q10 + 28q9 + 21q8 + 15q7

+ 11q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χk3,6 = 52132
pk3,6(q) = 1q60 + 2q59 + 9q58 + 22q57 + 55q56 + 108q55

+ 202q54 + 322q53 + 487q52 + 674q51 + 891q50 + 1113q49

+ 1352q48 + 1573q47 + 1794q46 + 1984q45 + 2156q44 + 2285q43

+ 2392q42 + 2448q41 + 2481q40 + 2469q39 + 2434q38 + 2361q37

+ 2276q36 + 2159q35 + 2038q34 + 1898q33 + 1758q32 + 1607q31

+ 1465q30 + 1316q29 + 1179q28 + 1043q27 + 919q26 + 799q25

+ 695q24 + 594q23 + 508q22 + 428q21 + 360q20 + 298q19

+ 248q18 + 201q17 + 164q16 + 131q15 + 105q14 + 82q13

+ 65q12 + 49q11 + 38q10 + 28q9 + 21q8 + 15q7

+ 11q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0
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χk4,6 = 270729
pk4,6(q) = 1q80 + 2q79 + 9q78 + 22q77 + 57q76 + 118q75 + 236q74 + 414q73

+ 691q72 + 1047q71 + 1514q70 + 2057q69 + 2690q68 + 3370q67

+ 4112q66 + 4859q65 + 5631q64 + 6372q63 + 7096q62 + 7755q61

+ 8370q60 + 8887q59 + 9340q58 + 9684q57 + 9950q56 + 10104q55

+ 10185q54 + 10156q53 + 10064q52 + 9879q51 + 9641q50 + 9330q49

+ 8986q48 + 8583q47 + 8165q46 + 7710q45 + 7251q44 + 6771q43

+ 6302q42 + 5822q41 + 5363q40 + 4906q39 + 4473q38 + 4051q37

+ 3660q36 + 3281q35 + 2936q34 + 2608q33 + 2311q32 + 2033q31

+ 1786q30 + 1555q29 + 1353q28 + 1167q27 + 1005q26 + 858q25

+ 733q24 + 618q23 + 522q22 + 436q21 + 364q20 + 300q19

+ 248q18 + 201q17 + 164q16 + 131q15 + 105q14 + 82q13

+ 65q12 + 49q11 + 38q10 + 28q9 + 21q8 + 15q7

+ 11q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0
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Example C.50. For N ∈ [4], n = 6 and k = 1 the Euler characteristics and
Poincaré polynomials of the approximations GrkN

(
ĝln
)
are given by

χk1,6 = 192
pk1,6(q) = 2q18 + 3q17 + 7q16 + 10q15 + 15q14 + 17q13

+ 21q12 + 20q11 + 21q10 + 18q9 + 16q8 + 12q7

+ 11q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χk2,6 = 3243
pk2,6(q) = 3q36 + 6q35 + 16q34 + 28q33 + 48q32 + 69q31

+ 98q30 + 122q29 + 153q28 + 174q27 + 196q26 + 207q25

+ 219q24 + 216q23 + 215q22 + 203q21 + 193q20 + 174q19

+ 159q18 + 138q17 + 122q16 + 102q15 + 86q14 + 69q13

+ 58q12 + 44q11 + 35q10 + 26q9 + 20q8 + 14q7

+ 11q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χk3,6 = 22024
pk3,6(q) = 4q54 + 9q53 + 25q52 + 48q51 + 87q50 + 135q49

+ 205q48 + 278q47 + 371q46 + 464q45 + 569q44 + 663q43

+ 766q42 + 846q41 + 927q40 + 983q39 + 1034q38 + 1056q37

+ 1076q36 + 1066q35 + 1055q34 + 1020q33 + 984q32 + 929q31

+ 879q30 + 812q29 + 752q28 + 682q27 + 620q26 + 551q25

+ 492q24 + 429q23 + 377q22 + 323q21 + 278q20 + 233q19

+ 199q18 + 163q17 + 136q16 + 110q15 + 90q14 + 71q13

+ 58q12 + 44q11 + 35q10 + 26q9 + 20q8 + 14q7

+ 11q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0
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χk4,6 = 93885
pk4,6(q) = 5q72 + 12q71 + 34q70 + 68q69 + 128q68 + 207q67

+ 324q66 + 460q65 + 637q64 + 830q63 + 1060q62 + 1296q61

+ 1562q60 + 1819q59 + 2094q58 + 2345q57 + 2602q56 + 2820q55

+ 3033q54 + 3198q53 + 3352q52 + 3452q51 + 3538q50 + 3571q49

+ 3592q48 + 3561q47 + 3521q46 + 3437q45 + 3348q44 + 3221q43

+ 3095q42 + 2938q41 + 2788q40 + 2615q39 + 2450q38 + 2270q37

+ 2105q36 + 1927q35 + 1766q34 + 1600q33 + 1451q32 + 1299q31

+ 1166q30 + 1032q29 + 917q28 + 803q27 + 705q26 + 610q25

+ 532q24 + 454q23 + 391q22 + 331q21 + 282q20 + 235q19

+ 199q18 + 163q17 + 136q16 + 110q15 + 90q14 + 71q13

+ 58q12 + 44q11 + 35q10 + 26q9 + 20q8 + 14q7

+ 11q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0
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Example C.51. For N ∈ [4] and n = 6 the Euler characteristics and Poincaré
polynomials of the approximations GrN

(
ĝln
)
are given by

χ1,6 = 141
p1,6(q) = 1q18 + 1q17 + 3q16 + 5q15 + 8q14 + 10q13

+ 14q12 + 14q11 + 16q10 + 15q9 + 14q8 + 11q7

+ 10q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χ2,6 = 1751
p2,6(q) = 1q36 + 1q35 + 3q34 + 6q33 + 11q32 + 17q31

+ 28q30 + 38q29 + 53q28 + 66q27 + 81q26 + 92q25

+ 105q24 + 110q23 + 116q22 + 116q21 + 116q20 + 110q19

+ 105q18 + 95q17 + 87q16 + 76q15 + 66q14 + 55q13

+ 47q12 + 37q11 + 30q10 + 23q9 + 18q8 + 13q7

+ 10q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0

χ3,6 = 9331
p3,6(q) = 1q54 + 1q53 + 3q52 + 6q51 + 11q50 + 18q49

+ 31q48 + 45q47 + 67q46 + 92q45 + 124q44 + 157q43

+ 198q42 + 235q41 + 277q40 + 313q39 + 350q38 + 378q37

+ 406q36 + 422q35 + 438q34 + 443q33 + 446q32 + 439q31

+ 432q30 + 415q29 + 398q28 + 374q27 + 351q26 + 323q25

+ 297q24 + 267q23 + 241q22 + 213q21 + 188q20 + 162q19

+ 141q18 + 119q17 + 101q16 + 84q15 + 70q14 + 57q13

+ 47q12 + 37q11 + 30q10 + 23q9 + 18q8 + 13q7

+ 10q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0
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χ4,6 = 32661
p4,6(q) = 1q72 + 1q71 + 3q70 + 6q69 + 11q68 + 18q67

+ 31q66 + 46q65 + 70q64 + 99q63 + 138q62 + 183q61

+ 241q60 + 302q59 + 376q58 + 452q57 + 537q56 + 619q55

+ 708q54 + 788q53 + 871q52 + 942q51 + 1011q50 + 1066q49

+ 1119q48 + 1154q47 + 1186q46 + 1202q45 + 1214q44 + 1210q43

+ 1203q42 + 1181q41 + 1157q40 + 1120q39 + 1081q38 + 1032q37

+ 984q36 + 927q35 + 872q34 + 812q33 + 755q32 + 694q31

+ 638q30 + 579q29 + 526q28 + 472q27 + 423q26 + 375q25

+ 333q24 + 291q23 + 255q22 + 221q21 + 192q20 + 164q19

+ 141q18 + 119q17 + 101q16 + 84q15 + 70q14 + 57q13

+ 47q12 + 37q11 + 30q10 + 23q9 + 18q8 + 13q7

+ 10q6 + 7q5 + 5q4 + 3q3 + 2q2 + 1q1 + 1q0
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